版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
學業(yè)分層測評(六)(建議用時:45分鐘)[學業(yè)達標]一、選擇題1.已知a>2,b>2,則()A.a(chǎn)b≥a+b B.a(chǎn)b≤a+bC.a(chǎn)b>a+b <a+b【解析】∵a>2,b>2,∴eq\f(a,2)-1>0,eq\f(b,2)-1>0,則ab-(a+b)=aeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)b-1))+beq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)a-1))>0,∴ab>a+b.【答案】C2.已知a>b>-1,則eq\f(1,a+1)與eq\f(1,b+1)的大小關系為()\f(1,a+1)>eq\f(1,b+1) \f(1,a+1)<eq\f(1,b+1)\f(1,a+1)≥eq\f(1,b+1) \f(1,a+1)≤eq\f(1,b+1)【解析】∵a>b>-1,∴a+1>0,b+1>0,a-b>0,則eq\f(1,a+1)-eq\f(1,b+1)=eq\f(b-a,a+1b+1)<0,∴eq\f(1,a+1)<eq\f(1,b+1).【答案】B3.a(chǎn),b都是正數(shù),P=eq\f(\r(a)+\r(b),\r(2)),Q=eq\r(a+b),則P,Q的大小關系是()【導學號:32750031】A.P>Q B.P<QC.P≥Q ≤Q【解析】∵a,b都是正數(shù),∴P>0,Q>0,∴P2-Q2=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(a)+\r(b),\r(2))))eq\s\up21(2)-(eq\r(a+b))2=eq\f(-\r(a)-\r(b)2,2)≤0(當且僅當a=b時取等號),∴P2-Q2≤0.∴P≤Q.【答案】D4.下列四個數(shù)中最大的是()A.lg2 B.lgeq\r(2)C.(lg2)2 (lg2)【解析】∵0<lg2<1<eq\r(2)<2,∴l(xiāng)g(lg2)<0<lgeq\r(2)<lg2,且(lg2)2<lg2,故選A.【答案】A5.在等比數(shù)列{an}和等差數(shù)列{bn}中,a1=b1>0,a3=b3>0,a1≠a3,則a5與b5的大小關系是()A.a(chǎn)5<b5 B.a(chǎn)5>b5C.a(chǎn)5=b5 D.不確定【解析】設{an}的公比為q,{bn}的公差為d,則a5-b5=a1q4-(b1+4d)=a1q4-(a1+4d).∵a3=b3,∴a1q2=b1+2d,即a1q2=a1+2d,∴aeq\o\al(2,1)q4=(a1+2d)2=aeq\o\al(2,1)+4a1d+4d2,∴a5-b5=eq\f(a\o\al(2,1)q4-a1a1+4d,a1)=eq\f(a\o\al(2,1)+4a1d+4d2-a1a1+4d,a1)=eq\f(4d2,a1).∵a1>0,d≠0,∴a5-b5>0,∴a5>b5.【答案】B二、填空題6.設P=a2b2+5,Q=2ab-a2-4a,若P>Q,則實數(shù)a,b滿足的條件為________.【導學號:32750032】【解析】P-Q=a2b2+5-(2ab-a2-4a)=a2b2+5-2ab+a2+4a=a2b2-2ab+1+4+a2+4a=(ab-1)2+(a+2)2.∵P>Q,∴P-Q>0,即(ab-1)2+(a+2)2>0,∴ab≠1或a≠-2.【答案】ab≠1或a≠-27.若x<y<0,M=(x2+y2)(x-y),N=(x2-y2)(x+y),則M,N的大小關系為________.【解析】M-N=(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x<y<0,∴xy>0,x-y<0,∴-2xy(x-y)>0,∴M-N>0,即M>N.【答案】M>N8.已知a>0,1>b>0,a-b>ab,則eq\r(1+a)與eq\f(1,\r(1-b))的大小關系是________.【解析】∵a>0,1>b>0,a-b>ab,∴(1+a)(1-b)=1+a-b-ab>1.從而eq\f(\r(1+a),\f(1,\r(1-b)))=eq\r(1+a1-b)>1,∴eq\r(1+a)>eq\f(1,\r(1-b)).【答案】eq\r(1+a)>eq\f(1,\r(1-b))三、解答題9.已知a>2,求證:loga(a-1)<log(a+1)a.【證明】∵a>2,則a-1>1,∴l(xiāng)oga(a-1)>0,log(a+1)a>0,由于eq\f(logaa-1,loga+1a)=loga(a-1)·loga(a+1)<eq\b\lc\[\rc\](\a\vs4\al\co1(\f(logaa-1+logaa+1,2)))eq\s\up21(2)=eq\b\lc\[\rc\](\a\vs4\al\co1(\f(logaa2-1,2)))eq\s\up21(2).∵a>2,∴0<loga(a2-1)<logaa2=2,∴eq\b\lc\[\rc\](\a\vs4\al\co1(\f(logaa2-1,2)))eq\s\up21(2)<eq\b\lc\[\rc\](\a\vs4\al\co1(\f(logaa2,2)))eq\s\up21(2)=1,因此eq\f(logaa-1,loga+1a)<1.∵log(a+1)a>0,∴l(xiāng)oga(a-1)<log(a+1)a.10.