版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
學(xué)必求其心得,業(yè)必貴于專精學(xué)必求其心得,業(yè)必貴于專精PAGE14學(xué)必求其心得,業(yè)必貴于專精PAGE第一章集合學(xué)習(xí)目標1。系統(tǒng)和深化對集合基礎(chǔ)知識的理解與掌握.2.重點掌握好集合間的關(guān)系與集合的基本運算.1.集合元素的三個特性:____________,____________,____________.2.元素與集合有且只有兩種關(guān)系:________,________。3.已經(jīng)學(xué)過的集合表示方法有__________,__________,__________,____________________。4.集合間的關(guān)系與集合的運算符號定義Venn圖子集A?Bx∈A?x∈B真子集ABA?B且存在x0∈B但x0?A并集A∪B{x|x∈A或x∈B}交集A∩B{x|x∈A且x∈B}補集?UA(A?U){x|x∈U且x?A}5.常用結(jié)論(1)??A;(2)A∪?=________;A∪A=________;A∪B=A?__________。(3)A∩?=________;A∩A=________;A∩B=A?__________.(4)A∪(?UA)=________;A∩(?UA)=________;?U(?UA)=________。類型一集合的概念及表示法例1下列表示同一集合的是()A.M={(2,1),(3,2)},N={(1,2)}B.M={2,1},N={1,2}C.M={y|y=x2+1,x∈R},N={y|y=x2+1,x∈N}D.M={(x,y)|y=x2-1,x∈R},N={y|y=x2-1,x∈R}反思與感悟要解決集合的概念問題,必須先弄清集合中元素的性質(zhì),明確是數(shù)集,還是點集等.跟蹤訓(xùn)練1設(shè)集合A={(x,y)|x-y=0},B={(x,y)|2x-3y+4=0},則A∩B=________.類型二集合間的基本關(guān)系例2若集合P={x|x2+x-6=0},S={x|ax+1=0},且S?P,求由a的可能取值組成的集合.反思與感悟(1)在分類時要遵循“不重不漏”的原則,然后對于每一類情況都要給出問題的解答.(2)對于兩集合A,B,當A?B時,不要忽略A=?的情況.跟蹤訓(xùn)練2下列說法中不正確的是________.(只需填寫序號)①若集合A=?,則??A;②若集合A={x|x2-1=0},B={-1,1},則A=B;③已知集合A={x|1〈x<2},B={x|x〈a},若A?B,則a>2.類型三集合的交、并、補運算eq\x(命題角度1用符號語言表示的集合運算)例3設(shè)全集為R,A={x|3≤x<7},B={x|2<x<10},求?R(A∪B)及(?RA)∩B。反思與感悟求解用不等式表示的數(shù)集間的集合運算時,一般要借助于數(shù)軸求解,此法的特點是簡單直觀,同時要注意各個端點的畫法及取到與否.跟蹤訓(xùn)練3已知集合U={x|0≤x≤6,x∈Z},A={1,3,6},B={1,4,5},則A∩(?UB)等于()A.{1} B.{3,6}C.{4,5} D.{1,3,4,5,6}eq\x(命題角度2用圖形語言表示的集合運算)例4設(shè)全集U=R,A={x|0<x〈2},B={x|x〈1}.則圖中陰影部分表示的集合為________.反思與感悟解決這一類問題一般用數(shù)形結(jié)合思想,借助于Venn圖和數(shù)軸,把抽象的數(shù)學(xué)語言與直觀的圖形結(jié)合起來.