2022屆浙江省杭州市西湖區(qū)杭州學(xué)軍中學(xué)高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第1頁
2022屆浙江省杭州市西湖區(qū)杭州學(xué)軍中學(xué)高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第2頁
2022屆浙江省杭州市西湖區(qū)杭州學(xué)軍中學(xué)高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第3頁
2022屆浙江省杭州市西湖區(qū)杭州學(xué)軍中學(xué)高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第4頁
2022屆浙江省杭州市西湖區(qū)杭州學(xué)軍中學(xué)高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知為虛數(shù)單位,復(fù)數(shù),則其共軛復(fù)數(shù)()A. B. C. D.2.設(shè)點(diǎn),P為曲線上動(dòng)點(diǎn),若點(diǎn)A,P間距離的最小值為,則實(shí)數(shù)t的值為()A. B. C. D.3.某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為()A. B. C. D.24.如圖,已知直線與拋物線相交于A,B兩點(diǎn),且A、B兩點(diǎn)在拋物線準(zhǔn)線上的投影分別是M,N,若,則的值是()A. B. C. D.5.復(fù)數(shù)的虛部為()A. B. C.2 D.6.已知函數(shù),若,則a的取值范圍為()A. B. C. D.7.已知是雙曲線的兩個(gè)焦點(diǎn),過點(diǎn)且垂直于軸的直線與相交于兩點(diǎn),若,則的內(nèi)切圓半徑為()A. B. C. D.8.已知復(fù)數(shù)z,則復(fù)數(shù)z的虛部為()A. B. C.i D.i9.盒中有6個(gè)小球,其中4個(gè)白球,2個(gè)黑球,從中任取個(gè)球,在取出的球中,黑球放回,白球則涂黑后放回,此時(shí)盒中黑球的個(gè)數(shù),則()A., B.,C., D.,10.拋物線的焦點(diǎn)為,則經(jīng)過點(diǎn)與點(diǎn)且與拋物線的準(zhǔn)線相切的圓的個(gè)數(shù)有()A.1個(gè) B.2個(gè) C.0個(gè) D.無數(shù)個(gè)11.已知,,,則的大小關(guān)系為()A. B. C. D.12.將函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),再向右平移個(gè)單位長度,則所得函數(shù)圖象的一個(gè)對稱中心為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形,設(shè),,則的面積為________.14.在的二項(xiàng)展開式中,x的系數(shù)為________.(用數(shù)值作答)15.(5分)已知,且,則的值是____________.16.不等式對于定義域內(nèi)的任意恒成立,則的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面平面ABCD,,,底面ABCD是邊長為2的菱形,點(diǎn)E,F(xiàn)分別為棱DC,BC的中點(diǎn),點(diǎn)G是棱SC靠近點(diǎn)C的四等分點(diǎn).求證:(1)直線平面EFG;(2)直線平面SDB.18.(12分)為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護(hù)意識(shí),高二年級準(zhǔn)備成立一個(gè)環(huán)境保護(hù)興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護(hù)興趣小組,再從這10人的興趣小組中抽出4人參加學(xué)校的環(huán)保知識(shí)競賽.(1)設(shè)事件為“選出的這4個(gè)人中要求有兩個(gè)男生兩個(gè)女生,而且這兩個(gè)男生必須文、理科生都有”,求事件發(fā)生的概率;(2)用表示抽取的4人中文科女生的人數(shù),求的分布列和數(shù)學(xué)期望.19.(12分)已知.(1)若曲線在點(diǎn)處的切線也與曲線相切,求實(shí)數(shù)的值;(2)試討論函數(shù)零點(diǎn)的個(gè)數(shù).20.(12分)如圖,四棱錐中,平面平面,底面為梯形.,且與均為正三角形.為的中點(diǎn)為重心,與相交于點(diǎn).(1)求證:平面;(2)求三棱錐的體積.21.(12分)已知函數(shù).(1)求不等式的解集;(2)若函數(shù)的最大值為,且,求的最小值.22.(10分)的內(nèi)角所對的邊分別是,且,.(1)求;(2)若邊上的中線,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

