2023年超聲醫(yī)學(xué)紋理分析應(yīng)用研究現(xiàn)狀_第1頁
2023年超聲醫(yī)學(xué)紋理分析應(yīng)用研究現(xiàn)狀_第2頁
2023年超聲醫(yī)學(xué)紋理分析應(yīng)用研究現(xiàn)狀_第3頁
免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

超聲醫(yī)學(xué)紋理分析應(yīng)用研究現(xiàn)狀【摘要】隨著臨床醫(yī)生從患者身上獵取的醫(yī)學(xué)圖像數(shù)量快速增長(zhǎng),這些圖像的使用已從診斷工具擴(kuò)展到個(gè)體化診療背景下醫(yī)學(xué)數(shù)據(jù)。目前,對(duì)如此大量的醫(yī)學(xué)影像數(shù)據(jù)的有效利用仍是一個(gè)挑戰(zhàn)。近些年在定量成像分析方面有了一個(gè)重要的進(jìn)展,稱為影像組學(xué)。影像組學(xué)組學(xué)是從醫(yī)學(xué)圖像中高通量提取高級(jí)定量特征,通常使用數(shù)學(xué)紋理分析。利用紋理分析可以量化醫(yī)學(xué)上的異質(zhì)性,紋理特征從醫(yī)學(xué)圖像中提取出肉眼無法察覺的空間信息。紋理分析可能成為一種潛在的、有用的生物標(biāo)記物,可以評(píng)估和量化腫瘤的空間異質(zhì)性,從而更好地依據(jù)疾病,尤其腫瘤性疾病的影像組學(xué)特征選擇合適的治療方案。本文旨在綜述紋理分析在超聲醫(yī)學(xué)領(lǐng)域討論進(jìn)展,存在的問題等,以期為紋理分析在超聲醫(yī)學(xué)領(lǐng)域的應(yīng)用、進(jìn)展供應(yīng)肯定的參考作用。

【關(guān)鍵詞】超聲醫(yī)學(xué);紋理分析;影像組學(xué);灰度共生矩陣

紋理一般指從圖像中觀看到的圖像像元的灰度變化規(guī)律,人們將圖像中存在的局部不規(guī)章的,二宏觀有規(guī)律的特征稱為紋理。在圖像分析學(xué)中用數(shù)字特征描述灰度變化特征稱為圖像的紋理特征。紋理分析的主要內(nèi)容可以分為圖像變換和圖像量化兩大類。圖像變換將傳統(tǒng)的圖像濾除為其基本重量(空間、頻率等),生成派生的子圖像。紋理分析已經(jīng)在諸多領(lǐng)域應(yīng)用,醫(yī)學(xué)討論人員嘗試將紋理特征分析用于醫(yī)學(xué)圖像,探究疾病診斷、治療及預(yù)后等,并取得了肯定的討論成果。

1紋理分析方法

紋理量化技術(shù)包括結(jié)構(gòu)、模型(分形維數(shù))、基于統(tǒng)計(jì)和頻率的方法。統(tǒng)計(jì)分析紋理特征的方法簡(jiǎn)潔,易于實(shí)現(xiàn),所以目前醫(yī)學(xué)討論中應(yīng)用的較多。統(tǒng)計(jì)分析方法是通過統(tǒng)計(jì)圖像的空間及邊界頻率、空間灰度依靠關(guān)系等,紋理的細(xì)致和粗糙程度與空間頻率有關(guān),低空間頻率與粗糙的紋理相關(guān),細(xì)致的紋理具有高空間頻率?;诮y(tǒng)計(jì)的方法:灰度共生矩陣、灰度行程統(tǒng)計(jì)、灰度差分統(tǒng)計(jì)、局部灰度統(tǒng)計(jì)、半方差圖、自相關(guān)函數(shù)等。灰度共生矩陣(GLCM)是統(tǒng)計(jì)分析方法中最重要的方法。GLCM是建立在估量圖像的二階組合條件概率密度函數(shù)基礎(chǔ)上的統(tǒng)計(jì)方法,主要描述紋理基元或局部模式隨機(jī)和空間統(tǒng)計(jì)特征,以表示區(qū)域的全都性及區(qū)域間的相對(duì)性。其它方法在醫(yī)學(xué)影像討論中應(yīng)用的較少,所以在此不再贅述。

