版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
直線與平面平行的判定
直線與平面有幾種位置關(guān)系?復(fù)習(xí)引入
其中平行是一種非常重要的關(guān)系,不僅應(yīng)用較多,而且是學(xué)習(xí)平面和平面平行的基礎(chǔ).
有三種位置關(guān)系:在平面內(nèi),相交、平行.問題怎樣判定直線與平面平行呢?問題引入新課
根據(jù)定義,判定直線與平面是否平行,只需判定直線與平面有沒有公共點(diǎn).但是,直線無限延長(zhǎng),平面無限延展,如何保證直線與平面沒有公共點(diǎn)呢?a在生活中,注意到門扇的兩邊是平行的.當(dāng)門扇繞著一邊轉(zhuǎn)動(dòng)時(shí),另一邊始終與門框所在的平面沒有公共點(diǎn),此時(shí)門扇轉(zhuǎn)動(dòng)的一邊與門框所在的平面給人以平行的印象.問題實(shí)例感受門扇轉(zhuǎn)動(dòng)的一邊與門框所在的平面之間的位置關(guān)系.問題實(shí)例感受將一本書平放在桌面上,翻動(dòng)書的硬皮封面,封面邊緣AB所在直線與桌面所在平面具有什么樣的位置關(guān)系?觀察實(shí)例感受觀察實(shí)例感受將一本書平放在桌面上,翻動(dòng)書的硬皮封面,封面邊緣AB所在直線與桌面所在平面具有什么樣的位置關(guān)系?觀察實(shí)例感受將一本書平放在桌面上,翻動(dòng)書的硬皮封面,封面邊緣AB所在直線與桌面所在平面具有什么樣的位置關(guān)系?下圖中的直線a與平面α平行嗎?觀察直線與平面平行如果平面內(nèi)有直線與直線平行,那么直線與平面的位置關(guān)系如何?是否可以保證直線與平面平行?觀察直線與平面平行平面外有直線平行于平面內(nèi)的直線.(1)這兩條直線共面嗎?(2)直線與平面相交嗎?探究直線與平面平行共面不可能相交平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行.證明直線與平面平行,三個(gè)條件必須具備,才能得到線面平行的結(jié)論.直線與平面平行關(guān)系直線間平行關(guān)系空間問題平面問題直線與平面平行判定定理定理的應(yīng)用例1.如圖,空間四邊形ABCD中,E、F分別是AB,AD的中點(diǎn).求證:EF∥平面BCD.ABCDEF分析:要證明線面平行只需證明線線平行,即在平面BCD內(nèi)找一條直線平行于EF,由已知的條件怎樣找這條直線?證明:連結(jié)BD.∵AE=EB,AF=FD∴EF∥BD(三角形中位線性質(zhì))例1.如圖,空間四邊形ABCD中,E、F分別是AB,AD的中點(diǎn).求證:EF∥平面BCD.ABDEF定理的應(yīng)用1.如圖,在空間四邊形ABCD中,E、F分別為AB、AD上的點(diǎn),若,則EF與平面BCD的位置關(guān)系是_____________.
EF//平面BCD變式1:ABCDEF變式2:ABCDFOE2.如圖,四棱錐A—DBCE中,O為底面正方形DBCE對(duì)角線的交點(diǎn),F為AE的中點(diǎn).求證:AB//平面DCF.(04年天津高考)分析:連結(jié)OF,可知OF為△ABE的中位線,所以得到AB//OF.∵O為正方形DBCE對(duì)角線的交點(diǎn),∴BO=OE,又AF=FE,∴AB//OF,BDFO2.如圖,四棱錐A—DBCE中,O為底面正方形DBCE對(duì)角線的交點(diǎn),F為AE的中點(diǎn).求證:AB//平面DCF.證明:連結(jié)OF,ACE變式2:1.線面平行,通??梢赞D(zhuǎn)化為線線平行來處理.反思~領(lǐng)悟:2.尋找平行直線可以通過三角形的中位線、梯形的中位線、平行線的判定等來完成。3、證明的書寫三個(gè)條件“內(nèi)”、“外”、“平行”,缺一不可。1.如圖,長(zhǎng)方體中,(1)與AB平行的平面是
;(2)與平行的平面是
;(3)與AD平行的平面是
;平面平面平面平面平面平面鞏固練習(xí):分析:要證BD1//平面AEC即要在平面AEC內(nèi)找一條直線與BD1平行.根據(jù)已知條件應(yīng)該怎樣考慮輔助線?鞏固練習(xí):2.如圖,正方體ABCD-A1B1C1D1中,E為DD1的中點(diǎn),求證:BD1//平面AEC.ED1C1B1A1DCBAO證明:連結(jié)BD交AC于O,連結(jié)EO.∵O為矩形ABCD對(duì)角線的交點(diǎn),∴DO=OB,又∵DE=ED1,∴BD1//EO.ED1C1B1A1DCBAO鞏固練習(xí):如圖,正方體ABCD-A1B1C1D1中,E為DD1的中點(diǎn),求證:BD1//平面AEC.歸納小結(jié),理清知識(shí)體系1.判定直線與平面平行的方法:(1)定義法:直線與平面沒
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版文印室全權(quán)承包合同樣本版B版
- 2024民房買賣合同:城市住宅小區(qū)民房產(chǎn)權(quán)交易范本12篇
- 2024年環(huán)保管家技術(shù)服務(wù)全面合作協(xié)議
- 2025版專業(yè)打印設(shè)備年度維保及備件供應(yīng)合同3篇
- 福建省南平市外屯中學(xué)高一化學(xué)測(cè)試題含解析
- 業(yè)務(wù)員與公司合作協(xié)議書
- 2024橋涵施工勞務(wù)合同
- 2024-2025學(xué)年初升高銜接-文言句式(判斷句)說課稿
- 旅途迎風(fēng):業(yè)務(wù)全紀(jì)實(shí)
- 科技數(shù)碼:融資與未來
- 2025年中國(guó)誠(chéng)通控股集團(tuán)限公司校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 《Unit 5 What do we eat 》(說課稿)-2024-2025學(xué)年滬教版(2024)英語三年級(jí)上冊(cè)
- 2024年加油站的年度工作總結(jié)范文(2篇)
- 私募股權(quán)投資基金管理公司部門劃分與職責(zé)
- 福建省晉江市松熹中學(xué)2024-2025學(xué)年七年級(jí)上學(xué)期第二次月考語文試題
- (新版)廣電全媒體運(yùn)營(yíng)師資格認(rèn)證考試復(fù)習(xí)題庫(kù)(含答案)
- 智慧人力引領(lǐng)未來-2024年生成式AI賦能人力資源管理研究報(bào)告
- 教師及教育系統(tǒng)事業(yè)單位工作人員年度考核登記表示例范本1-3-5
- 《產(chǎn)業(yè)鏈基礎(chǔ)理論》課件
- 殘疾兒童(孤獨(dú)癥)康復(fù)服務(wù)機(jī)構(gòu)采購(gòu)項(xiàng)目招標(biāo)文件
- 6123C-基樁鉆芯法檢測(cè)報(bào)告-模板
評(píng)論
0/150
提交評(píng)論