先根據(jù)復(fù)數(shù)的乘法計(jì)算出,然后再根據(jù)共軛復(fù)數(shù)的概念直接寫出即可.【詳解】由,所以其共軛復(fù)數(shù).故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法運(yùn)算以及共軛復(fù)數(shù)的概念,難度較易.2.C【解析】

設(shè),求,作為的函數(shù),其最小值是6,利用導(dǎo)數(shù)知識(shí)求的最小值.【詳解】設(shè),則,記,,易知是增函數(shù),且的值域是,∴的唯一解,且時(shí),,時(shí),,即,由題意,而,,∴,解得,.∴.故選:C.【點(diǎn)睛】本題考查導(dǎo)數(shù)的應(yīng)用,考查用導(dǎo)數(shù)求最值.解題時(shí)對和的關(guān)系的處理是解題關(guān)鍵.3.B【解析】

首先根據(jù)題中所給的三視圖,得到點(diǎn)M和點(diǎn)N在圓柱上所處的位置,將圓柱的側(cè)面展開圖平鋪,點(diǎn)M、N在其四分之一的矩形的對角線的端點(diǎn)處,根據(jù)平面上兩點(diǎn)間直線段最短,利用勾股定理,求得結(jié)果.【詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開圖平鋪,可以確定點(diǎn)M和點(diǎn)N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點(diǎn)處,所以所求的最短路徑的長度為,故選B.點(diǎn)睛:該題考查的是有關(guān)幾何體的表面上兩點(diǎn)之間的最短距離的求解問題,在解題的過程中,需要明確兩個(gè)點(diǎn)在幾何體上所處的位置,再利用平面上兩點(diǎn)間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關(guān)特征求得結(jié)果.4.C【解析】

直線恒過定點(diǎn),由此推導(dǎo)出,由此能求出點(diǎn)的坐標(biāo),從而能求出的值.【詳解】設(shè)拋物線的準(zhǔn)線為,直線恒過定點(diǎn),如圖過A、B分別作于M,于N,由,則,點(diǎn)B為AP的中點(diǎn)、連接OB,則,∴,點(diǎn)B的橫坐標(biāo)為,∴點(diǎn)B的坐標(biāo)為,把代入直線,解得,故選:C.【點(diǎn)睛】本題考查直線與圓錐曲線中參數(shù)的求法,考查拋物線的性質(zhì),是中檔題,解題時(shí)要注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用,屬于中檔題.5.D【解析】

根據(jù)復(fù)數(shù)的除法運(yùn)算,化簡出,即可得出虛部.【詳解】解:=,故虛部為-2.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算和復(fù)數(shù)的概念.6.C【解析】

求出函數(shù)定義域,在定義域內(nèi)確定函數(shù)的單調(diào)性,利用單調(diào)性解不等式.【詳解】由得,在時(shí),是增函數(shù),是增函數(shù),是增函數(shù),∴是增函數(shù),∴由得,解得.故選:C.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性,考查解函數(shù)不等式,解題關(guān)鍵是確定函數(shù)的單調(diào)性,解題時(shí)可先確定函數(shù)定義域,在定義域內(nèi)求解.7.B【解析】

首先由求得雙曲線的方程,進(jìn)而求得三角形的面積,再由三角形的面積等于周長乘以內(nèi)切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長為,設(shè)的內(nèi)切圓的半徑為,則,故選:B【點(diǎn)睛】本題考查雙曲線的定義、方程和性質(zhì),考查三角形的內(nèi)心的概念,考查了轉(zhuǎn)化的思想,屬于中檔題.8.B【解析】

利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出【詳解】,則復(fù)數(shù)z的虛部為.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.9.C【解析】

根據(jù)古典概型概率計(jì)算公式,計(jì)算出概率并求得數(shù)學(xué)期望,由此判斷出正確選項(xiàng).【詳解】表示取出的為一個(gè)白球,所以.表示取出一個(gè)黑球,,所以.表示取出兩個(gè)球,其中一黑一白,,表示取出兩個(gè)球?yàn)楹谇颍?,表示取出兩個(gè)球?yàn)榘浊颍?,所?所以,.故選:C【點(diǎn)睛】本小題主要考查離散型隨機(jī)變量分布列和數(shù)學(xué)期望的計(jì)算,屬于中檔題.10.B【解析】