2紋理分析用于超聲醫(yī)學(xué)討論現(xiàn)狀

國(guó)內(nèi)外討論者嘗試?yán)酶鞣N紋理分析技術(shù)對(duì)多種醫(yī)學(xué)成像圖像(CT、MRI、數(shù)字X線片、超聲)進(jìn)行分析,探究無創(chuàng)診療新途徑。在新興領(lǐng)域-影像組學(xué)中紋理分析也是一個(gè)重要組成部分,它通過評(píng)估圖像中像素或體素灰度的分布和關(guān)系,可以定量客觀地評(píng)估組織的異質(zhì)性。紋理分析應(yīng)用于計(jì)算機(jī)斷層掃描(CT)和磁共振成像(MRI)較超聲圖像較超聲圖像早,在猜測(cè)病理特征、預(yù)后和對(duì)各種疾病的治療反應(yīng)方面已經(jīng)顯示出了良好的效果。近些年有學(xué)者將紋理分析用于超聲成像,并取得了肯定的討論成果。超聲圖像的紋理是由于不同的組織、同一組織不同病變及正常組織對(duì)超聲脈沖的汲取、衰退、反射有差異,由超聲脈沖相互作用而形成。因此,討論者假設(shè)圖像的紋理的不同,可定量分析來區(qū)分不同疾病,甚至猜測(cè)基因、蛋白表達(dá)等的差異。從而為疾病的無創(chuàng)診斷、疾病的分期、基因相關(guān)性分析及預(yù)后猜測(cè)等供應(yīng)新的可參考依據(jù)。

2.1乳腺腫瘤討論現(xiàn)狀

因全球女性發(fā)病率最高的惡性腫瘤,始終以來對(duì)乳腺癌的早期診斷和治療是臨床持續(xù)關(guān)注的熱點(diǎn)問題。超聲診斷是乳腺癌的普查和早期診斷的重要工具。超聲圖像紋理分析有望提高乳腺癌的診斷率,并有望為乳腺癌的分型及放化療預(yù)后等供應(yīng)有價(jià)值的參考依據(jù)。種美玲等對(duì)113個(gè)病理證明的乳腺結(jié)節(jié)行灰階超聲及剪切波彈性成像回顧性分析,利用灰度共生矩陣特征提取,獲得對(duì)比度、同質(zhì)性、相關(guān)性,角二距等4個(gè)參數(shù)建立診斷模型,試驗(yàn)結(jié)果顯示灰階超聲及剪切波彈性圖像的多參數(shù)紋理分析及建立的診斷模型對(duì)乳腺結(jié)節(jié)良惡性有較高的診斷效能[1]。諸多關(guān)于乳腺病變的基于超聲圖像紋理特征分析的影像組學(xué)討論為無創(chuàng)分類乳腺腫瘤的可能性奠定了基礎(chǔ)。

2.2肝臟疾病中的討論現(xiàn)狀

紋理分析可以進(jìn)一步提取和量化超聲圖像中的紋理特征,為進(jìn)一步的視覺信息供應(yīng)補(bǔ)充,對(duì)肝臟疾病,尤其對(duì)肝纖維化有較高的診斷精確?????性。張慧等對(duì)經(jīng)病理檢查證明的120個(gè)肝臟超聲影像(其中包括正常肝臟、肝臟惡性病變、肝臟良性病變等)行紋理特征提取分析,并結(jié)合決策樹算法進(jìn)行分類診斷,結(jié)果顯示提取的紋理特征對(duì)圖像內(nèi)容有較好的分區(qū)性[2]。紋理分析作為影像組學(xué)圖像特征提取的重要方法多個(gè)試驗(yàn)討論證明該方法可為臨床上幫助診斷腫瘤性疾病供應(yīng)依據(jù),也為后期圖像識(shí)別,圖像檢索和圖像數(shù)據(jù)挖掘供應(yīng)了特征數(shù)據(jù)。

