版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線的傾斜角為,則的值為()A. B. C. D.2.等比數(shù)列中,,則與的等比中項是()A.±4 B.4 C. D.3.已知函數(shù)是奇函數(shù),且,若對,恒成立,則的取值范圍是()A. B. C. D.4.下列圖形中,不是三棱柱展開圖的是()A. B. C. D.5.運行如圖所示的程序框圖,若輸出的值為300,則判斷框中可以填()A. B. C. D.6.函數(shù)在上的大致圖象是()A. B.C. D.7.如圖所示,三國時代數(shù)學家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機拋擲500顆米粒(米粒大小忽略不計,?。?,則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.134 B.67 C.182 D.1088.設(shè)等差數(shù)列的前項和為,若,則()A.10 B.9 C.8 D.79.的展開式中的項的系數(shù)為()A.120 B.80 C.60 D.4010.如果實數(shù)滿足條件,那么的最大值為()A. B. C. D.11.在中,,,,為的外心,若,,,則()A. B. C. D.12.已知集合,集合,則A. B.或C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知(2x-1)7=ao+a1x+a2x2+…+a7x7,則a2=____.14.已知函數(shù)在上單調(diào)遞增,則實數(shù)a值范圍為_________.15.如圖,是一個四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,則此四棱錐的體積為_____.16.設(shè)等比數(shù)列的前項和為,若,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,.(1)求的值;(2)點為邊上的動點(不與點重合),設(shè),求的取值范圍.18.(12分)已知函數(shù),函數(shù)在點處的切線斜率為0.(1)試用含有的式子表示,并討論的單調(diào)性;(2)對于函數(shù)圖象上的不同兩點,,如果在函數(shù)圖象上存在點,使得在點處的切線,則稱存在“跟隨切線”.特別地,當時,又稱存在“中值跟隨切線”.試問:函數(shù)上是否存在兩點使得它存在“中值跟隨切線”,若存在,求出的坐標,若不存在,說明理由.19.(12分)已知公比為正數(shù)的等比數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.20.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認為質(zhì)量不過關(guān),再由另外2位行家進行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.21.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù),).在以坐標原點為極點、軸的非負半軸為極軸的極坐標系中,曲線的極坐標方程為.(1)若點在直線上,求直線的極坐標方程;(2)已知,若點在直線上,點在曲線上,且的最小值為,求的值.22.(10分)已知數(shù)列滿足,且.(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項公式;(2)求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)題意可得:,所求式子利用二倍角的正弦函數(shù)公式化簡,再利用同角三角函數(shù)間的基本關(guān)系弦化切后,將代入計算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B【點睛】本題考查二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及直線傾斜角與斜率之間的關(guān)系,熟練掌握公式是解本題的關(guān)鍵.2、A【解析】
利用等比數(shù)列的性質(zhì)可得,即可得出.【詳解】設(shè)與的等比中項是.
由等比數(shù)列的性質(zhì)可得,.
∴與的等比中項
故選A.【點睛】本題考查了等比中項的求法,屬于基礎(chǔ)題.3、A【解析】
先根據(jù)函數(shù)奇偶性求得,利用導數(shù)判斷函數(shù)單調(diào)性,利用函數(shù)單調(diào)性求解不等式即可.【詳解】因為函數(shù)是奇函數(shù),所以函數(shù)是偶函數(shù).,即,又,所以,.函數(shù)的定義域為,所以,則函數(shù)在上為單調(diào)遞增函數(shù).又在上,,所以為偶函數(shù),且在上單調(diào)遞增.由,可得,對恒成立,則,對恒成立,,得,所以的取值范圍是.故選:A.【點睛】本題考查利用函數(shù)單調(diào)性求解不等式,根據(jù)方程組法求函數(shù)解析式,利用導數(shù)判斷函數(shù)單調(diào)性,屬壓軸題.4、C【解析】