圓心在的中垂線上,經(jīng)過點(diǎn),且與相切的圓的圓心到準(zhǔn)線的距離與到焦點(diǎn)的距離相等,圓心在拋物線上,直線與拋物線交于2個(gè)點(diǎn),得到2個(gè)圓.【詳解】因?yàn)辄c(diǎn)在拋物線上,又焦點(diǎn),,由拋物線的定義知,過點(diǎn)、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點(diǎn),這樣的交點(diǎn)共有2個(gè),故過點(diǎn)、且與相切的圓的不同情況種數(shù)是2種.故選:.【點(diǎn)睛】本題主要考查拋物線的簡單性質(zhì),本題解題的關(guān)鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.11.A【解析】

根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,借助特殊值即可比較大小.【詳解】因?yàn)椋?因?yàn)?,所以,因?yàn)?,為增函?shù),所以所以,故選:A.【點(diǎn)睛】本題主要考查了指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性,利用單調(diào)性比較大小,屬于中檔題.12.D【解析】

先化簡函數(shù)解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,可得所求函數(shù)的解析式為,再由正弦函數(shù)的對稱性得解.【詳解】,

將函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的3倍,所得函數(shù)的解析式為,

再向右平移個(gè)單位長度,所得函數(shù)的解析式為,,可得函數(shù)圖象的一個(gè)對稱中心為,故選D.【點(diǎn)睛】三角函數(shù)的圖象與性質(zhì)是高考考查的熱點(diǎn)之一,經(jīng)常考查定義域、值域、周期性、對稱性、奇偶性、單調(diào)性、最值等,其中公式運(yùn)用及其變形能力、運(yùn)算能力、方程思想等可以在這些問題中進(jìn)行體現(xiàn),在復(fù)習(xí)時(shí)要注意基礎(chǔ)知識(shí)的理解與落實(shí).三角函數(shù)的性質(zhì)由函數(shù)的解析式確定,在解答三角函數(shù)性質(zhì)的綜合試題時(shí)要抓住函數(shù)解析式這個(gè)關(guān)鍵,在函數(shù)解析式較為復(fù)雜時(shí)要注意使用三角恒等變換公式把函數(shù)解析式化為一個(gè)角的一個(gè)三角函數(shù)形式,然后利用正弦(余弦)函數(shù)的性質(zhì)求解.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)個(gè)全等的三角形,得到,設(shè),求得,利用余弦定理求得,再利用三角形的面積公式,求得三角形的面積.【詳解】由于三角形是由個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形,所以.在三角形中,.設(shè),則.由余弦定理得,解得.所以三角形邊長為,面積為.故答案為:【點(diǎn)睛】本題考查了等邊三角形的面積計(jì)算公式、余弦定理、全等三角形的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.14.-40【解析】

由題意,可先由公式得出二項(xiàng)展開式的通項(xiàng),再令10-3r=1,得r=3即可得出x項(xiàng)的系數(shù)【詳解】的二項(xiàng)展開式的通項(xiàng)公式為,r=0,1,2,3,4,5,令,所以的二項(xiàng)展開式中x項(xiàng)的系數(shù)為.故答案為:-40.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,解題關(guān)鍵是靈活掌握二項(xiàng)式展開式通項(xiàng)的公式,屬于基礎(chǔ)題.15.【解析】

由于,且,則,得,則.16.【解析】

根據(jù)題意,分離參數(shù),轉(zhuǎn)化為只對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,利用放縮法,得出,化簡后得出,即可得出的取值范圍.【詳解】解:已知對于定義域內(nèi)的任意恒成立,即對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,,,當(dāng)時(shí)取等號,由可知,,當(dāng)時(shí)取等號,,當(dāng)有解時(shí),令,則,在上單調(diào)遞增,又,,使得,,則,所以的取值范圍為.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和最值,解決恒成立問題求參數(shù)值,涉及分離參數(shù)法和放縮法,考查轉(zhuǎn)化能力和計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)見解析【解析】