跟蹤訓(xùn)練4學(xué)校舉辦了排球賽,某班45名同學(xué)中有12名同學(xué)參賽,后來又舉辦了田徑賽,這個班有20名同學(xué)參賽,已知兩項都參賽的有6名同學(xué),兩項比賽中,這個班共有多少名同學(xué)沒有參加過比賽?類型四關(guān)于集合的新定義題例5設(shè)A為非空實數(shù)集,若對任意的x,y∈A,都有x+y∈A,x-y∈A,且xy∈A,則稱A為封閉集.①集合A={-2,-1,0,1,2}為封閉集;②集合A={n|n=2k,k∈Z}為封閉集;③若集合A1,A2為封閉集,則A1∪A2為封閉集;④若A為封閉集,則一定有0∈A.其中正確結(jié)論的序號是________.反思與感悟新定義題是近幾年高考中集合題的熱點題型,解答這類問題的關(guān)鍵在于閱讀理解,也就是要在準確把握新信息的基礎(chǔ)上,利用已有的知識來解決問題.跟蹤訓(xùn)練5設(shè)數(shù)集M={x|m≤x≤m+eq\f(3,4)},N={x|n-eq\f(1,3)≤x≤n},且M,N都是集合{x|0≤x≤1}的子集,如果b-a叫作集合{x|a≤x≤b}(b>a)的“長度”,那么集合M∩N的“長度”的最小值是()A。eq\f(1,3)B.eq\f(2,3)C.eq\f(1,12)D。eq\f(5,12)1.已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,則P的子集共有()A.2個 B.4個C.6個 D.8個2.下列關(guān)系中正確的個數(shù)為()①eq\f(\r(2),2)∈R;②0∈N*;③{-5}?Z.A.0B.1C.2D.33.設(shè)全集U=R,集合A={x|x≥2},B={x|0≤x〈5},則集合(?UA)∩B等于()A.{x|0〈x〈2} B.{x|0〈x≤2}C.{x|0≤x〈2} D.{x|0≤x≤2}4.設(shè)全集I={a,b,c,d,e},集合M={a,b,c},N={b,d,e},那么(?IM)∩(?IN)等于()A.? B.{d}C.{b,e} D.{a,c}5.已知P={y|y=a2+1,a∈R},Q={m|m=x2-4x+5,x∈R},則P與Q的關(guān)系不正確的是()A.P?Q B.P?QC.P=Q D.P∩Q=?1.要注意區(qū)分兩大關(guān)系:一是元素與集合的從屬關(guān)系,二是集合與集合的包含關(guān)系.2.在利用集合中元素相等列方程求未知數(shù)的值時,要注意利用集合中元素的互異性這一性質(zhì)進行檢驗,忽視集合中元素的性質(zhì)是導(dǎo)致錯誤的常見原因之一.
答案精析知識梳理1.確定性互異性無序性2.∈?3.列舉法描述法Venn圖常用數(shù)集字母代號5.(2)AAA?B(3)?AA?B(4)U?A題型探究例1B[A選項中M,N兩集合的元素個數(shù)不同,故不可能相同;B選項中M,N均為含有1,2兩個元素的集合,由集合中元素的無序性可得M=N;C選項中M,N均為數(shù)集,顯然有MN;D選項中M為點集,即拋物線y=x2-1上所有點的集合,而N為數(shù)集,即拋物線y=x2-1上點的縱坐標,故選B。]跟蹤訓(xùn)練1{(4,4)}解析由eq\b\lc\{\rc\(\a\vs4\al\co1(x-y=0,,2x-3y+4=0,))得eq\b\lc\{\rc\(\a\vs4\al\co1(x=4,,y=4.))∴A∩B={(4,4)}.例2解由題意得,P={-3,2}.當a=0時,S=?,滿足S?P;當a≠0時,方程ax+1=0的解為x=-eq\f(1,a),為滿足S?P,可使-eq\f(1,a)=-3,或-eq\f(1,a)=2,即a=eq\f(1,3),或a=-eq\f(1,2)。故所求集合為eq\b\lc\{\rc\}(\a\vs4\al\co1(0,\f(1,3),-\f(1,2))).跟蹤訓(xùn)練2③解析?