版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.橢圓是日常生活中常見的圖形,在圓柱形的玻璃杯中盛半杯水,將杯體傾斜一個(gè)角度,水面的邊界即是橢圓.現(xiàn)有一高度為12厘米,底面半徑為3厘米的圓柱形玻璃杯,且杯中所盛水的體積恰為該玻璃杯容積的一半(玻璃厚度忽略不計(jì)),在玻璃杯傾斜的過程中(杯中的水不能溢出),杯中水面邊界所形成的橢圓的離心率的取值范圍是()A. B. C. D.2.在平面直角坐標(biāo)系中,已知角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,終邊落在直線上,則()A. B. C. D.3.某幾何體的三視圖如圖所示,若側(cè)視圖和俯視圖均是邊長(zhǎng)為的等邊三角形,則該幾何體的體積為A. B. C. D.4.以下四個(gè)命題:①兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近1;②在回歸分析中,可用相關(guān)指數(shù)的值判斷擬合效果,越小,模型的擬合效果越好;③若數(shù)據(jù)的方差為1,則的方差為4;④已知一組具有線性相關(guān)關(guān)系的數(shù)據(jù),其線性回歸方程,則“滿足線性回歸方程”是“,”的充要條件;其中真命題的個(gè)數(shù)為()A.4 B.3 C.2 D.15.已知實(shí)數(shù),滿足約束條件,則目標(biāo)函數(shù)的最小值為A. B.C. D.6.已知復(fù)數(shù),則()A. B. C. D.7.如圖,在中,點(diǎn)是的中點(diǎn),過點(diǎn)的直線分別交直線,于不同的兩點(diǎn),若,,則()A.1 B. C.2 D.38.已知點(diǎn)(m,8)在冪函數(shù)的圖象上,設(shè),則()A.b<a<c B.a(chǎn)<b<c C.b<c<a D.a(chǎn)<c<b9.已知的部分圖象如圖所示,則的表達(dá)式是()A. B.C. D.10.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點(diǎn),則異面直線與所成角的余弦值為A.0 B. C. D.111.一個(gè)算法的程序框圖如圖所示,若該程序輸出的結(jié)果是,則判斷框中應(yīng)填入的條件是()A. B. C. D.12.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國(guó)古老的傳統(tǒng)民間藝術(shù)之一,它歷史悠久,風(fēng)格獨(dú)特,神獸人們喜愛.下圖即是一副窗花,是把一個(gè)邊長(zhǎng)為12的大正方形在四個(gè)角處都剪去邊長(zhǎng)為1的小正方形后剩余的部分,然后在剩余部分中的四個(gè)角處再剪出邊長(zhǎng)全為1的一些小正方形.若在這個(gè)窗花內(nèi)部隨機(jī)取一個(gè)點(diǎn),則該點(diǎn)不落在任何一個(gè)小正方形內(nèi)的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若的最小值為,則實(shí)數(shù)的取值范圍是_________14.記等差數(shù)列和的前項(xiàng)和分別為和,若,則______.15.割圓術(shù)是估算圓周率的科學(xué)方法,由三國(guó)時(shí)期數(shù)學(xué)家劉徽創(chuàng)立,他用圓內(nèi)接正多邊形面積無限逼近圓面積,從而得出圓周率.現(xiàn)在半徑為1的圓內(nèi)任取一點(diǎn),則該點(diǎn)取自其內(nèi)接正十二邊形內(nèi)部的概率為________.16.已知滿足且目標(biāo)函數(shù)的最大值為7,最小值為1,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(Ⅰ)討論函數(shù)的單調(diào)性;(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn),求證:.18.(12分)已知函數(shù),將的圖象向左移個(gè)單位,得到函數(shù)的圖象.(1)若,求的單調(diào)區(qū)間;(2)若,的一條對(duì)稱軸是,求在的值域.19.(12分)已知六面體如圖所示,平面,,,,,,是棱上的點(diǎn),且滿足.(1)求證:直線平面;(2)求二面角的正弦值.20.(12分)中,內(nèi)角的對(duì)邊分別為,.(1)求的大小;(2)若,且為的重心,且,求的面積.21.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若恒成立,求實(shí)數(shù)的取值范圍.22.(10分)在三角形ABC中,角A,B,C的對(duì)邊分別為a,b,c,若,角為鈍角,(1)求的值;(2)求邊的長(zhǎng).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