2.3骨骼肌疾病的討論現(xiàn)狀

灰度共生矩陣(GLCM)灰度分析是一種考慮圖像像素空間分布的圖像紋理分析方法。在討論運(yùn)動(dòng)誘導(dǎo)肌肉損傷(EIMD)中灰度共生矩陣(GLCM)一種很有前途的方法。Matta等跟蹤了骨骼肌偏心收縮后超聲圖像上兩個(gè)GLCM紋理參數(shù)(對(duì)比度、相關(guān)度)和回聲強(qiáng)度(EI)的時(shí)間變化。將13名未經(jīng)訓(xùn)練的婦女分為兩組,行肘部屈曲的偏心收縮。運(yùn)動(dòng)后24小時(shí)、48小時(shí)、72小時(shí)和96小時(shí)分別獲得超聲圖像。計(jì)算肱肌兩種GLCM紋理參數(shù):對(duì)比(CON)和相關(guān)(COR)。測(cè)量峰值扭矩、EI、肌肉厚度(MT)和痛苦。與全部措施相比,干預(yù)后峰值扭矩和痛苦馬上下降。干預(yù)后72hMT立即上升(P<0.05)。COR(48、72、96h)和EI僅在72、96h時(shí)顯著上升(P<0.05),COR上升代表灰度級(jí)之間高度相像,這在肘關(guān)節(jié)屈肌偏心訓(xùn)練后幾天的超聲圖像上可以觀看到。最終通過試驗(yàn)得出結(jié)論:肌肉組織超聲圖像熵的變化與其能量消耗程度的相關(guān)度很高。肌骨超聲影像組學(xué)討論主要通過紋理分析方法實(shí)現(xiàn),為運(yùn)動(dòng)醫(yī)學(xué)、康復(fù)醫(yī)學(xué)的進(jìn)展供應(yīng)了更多的定量診斷信息。

2.4其它疾病中的討論現(xiàn)狀

隨著紋理分析相關(guān)討論的進(jìn)展,紋理特征被用于更多的領(lǐng)域,如甲狀腺腫瘤、卵巢腫瘤、心肌疾病及腎臟腫瘤等。Vidaurreta提出了一種基于神經(jīng)網(wǎng)絡(luò)的附件腫瘤自動(dòng)判別方法。討論者首先從卵巢超聲圖像中計(jì)算出7種不同類型的紋理特征(局部二進(jìn)制模式、分形維數(shù)、熵、不變矩、灰度共生矩陣、法則紋理能量和Gabor小波),從中提取若干特征并隨臨床患者年齡一起收集。采納145例患者的卵巢腫瘤超聲圖像試驗(yàn),其中106張良性圖像,39張惡性圖像,將提取的圖像特征進(jìn)行分類后,對(duì)分類器進(jìn)行評(píng)價(jià),其精確?????率為98.78%,靈敏度為98.50%,特異度為98.90%,曲線下面積為0.997。Priyank等對(duì)腎臟超聲圖像進(jìn)行預(yù)處理后利用灰度共生矩陣方法生成能量、熵、勻稱性、相關(guān)性、對(duì)比度、差異性等多個(gè)二階統(tǒng)計(jì)紋理特征,將特征行主成分分析(PCA)將得到的特征簡(jiǎn)化為最優(yōu)子集,經(jīng)統(tǒng)計(jì)分析結(jié)果顯示出較高的分類精確?????率。

3對(duì)醫(yī)學(xué)超聲圖像的紋理分析方法的問題及將來展望

紋理分析雖進(jìn)展較早,但用于醫(yī)學(xué)圖像,尤其用于超聲圖像較晚,在超聲醫(yī)學(xué)中的相關(guān)討論也較少,目前,對(duì)超聲圖像的紋理分析主要應(yīng)用乳腺良惡性腫瘤的鑒別診斷,肝臟纖維化程度的分期,骨骼肌的損傷定量分析等疾病的診斷中,對(duì)惡性腫瘤的基因相關(guān)性討論、惡性腫瘤化療及放療效評(píng)估、腫瘤分級(jí)分期等討論仍較為缺乏。后續(xù)的更深化的討論中需要解決的問題仍有許多。最大的問題在于對(duì)圖像進(jìn)行標(biāo)準(zhǔn)化。在不同的討論者采納的設(shè)備及參數(shù)設(shè)置、圖像的預(yù)處理、對(duì)愛好區(qū)的分割方式的不同、特征提取等過程差異很大,因此試驗(yàn)的重復(fù)性較差[3]。今后的討論需要重新關(guān)注討論設(shè)計(jì)、報(bào)告實(shí)踐和圖像采集的標(biāo)準(zhǔn)化、特征計(jì)算和特征提取等,以推動(dòng)紋理分析在醫(yī)學(xué)超聲領(lǐng)域的進(jìn)展。近些年,基于先進(jìn)計(jì)算機(jī)運(yùn)算力量、云計(jì)算、大數(shù)據(jù)以及機(jī)器學(xué)習(xí)及深度學(xué)習(xí)應(yīng)用于醫(yī)學(xué)圖像的紋理分析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論