(1)連接AC、BD交于點(diǎn)O,交EF于點(diǎn)H,連接GH,再證明即可.(2)證明與即可.【詳解】(1)連接AC、BD交于點(diǎn)O,交EF于點(diǎn)H,連接GH,所以O(shè)為AC的中點(diǎn),H為OC的中點(diǎn),由E、F為DC、BC的中點(diǎn),再由題意可得,所以在三角形CAS中,平面EFG,平面EFG,所以直線平面EFG.(2)在中,,,,由余弦定理得,,即,解得,由勾股定理逆定理可知,因?yàn)閭?cè)面底面ABCD,由面面垂直的性質(zhì)定理可知平面ABCD,所以,因?yàn)榈酌鍭BCD是菱形,所以,因?yàn)?所以平面SDB.【點(diǎn)睛】本題考查線面平行與垂直的證明.需要根據(jù)題意利用等比例以及余弦定理勾股定理等證明.屬于中檔題.18.(1);(2)見解析【解析】

(1)按分層抽樣得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超幾何分布求解即可【詳解】(1)因?yàn)閷W(xué)生總數(shù)為1000人,該年級分文、理科按男女用分層抽樣抽取10人,則抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能取值為0,1,2,3,,,,,的分布列為0123.【點(diǎn)睛】本題考查分層抽樣,考查超幾何分布及期望,考查運(yùn)算求解能力,是基礎(chǔ)題19.(1)(2)答案不唯一具體見解析【解析】

(1)利用導(dǎo)數(shù)的幾何意義,設(shè)切點(diǎn)的坐標(biāo),用不同的方式求出兩種切線方程,但兩條切線本質(zhì)為同一條,從而得到方程組,再構(gòu)造函數(shù)研究其最大值,進(jìn)而求得;(2)對函數(shù)進(jìn)行求導(dǎo)后得,對分三種情況進(jìn)行一級討論,即,,,結(jié)合函數(shù)圖象的單調(diào)性及零點(diǎn)存在定理,可得函數(shù)零點(diǎn)情況.【詳解】解:(1)曲線在點(diǎn)處的切線方程為,即.令切線與曲線相切于點(diǎn),則切線方程為,∴,∴,令,則,記,于是,在上單調(diào)遞增,在上單調(diào)遞減,∴,于是,.(2),①當(dāng)時(shí),恒成立,在上單調(diào)遞增,且,∴函數(shù)在上有且僅有一個(gè)零點(diǎn);②當(dāng)時(shí),在R上沒有零點(diǎn);③當(dāng)時(shí),令,則,即函數(shù)的增區(qū)間是,同理,減區(qū)間是,∴.ⅰ)若,則,在上沒有零點(diǎn);ⅱ)若,則有且僅有一個(gè)零點(diǎn);ⅲ)若,則.,令,則,∴當(dāng)時(shí),單調(diào)遞增,.∴又∵,∴在R上恰有兩個(gè)零點(diǎn),綜上所述,當(dāng)時(shí),函數(shù)沒有零點(diǎn);當(dāng)或時(shí),函數(shù)恰有一個(gè)零點(diǎn);當(dāng)時(shí),恰有兩個(gè)零點(diǎn).【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義、切線方程、零點(diǎn)等知識(shí),求解切線有關(guān)問題時(shí),一定要明確切點(diǎn)坐標(biāo).以導(dǎo)數(shù)為工具,研究函數(shù)的圖象特征及性質(zhì),從而得到函數(shù)的零點(diǎn)個(gè)數(shù),此時(shí)如果用到零點(diǎn)存在定理,必需說明在區(qū)間內(nèi)單調(diào)且找到兩個(gè)端點(diǎn)值的函數(shù)值相乘小于0,才算完整的解法.20.(1)見解析(2)【解析】

(1)第(1)問,連交于,連接.證明//,即證平面.(2)第(2)問,主要是利用體積變換,,求得三棱錐的體積.【詳解】(1)方法一:連交于,連接.由梯形,且,知又為的中點(diǎn),為的重心,∴在中,,故//.又平面,平面,∴平面.方法二:過作交PD于N,過F作FM||AD交CD于M,連接

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論