根據(jù)題意可知當(dāng)玻璃杯傾斜至杯中水剛好不溢出時(shí),水面邊界所形成橢圓的離心率最大,由橢圓的幾何性質(zhì)即可確定此時(shí)橢圓的離心率,進(jìn)而確定離心率的取值范圍.【詳解】當(dāng)玻璃杯傾斜至杯中水剛好不溢出時(shí),水面邊界所形成橢圓的離心率最大.此時(shí)橢圓長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為6,所以橢圓離心率,所以.故選:C【點(diǎn)睛】本題考查了橢圓的定義及其性質(zhì)的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.2.C【解析】
利用誘導(dǎo)公式以及二倍角公式,將化簡(jiǎn)為關(guān)于的形式,結(jié)合終邊所在的直線可知的值,從而可求的值.【詳解】因?yàn)?,且,所?故選:C.【點(diǎn)睛】本題考查三角函數(shù)中的誘導(dǎo)公式以及三角恒等變換中的二倍角公式,屬于給角求值類型的問題,難度一般.求解值的兩種方法:(1)分別求解出的值,再求出結(jié)果;(2)將變形為,利用的值求出結(jié)果.3.C【解析】
由三視圖可知,該幾何體是三棱錐,底面是邊長(zhǎng)為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.4.C【解析】
①根據(jù)線性相關(guān)性與r的關(guān)系進(jìn)行判斷,
②根據(jù)相關(guān)指數(shù)的值的性質(zhì)進(jìn)行判斷,
③根據(jù)方差關(guān)系進(jìn)行判斷,
④根據(jù)點(diǎn)滿足回歸直線方程,但點(diǎn)不一定就是這一組數(shù)據(jù)的中心點(diǎn),而回歸直線必過樣本中心點(diǎn),可進(jìn)行判斷.【詳解】①若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的絕對(duì)值越接近于1,故①正確;
②用相關(guān)指數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好,故②錯(cuò)誤;
③若統(tǒng)計(jì)數(shù)據(jù)的方差為1,則的方差為,故③正確;
④因?yàn)辄c(diǎn)滿足回歸直線方程,但點(diǎn)不一定就是這一組數(shù)據(jù)的中心點(diǎn),即,不一定成立,而回歸直線必過樣本中心點(diǎn),所以當(dāng),時(shí),點(diǎn)必滿足線性回歸方程;因此“滿足線性回歸方程”是“,”必要不充分條件.故④錯(cuò)誤;
所以正確的命題有①③.
故選:C.【點(diǎn)睛】本題考查兩個(gè)隨機(jī)變量的相關(guān)性,擬合性檢驗(yàn),兩個(gè)線性相關(guān)的變量間的方差的關(guān)系,以及兩個(gè)變量的線性回歸方程,注意理解每一個(gè)量的定義,屬于基礎(chǔ)題.5.B【解析】
作出不等式組對(duì)應(yīng)的平面區(qū)域,目標(biāo)函數(shù)的幾何意義為動(dòng)點(diǎn)到定點(diǎn)的斜率,利用數(shù)形結(jié)合即可得到的最小值.【詳解】解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:目標(biāo)函數(shù)的幾何意義為動(dòng)點(diǎn)到定點(diǎn)的斜率,當(dāng)位于時(shí),此時(shí)的斜率最小,此時(shí).故選B.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用以及兩點(diǎn)之間的斜率公式的計(jì)算,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.6.B【解析】
利用復(fù)數(shù)除法、加法運(yùn)算,化簡(jiǎn)求得,再求得【詳解】,故.故選:B【點(diǎn)睛】本小題主要考查復(fù)數(shù)的除法運(yùn)算、加法運(yùn)算,考查復(fù)數(shù)的模,屬于基礎(chǔ)題.7.C【解析】
連接AO,因?yàn)镺為BC中點(diǎn),可由平行四邊形法則得,再將其用,表示.由M、O、N三點(diǎn)共線可知,其表達(dá)式中的系數(shù)和,即可求出的值.【詳解】連接AO,由O為BC中點(diǎn)可得,,、、三點(diǎn)共線,,.故選:C.【點(diǎn)睛】本題考查了向量的線性運(yùn)算,由三點(diǎn)共線求參數(shù)的問題,熟記向量的共線定理是關(guān)鍵.屬于基礎(chǔ)題.8.B【解析】