是任何集合的子集,故①正確;∵x2-1=0,∴x=±1,∴A={-1,1},∴A=B,故②正確;若A?B,則a≥2,故③錯誤.例3解把全集R和集合A、B在數(shù)軸上表示如下:由圖知,A∪B={x|2<x<10},∴?R(A∪B)={x|x≤2或x≥10},∵?RA={x|x<3或x≥7}.∴(?RA)∩B={x|2<x<3或7≤x〈10}.跟蹤訓(xùn)練3B[∵U={0,1,2,3,4,5,6},B={1,4,5},∴?UB={0,2,3,6},又∵A={1,3,6},∴A∩(?UB)={3,6},故選B。]例4{x|1≤x〈2}解析圖中陰影部分表示的集合為A∩(?UB),因為?UB={x|x≥1},畫出數(shù)軸,如圖所示,所以A∩(?UB)={x|1≤x<2}.跟蹤訓(xùn)練4解設(shè)A={x|x為參加排球賽的同學(xué)},B={x|x為參加田徑賽的同學(xué)},則A∩B={x|x為參加兩項比賽的同學(xué)}.畫出Venn圖(如圖),則沒有參加過比賽的同學(xué)有45-(12+20-6)=19(名).答這個班共有19名同學(xué)沒有參加過比賽.例5②④解析①集合A={-2,-1,0,1,2}中,-2-2=-4不在集合A中,所以不是封閉集;②設(shè)x,y∈A,則x=2k1,y=2k2,k1,k2∈Z,故x+y=2(k1+k2)∈A,x-y=2(k1-k2)∈A,xy=4k1k2∈A,故②正確;③反例是:集合A1={x|x=2k,k∈Z},A2={x|x=3k,k∈Z}為封閉集,但A1∪A2不是封閉集,故③不正確;④若A為封閉集,則取x=y(tǒng),得x-y=0∈A.故填②④。跟蹤訓(xùn)練5C[方法一由已知可得eq\b\lc\{\rc\(\a\vs4\al\co1(m≥0,,m+\f(3,4)≤1,))eq\b\lc\{\rc\(\a\vs4\al\co1(n-\f(1,3)≥0,,n≤1,))解得0≤m≤eq\f(1,4),eq\f(1,3)≤n≤1.取字母m的最小值0,字母n的最大值1,可得M={x|0≤x≤eq\f(3,4)},N={x|eq\f(2,3)≤x≤1},所以M∩N={x|0≤x≤eq\f(3,4)}∩{x|eq\f(2,3)≤x≤1}={x|eq\f(2,3)≤x≤eq\f(3,4)},此時得集合M∩N的“長度"為eq\f(3,4)-eq\f(2,3)=eq\f(1,12).方法二集合M的“長度”為eq\f(3,4),集合N的“長度”為eq\f
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣播制作合同范例
- 房產(chǎn)代理中介合同范例
- 《消毒劑的相關(guān)知識》課件
- 向父親借款合同范例
- 惠山區(qū)租車合同范例
- 走向綠色:管道工程的挑戰(zhàn)
- 彎鋼玻璃采購合同范例
- 入股經(jīng)營協(xié)議合同模板
- 錄音師合同范例
- 大修設(shè)備出售合同范例
- 《煤礦重大危險源評估報告》
- 職業(yè)生涯規(guī)劃概述課件
- 人教版六年級數(shù)學(xué)上冊《全冊》完整版課件
- 九年級英語《Unit 6 When was it invented》說課稿
- 監(jiān)控工程驗收單-范本模板
- 陶行知與鄉(xiāng)村教育智慧樹知到期末考試答案2024年
- 2024屆高考英語復(fù)習(xí)語法填空課件
- 原地8字舞龍課課件高一上學(xué)期體育與健康人教版
- MOOC 大學(xué)生創(chuàng)新創(chuàng)業(yè)熱點問題-福建師范大學(xué) 中國大學(xué)慕課答案
- 如何有效應(yīng)對學(xué)習(xí)中的困難和挑戰(zhàn)
- 《說話要算數(shù)》示范課件第1課時
評論
0/150
提交評論