根據(jù)三棱柱的展開圖的可能情況選出選項.【詳解】由圖可知,ABD選項可以圍成三棱柱,C選項不是三棱柱展開圖.故選:C【點睛】本小題主要考查三棱柱展開圖的判斷,屬于基礎(chǔ)題.5、B【解析】
由,則輸出為300,即可得出判斷框的答案【詳解】由,則輸出的值為300,,故判斷框中應填?故選:.【點睛】本題考查了程序框圖的應用問題,解題時應模擬程序框圖的運行過程,以便得出正確的結(jié)論,是基礎(chǔ)題.6、D【解析】
討論的取值范圍,然后對函數(shù)進行求導,利用導數(shù)的幾何意義即可判斷.【詳解】當時,,則,所以函數(shù)在上單調(diào)遞增,令,則,根據(jù)三角函數(shù)的性質(zhì),當時,,故切線的斜率變小,當時,,故切線的斜率變大,可排除A、B;當時,,則,所以函數(shù)在上單調(diào)遞增,令,,當時,,故切線的斜率變大,當時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數(shù)的圖像,考查了導數(shù)與函數(shù)單調(diào)性的關(guān)系以及導數(shù)的幾何意義,屬于中檔題.7、B【解析】
根據(jù)幾何概型的概率公式求出對應面積之比即可得到結(jié)論.【詳解】解:設(shè)大正方形的邊長為1,則小直角三角形的邊長為,
則小正方形的邊長為,小正方形的面積,
則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為,
故選:B.【點睛】本題主要考查幾何概型的概率的應用,求出對應的面積之比是解決本題的關(guān)鍵.8、B【解析】
根據(jù)題意,解得,,得到答案.【詳解】,解得,,故.故選:.【點睛】本題考查了等差數(shù)列的求和,意在考查學生的計算能力.9、A【解析】
化簡得到,再利用二項式定理展開得到答案.【詳解】展開式中的項為.故選:【點睛】本題考查了二項式定理,意在考查學生的計算能力.10、B【解析】
解:當直線過點時,最大,故選B11、B【解析】
首先根據(jù)題中條件和三角形中幾何關(guān)系求出,,即可求出的值.【詳解】如圖所示過做三角形三邊的垂線,垂足分別為,,,過分別做,的平行線,,由題知,則外接圓半徑,因為,所以,又因為,所以,,由題可知,所以,,所以.故選:D.【點睛】本題主要考查了三角形外心的性質(zhì),正弦定理,平面向量分解定理,屬于一般題.12、C【解析】
由可得,解得或,所以或,又,所以,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)二項展開式的通項公式即可得結(jié)果.【詳解】解:(2x-1)7的展開式通式為:當時,,則.故答案為:【點睛】本題考查求二項展開式指定項的系數(shù),是基礎(chǔ)題.14、【解析】
由在上恒成立可求解.【詳解】,令,∵,∴,又,,從而,令,問題等價于在時恒成立,∴,解得.故答案為:.【點睛】本題考查函數(shù)的單調(diào)性,解題關(guān)鍵是問題轉(zhuǎn)化為恒成立,利用換元法和二次函數(shù)的性質(zhì)易求解.15、【解析】
畫圖直觀圖可得該幾何體為棱錐,再計算高求解體積即可.【詳解】解:如圖,是一個四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,此四棱錐中,是邊長為的正方形,是邊長為的等邊三角形,故,又,故平面平面,的高是四棱錐的高,此四棱錐的體積為:.故答案為:.【點睛】本題主要考查了四棱錐中的長度計算以及垂直的判定和體積計算等,需要根據(jù)題意16、【解析】
由題意,設(shè)等比數(shù)列的公比為,根據(jù)已知條件,列出方程組,求得的值,利用求和公式,即可求解.【詳解】由題意,設(shè)等比數(shù)列的公比為,因為,即,解得,,所以.【點睛】本題主要考查了等比數(shù)列的通項公式,及前n項和公式的應用,其中解答中根據(jù)等比數(shù)列的通項公式,正確求解首項和公比是解答本題的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)先利用同角的三角函數(shù)關(guān)系求得,再由求解即可;(2)在中,由正弦定理可得,則,再由求解即可.【詳解】解:(1)在中,,所以,所以(2)由(1)可知,所以,在中,因為,所以,因為,所以,所以.【點睛】本題考查已知三角函數(shù)值求值,考查正弦定理的應用.18、(1),單調(diào)性見解析;(2)不存在,理由見解析【解析】