先利用冪函數(shù)的定義求出m的值,得到冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,再利用冪函數(shù)f(x)的單調(diào)性,即可得到a,b,c的大小關(guān)系.【詳解】由冪函數(shù)的定義可知,m﹣1=1,∴m=2,∴點(diǎn)(2,8)在冪函數(shù)f(x)=xn上,∴2n=8,∴n=3,∴冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【點(diǎn)睛】本題主要考查了冪函數(shù)的性質(zhì),以及利用函數(shù)的單調(diào)性比較函數(shù)值大小,屬于中檔題.9.D【解析】
由圖象求出以及函數(shù)的最小正周期的值,利用周期公式可求得的值,然后將點(diǎn)的坐標(biāo)代入函數(shù)的解析式,結(jié)合的取值范圍求出的值,由此可得出函數(shù)的解析式.【詳解】由圖象可得,函數(shù)的最小正周期為,.將點(diǎn)代入函數(shù)的解析式得,得,,,則,,因此,.故選:D.【點(diǎn)睛】本題考查利用圖象求三角函數(shù)解析式,考查分析問題和解決問題的能力,屬于中等題.10.B【解析】
根據(jù)題意可得平面,,則即異面直線與所成的角,連接CG,在中,,易得,所以,所以,故選B.11.D【解析】
首先判斷循環(huán)結(jié)構(gòu)類型,得到判斷框內(nèi)的語句性質(zhì),然后對(duì)循環(huán)體進(jìn)行分析,找出循環(huán)規(guī)律,判斷輸出結(jié)果與循環(huán)次數(shù)以及的關(guān)系,最終得出選項(xiàng).【詳解】經(jīng)判斷此循環(huán)為“直到型”結(jié)構(gòu),判斷框?yàn)樘鲅h(huán)的語句,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,此時(shí)退出循環(huán),根據(jù)判斷框內(nèi)為跳出循環(huán)的語句,,故選D.【點(diǎn)睛】題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時(shí)一定注意以下幾點(diǎn):(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時(shí)一定要正確控制循環(huán)次數(shù);(5)要注意各個(gè)框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運(yùn)算方法逐次計(jì)算,直到達(dá)到輸出條件即可.12.D【解析】
由幾何概型可知,概率應(yīng)為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【點(diǎn)睛】本題考查幾何概型的面積公式的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
,可得在時(shí),最小值為,時(shí),要使得最小值為,則對(duì)稱軸在1的右邊,且,求解出即滿足最小值為.【詳解】當(dāng),,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.當(dāng)時(shí),為二次函數(shù),要想在處取最小,則對(duì)稱軸要滿足并且,即,解得.【點(diǎn)睛】本題考查分段函數(shù)的最值問題,對(duì)每段函數(shù)先進(jìn)行分類討論,找到每段的最小值,然后再對(duì)兩段函數(shù)的最小值進(jìn)行比較,得到結(jié)果,題目較綜合,屬于中檔題.14.【解析】
結(jié)合等差數(shù)列的前項(xiàng)和公式,可得,求解即可.【詳解】由題意,,,因?yàn)?所以.故答案為:.【點(diǎn)睛】本題考查了等差數(shù)列的前項(xiàng)和公式及等差中項(xiàng)的應(yīng)用,考查了學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.15.【解析】
求出圓內(nèi)接正十二邊形的面積和圓的面積,再用幾何概型公式求出即可.【詳解】半徑為1的圓內(nèi)接正十二邊形,可分割為12個(gè)頂角為,腰為1的等腰三角形,∴該正十二邊形的面積為,根據(jù)幾何概型公式,該點(diǎn)取自其內(nèi)接正十二邊形的概率為,故答案為:.【點(diǎn)睛】本小題主要考查面積型幾何概型的計(jì)算,屬于基礎(chǔ)題.16.-2【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大最小值時(shí)所在的頂點(diǎn)即可.【詳解】由題意得:目標(biāo)函數(shù)在點(diǎn)B取得最大值為7,在點(diǎn)A處取得最小值為1,∴,,∴直線AB的方程是:,∴則,故答案為.【點(diǎn)睛】本題主要考查了簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值的方法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析(Ⅱ)見解析【解析】