已知{an}是公比為q的等比數(shù)列,且a1,a3,a2成等差數(shù)列.(1)求q的值;(2)設{bn}是以2為首項,q為公差的等差數(shù)列,其前n項和為Sn,當n≥2時,比較Sn與bn的大小,并說明理由.【解】(1)由題設知2a3=a1+a2,即2a1q2=a1+a1q.又a1≠0,∴2q2-q-1=0,∴q=1或-eq\f(1,2).(2)若q=1,則Sn=2n+eq\f(nn-1,2)=eq\f(n2+3n,2)=eq\f(nn+3,2).當n≥2時,Sn-bn=Sn-1=eq\f(n-1n+2,2)>0,故Sn>bn.若q=-eq\f(1,2),則Sn=2n+eq\f(nn-1,2)·eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)))=eq\f(-n2+9n,4)=eq\f(-n-9n,4).當n≥2時,Sn-bn=Sn-1=-eq\f(n-1n-10,4),故對于n∈N+,當2≤n≤9時,Sn>bn;當n=10時,Sn=bn;當n≥11時,Sn<bn.[能力提升]1.已知a>0,b>0,m=eq\f(a,\r(b))+eq\f(b,\r(a)),eq\r(n)=eq\r(a)+eq\r(b),p=eq\r(a+b),則m,n,p的大小順序是()A.m≥n>p B.m>n≥pC.n>m>p ≥m>p【解析】由已知m=eq\f(a,\r(b))+eq\f(b,\r(a)),n=eq\r(a)+eq\r(b),得a=b>0時m=n,可否定B,C.比較A,D項,不必論證與p的關系.取特值a=4,b=1,則m=4+eq\f(1,2)=eq\f(9,2),n=2+1=3,∴m>n,可排除D.【答案】A2.設m>n,n∈N*,a=(lgx)m+(lgx)-m,b=(lgx)n+(lgx)-n,x>1,則a與b的大小關系為()A.a(chǎn)≥b B.a(chǎn)≤bC.與x值有關,大小不定 D.以上都不正確【解析】要比較a與b的大小,通常采用比較法,根據(jù)a與b均為對數(shù)表達式,只有作差,a與b兩個對數(shù)表達式才能運算、整理化簡,才有可能判斷出a與b的大?。產(chǎn)-b=lgmx+lg-mx-lgnx-lg-nx=(lgmx-lgnx)-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,lgnx)-\f(1,lgmx)))=(lgmx-lgnx)-eq\f(lgmx-lgnx,lgmxlgnx)=(lgmx-lgnx)eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,lgmxlgnx)))=(lgmx-lgnx)eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,lgm+nx))).∵x>1,∴l(xiāng)gx>0.當0<lgx<1時,a>b;當lgx=1時,a=b;當lgx>1時,a>b.∴應選A.【答案】A3.一個個體戶有一種商品,其成本低于eq\f(3500,9)元.如果月初售出可獲利100元,再將本利存入銀行,已知銀行月息為%,如果月末售出可獲利120元,但要付成本的2%的保管費,這種商品應________出售(填“月初”或“月末”).【解析】設這種商品的成本費為a元.月初售出的利潤為L1=100+(a+100)×%,月末售出的利潤為L2=120-2%a,則L1-L2=100++-120+=\b\lc\(\rc\)(\a\vs4\al\co1(a-\f(3500,9))),∵a<eq\f(3500,9),∴L1<L2,月末出售好.【答案】月末4.若實數(shù)x,y,m滿足|x-m|<|y-m|,則稱x比y接近m.對任意兩個不相等的正數(shù)a,b,證明:a2b+ab2比a3+b3接近2abeq\r(ab).【證明】∵a>0,b>0,且a≠b,∴a2b+ab2>2abeq\r(ab),a3+b3>2abeq\r(ab).∴a2b+ab2-2abeq\r(ab)>0,a3+b3-2abeq\r(ab)>0.∴|a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電影行業(yè)安全生產(chǎn)工作總結
- 傳統(tǒng)制造業(yè)技術職位展望
- 二零二五年度航空航天材料試驗委托協(xié)議3篇
- 二零二五年度房屋收購合同環(huán)保驗收與評估范本3篇
- 二零二五版養(yǎng)老院專業(yè)保潔及消毒服務合同2篇
- 二零二五版?zhèn)€人二手房購房合同與產(chǎn)權過戶指導書
- 航空行業(yè)助理的職位介紹
- 汽車行業(yè)財務預測分析工作總結
- 二零二五年度產(chǎn)品責任糾紛民事答辯狀范文3篇
- 二零二五年度木材市場樹木買賣協(xié)議3篇
- 問題探究如何讓城市不再看海(教學課件)高一地理
- 2024年人教版五年級數(shù)學(上冊)模擬考卷及答案(各版本)
- 人教版八年級下冊歷史第1課 中華人民共和國成立 說課稿
- 《地球物理勘查》全冊配套完整教學課件
- (正式版)JBT 5300-2024 工業(yè)用閥門材料 選用指南
- 九年級上冊-備戰(zhàn)2024年中考歷史總復習核心考點與重難點練習(統(tǒng)部編版)
- 健康指南如何正確護理蠶豆病學會這些技巧保持身體健康
- 老客戶的開發(fā)與技巧課件
- 26個英文字母書寫(手寫體)Word版
- GB/T 13813-2023煤礦用金屬材料摩擦火花安全性試驗方法和判定規(guī)則
- 日語專八分類詞匯
評論
0/150
提交評論