(1)由題意得,即可得;求出函數(shù)的導數(shù),再根據(jù)、、、分類討論,分別求出、的解集即可得解;(2)假設(shè)滿足條件的、存在,不妨設(shè),且,由題意得可得,令(),構(gòu)造函數(shù)(),求導后證明即可得解.【詳解】(1)由題可得函數(shù)的定義域為且,由,整理得..(?。┊敃r,易知,,時.故在上單調(diào)遞增,在上單調(diào)遞減.(ⅱ)當時,令,解得或,則①當,即時,在上恒成立,則在上遞增.②當,即時,當時,;當時,.所以在上單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.③當,即時,當時,;當時,.所以在上單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.綜上,當時,在上單調(diào)遞增,在單調(diào)遞減.當時,在及上單調(diào)遞增;在上單調(diào)遞減.當時,在上遞增.當時,在及上單調(diào)遞增;在上遞減.(2)滿足條件的、不存在,理由如下:假設(shè)滿足條件的、存在,不妨設(shè),且,則,又,由題可知,整理可得:,令(),構(gòu)造函數(shù)().則,所以在上單調(diào)遞增,從而,所以方程無解,即無解.綜上,滿足條件的A、B不存在.【點睛】本題考查了導數(shù)的應用,考查了計算能力和轉(zhuǎn)化化歸思想,屬于中檔題.19、(1)(2)【解析】
(1)判斷公比不為1,運用等比數(shù)列的求和公式,解方程可得公比,進而得到所求通項公式;(2)求得,運用數(shù)列的錯位相減法求和,以及等比數(shù)列的求和公式,計算可得所求和.【詳解】解:(1)設(shè)公比為正數(shù)的等比數(shù)列的前項和為,且,,可得時,,不成立;當時,,即,解得(舍去),則;(2),前項和,,兩式相減可得,化簡可得.【點睛】本題考查等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的錯位相減法求和,考查方程思想和運算能力,屬于中檔題.20、(1)(2)①2②期望值為X900600300100P【解析】
(1)一件手工藝品質(zhì)量為B級的概率為.(2)①由題意可得一件手工藝品質(zhì)量為D級的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,則,則,.由得,所以當時,,即,由得,所以當時,,所以當時,最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由上可得一件手工藝品質(zhì)量為A級的概率為,一件手工藝品質(zhì)量為B級的概率為,一件手工藝品質(zhì)量為C級的概率為,一件手工藝品質(zhì)量為D級的概率為,所以X的分布列為X900600300100P則期望為.21、(1)(2)【解析】
(1)利用消參法以及點求解出的普通方程,根據(jù)極坐標與直角坐標的轉(zhuǎn)化求解出直線的極坐標方程;(2)將的坐標設(shè)為,利用點到直線的距離公式結(jié)合三角函數(shù)的有界性,求解出取最小值時對應的值.【詳解】(1)消去參數(shù)得普通方程為,將代入,可得,即所以的極坐標方程為(2)的直角坐標方程為直線的直角坐標方程設(shè)的直角坐標為∵在直線上,∴的最小值為到直線的距離的最小值∵,∴當,時取得最小值即,∴【點睛】本題考查直線的參數(shù)方程、普通方程、極坐標方程的互化以及根據(jù)曲線上一點到直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合肥安徽合肥廬江縣人民醫(yī)院醫(yī)院集團招聘17名保安筆試歷年典型考點(頻考版試卷)附帶答案詳解
- 2024年中國汽車整形機市場調(diào)查研究報告
- 2024年酒店服務合作伙伴協(xié)議樣本版B版
- 2025版貨物運輸保險合同:物流企業(yè)風險管控協(xié)議3篇
- 2024年中國手氣動閘閥市場調(diào)查研究報告
- 2024年03月黑龍江2024興業(yè)銀行哈爾濱分行春季校園招考筆試歷年參考題庫附帶答案詳解
- 2025年度環(huán)保節(jié)能設(shè)備租賃合同范本
- 2025版建筑公司員工勞務合同及現(xiàn)場施工管理協(xié)議2篇
- 2024年中國塑鋼門窗角縫清理機市場調(diào)查研究報告
- 2025版國企工匠工資標準與技能評定合同3篇
- 房屋租賃合同范文錦集9篇
- DB63T 2376-2024 餐飲單位有害生物防治技術(shù)指南
- 中考語文名著《西游記》專項復習:《三調(diào)芭蕉扇》
- 2023年安徽新華發(fā)行控股有限公司社會招聘筆試真題
- 軟件專業(yè)職業(yè)生涯規(guī)劃
- 2025蛇年春聯(lián)帶橫批
- 【MOOC】融合新聞:通往未來新聞之路-暨南大學 中國大學慕課MOOC答案
- 娛樂產(chǎn)業(yè)法律服務行業(yè)市場現(xiàn)狀分析及未來三至五年行業(yè)預測報告
- 專題06 非連續(xù)性閱讀(開放題型)-2023-2024學年八年級語文下學期期中專題復習(北京專用)(原卷版)
- 2024年世界職業(yè)院校技能大賽中職組“工程測量組”賽項考試題庫(含答案)
- JGJT46-2024《施工現(xiàn)場臨時用電安全技術(shù)標準》條文解讀
評論
0/150
提交評論