(Ⅰ)求導(dǎo)得到,討論,,三種情況得到單調(diào)區(qū)間.(Ⅱ)設(shè),要證,即證,,設(shè),根據(jù)函數(shù)單調(diào)性得到證明.【詳解】(Ⅰ),令,,(1)當(dāng),即時(shí),,,在上單調(diào)遞增;(2)當(dāng),即時(shí),設(shè)的兩根為(),,①若,,時(shí),,所以在和上單調(diào)遞增,時(shí),,所以在上單調(diào)遞減,②若,,時(shí),,所以在上單調(diào)遞減,時(shí),,所以在上單調(diào)遞增.綜上,當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(Ⅱ)不妨設(shè),要證,即證,即證,由(Ⅰ)可知,,,可得,,所以有,令,,所以在單調(diào)遞增,所以,因?yàn)?,所以,所?【點(diǎn)睛】本題考查了函數(shù)單調(diào)性,證明不等式,意在考查學(xué)生的分類討論能力和計(jì)算能力.18.(1)增區(qū)間為,減區(qū)間為;(2).【解析】
(1)由題意利用三角函數(shù)圖象變換規(guī)律求得的解析式,然后利用余弦函數(shù)的單調(diào)性,得出結(jié)論;(2)由題意利用余弦函數(shù)的圖象的對(duì)稱性求得,再根據(jù)余弦函數(shù)的定義域和值域,得出結(jié)論.【詳解】由題意得(1)向左平移個(gè)單位得到,增區(qū)間:解不等式,解得,減區(qū)間:解不等式,解得.綜上可得,的單調(diào)增區(qū)間為,減區(qū)間為;(2)由題易知,,因?yàn)榈囊粭l對(duì)稱軸是,所以,,解得,.又因?yàn)?,所以,?因?yàn)?,所以,則,所以在的值域是.【點(diǎn)睛】本題主要考查三角函數(shù)圖象變換規(guī)律,余弦函數(shù)圖象的對(duì)稱性,余弦函數(shù)的單調(diào)性和值域,屬于中檔題.19.(1)證明見解析(2)【解析】
(1)連接,設(shè),連接.通過證明,證得直線平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的正弦值.【詳解】(1)連接,設(shè),連接,因?yàn)?,所以,所以,在中,因?yàn)椋?,且平面,故平?(2)因?yàn)?,,,,,所以,因?yàn)?,平面,所以平面,所以,,取所在直線為軸,取所在直線為軸,取所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,由已知可得,,,,所以,因?yàn)?,所以,所以點(diǎn)的坐標(biāo)為,所以,,設(shè)為平面的法向量,則,令,解得,,所以,即為平面的一個(gè)法向量.,同理可求得平面的一個(gè)法向量為所以所以二面角的正弦值為【點(diǎn)睛】本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 如何提升員工參與感與歸屬感計(jì)劃
- 幼兒園合作學(xué)習(xí)模式實(shí)施計(jì)劃
- 肋型樓蓋課程設(shè)計(jì)
- 成都中醫(yī)藥大學(xué)《運(yùn)作管理》2022-2023學(xué)年第一學(xué)期期末試卷
- 成都中醫(yī)藥大學(xué)《體育保健學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 我與醫(yī)院共成長(zhǎng)演講稿
- 初中七年級(jí)主題班會(huì):如何面對(duì)自己的焦慮和壓力(課件)
- 撕名牌活動(dòng)方案
- 高三英語年度考核總結(jié)8篇
- 電商行業(yè)分析報(bào)告(3篇)
- 人教版九年級(jí)上冊(cè)化學(xué)默寫總復(fù)習(xí)
- 螺旋鋼管的安裝施工方案
- 《足球傳接球》教學(xué)反思簡(jiǎn)短 足球傳接球教案反思
- 初中信息技術(shù)高效課堂構(gòu)建策略之探究
- 科學(xué)論文中的學(xué)術(shù)不端案例分析
- 胸大肌斜方肌帶蒂皮瓣移植術(shù)后護(hù)理查房
- 信用社(銀行)工作會(huì)議精神貫徹落實(shí)情況的匯報(bào)
- 《配送中心運(yùn)營(yíng)管理實(shí)務(wù)》 教案 第13課 流通加工作業(yè)管理
- 江蘇省南京市玄武區(qū)南京理工大學(xué)附屬中學(xué)2023-2024學(xué)年上學(xué)期七年級(jí)英語國(guó)慶檢測(cè)(月考)
- 服務(wù)組織協(xié)調(diào)內(nèi)容及措施
- 國(guó)開電大本科工程數(shù)學(xué)(本)在線形考(形成性考核作業(yè)4)試題及答案
評(píng)論
0/150
提交評(píng)論