版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
BCHCodesOUTLINE[1]Finitefields[2]Minimalpolynomials[3]CyclicHammingcodes[4]BCHcodes[5]Decoding2error-correctingBCHcodesBCHCodes[1]Finitefields1.Irreduciblepolynomialf(x)K[x],f(x)hasnoproperdivisorsinK[x] Eg. f(x)=1+x+x2isirreducible f(x)=1+x+x2+x3=(1+x)(1+x2)isnotirreducible
f(x)=1+x+x4isirreducibleBCHCodes2.Primitivepolynomialf(x)isirreducibleofdegreen>1f(x)isnotadivisorof1+xmforanym<2n-1 Eg.f(x)=1+x+x2isnotafactorof1+xmform<3sof(x)isaprimitivepolynomialf(x)=1+x+x2+x3+x4isirreduciblebut1+x5=(1+x)(1+x+x2+x3+x4)andm=5<24-1=15sof(x)isnotaprimitivepolynomialBCHCodes3.DefinitionofKn[x]
ThesetofallpolynomialsinK[x]havingdegreelessthannEachwordinKncorrespondstoapolynomialinKn[x]MultiplicationinKnmoduloh(x),withirreducibleh(x)ofdegreenIfweusemultiplicationmoduloareducibleh(x),say,1+x4todefinemultiplicationofwordsinK4,however:
(0101)(0101)(x+x3)(x+x3) =x2+x6 =x2+x2(mod1+x4) =0
0000(K4-{0000}isnotclosedundermultiplication.)
BCHCodes4.DefinitionofField(Kn,+,x)(Kn,+)isanabeliangroupwithidentitydenoted0Theoperationxisassociativeax(bxc)=(axb)xcThereisamultiplicativeidentitydenoted1,with101xa=ax1=a,aKnTheoperationxisdistributiveover+ax(b+c)=(axb)+(axc)Itiscommunicativeaxb=bxa,a,bKnAllnon-zeroelementshavemultiplicativeinversesGaloisFields:GF(2r)Foreveryprimepowerorderpm,thereisauniquefinitefieldoforderpmDenotedbyGF(pm)BCHCodesExampleLetusconsidertheconstructionofGF(23)usingtheprimitivepolynomialh(x)=1+x+x3todefinemultiplication.Wedothisbycomputingximodh(x): word ximodh(x) 100 1 010 x 001 x2 110 x31+x 011 x4x+x2 111 x51+x+x2 101 x61+x2BCHCodes5.UseaprimitivepolynomialtoconstructGF(2n)LetKnrepresentthewordcorrespondingtoxmodh(x)i
ximodh(x)m1form<2n-1sinceh(x)dosenotdivide1+xmform<2n-1Sincej=iforjiiffi=j-iij-i=1Kn\{0}={i|i=0,1,…,2n-2}BCHCodes6.
GF(2r)isprimitiveisprimitiveifm1for1m<2r-1Inotherwords,everynon-zerowordinGF(2r)canbeexpressedasapowerofExample
ConstructGF(24)usingtheprimitivepolynomialh(x)=1+x+x4.Writeeveryvectorasapowerof
xmodh(x)(seeTable5.1below) Notethat15=1. (0110)(1101)=5.7=12=1111BCHCodesTable1ConstructionofGF(24)usingh(x)=1+x+x4wordpolynomialinxmodh(x)powerof00000-100010=10100x0010x220001x3311001+x=x440110x+x2=x550011x2+x3=x66BCHCodesTable1(continue)ConstructionofGF(24)usingh(x)=1+x+x4wordpolynomialinxmodh(x)powerof11011+x+x3=x7710101+x2=x880101x+x3=x9911101+x+x2=x10100111x+x2+x3=x111111111+x+x2+x3=x121210111+x2+x3=x131310011+x3=x1414BCHCodes[2]Minimalpolynomials
1.Rootofapolynomial:anelementofF=GF(2r),p(x)F[x]isarootofapolynomialp(x)iffp()=02.OrderofThesmallestpositiveintegermsuchthatm=1inGF(2r)isaprimitiveelementifithasorder2r-1BCHCodes3.MinimalpolynomialofThepolynomialinK[x]ofsmallestdegreehavingasrootDenotedbym(x)m(x)isirreducibleoverKIff(x)isanypolynomialoverKsuchthatf()=0,thenm(x)isafactoroff(x)m(x)isuniquem(x)isafactorofBCHCodesExampleLetp(x)=1+x3+x4,andletbetheprimitiveelementinGF(24)constructedusingh(x)=1+x+x4(seeTable5.1): p()=1+3+4=1000+0001+1100=0101=9isnotarootofp(x).However p(7)=1+(7)3+(7)4=1+21+28=1+6+13=1000+0011+1011=0000=07isarootofp(x).BCHCodes4.FindingtheminimalpolynomialofReducetofindalinearcombinationofthevectors{1,,2,…,r},whichsumsto0Anysetofr+1vectorsinKrisdependent,suchasolutionexistsRepresentm(x)bymi(x)where=Ieg.
Findthem(x),=3,GF(24)constructedusingh(x)=1+x+x4BCHCodesUsefulfacts:f(x)2=f(x2)
Iff()=0,thenf(2)=(f())2=0Ifisarootoff(x),soare,2,4,…,Thedegreeofm(x)is|{,2,4,…,}|BCHCodesExampleFindthem(x),=3,GF(24)constructedusingh(x)=1+x+x4Letm(x)=m3(x)=a0+a1x+a2x2+a3x3+a4x4thenwemustfindthevaluefora0,a1,…,a4{0,1}
m()=0=a01+a1+a22+a33+a44 =a00+a13+a26+a39+a412 0000=a0(1000)+a1(0001)+a2(0011)+a3(0101)+a4(1111)
a0=a1=a2=a3=a4=1and
m(x)=1+x+x2+x3+x4BCHCodesExampleLet
m5(x)betheminimalpolynomialsof=5,5GF(24) Since{,2,4,8}={5,10},therootsofm5(x)are5and10whichmeansthatdegree(m5(x))=2.Thusm5(x)=a0+a1x+a2x2: 0=a0+a15+a210
=a0(1000)+a1(0110)+a2(1110) Thusa0=a1=a2=1andm5(x)=1+x+x2BCHCodesTable2:MinimalpolynomialsinGF(24)constructedusing1+x+x4ElementofGF(24)Minimalpolynomial01,2,4,83,6,9,125,107,11,13,14x1+x1+x+x41+x+x2+x3+x41+x+x21+x3+x4BCHCodes[3]CyclicHammingcodes1.ParitycheckmatrixTheparitycheckmatrixofaHammingcodeoflengthn=2r-1hasitsrowsall2r-1nonzerowordsoflengthrisaprimitiveelementof GF(2r)Histheparitycheckma- trixofaHammingcodeof lengthn=2r-1BCHCodes2.GeneratorpolynomialForanyreceivedwordw=w0w1…wn-1 wH=w0+w1+…+wn-1n-1w()wisacodewordiffisarootofw(x)m(x)isitsgeneratorpolynomialTheorem5.3.1
AprimitivepolynomialofdegreeristhegeneratorpolynomialofacyclicHammingcodeoflength2r-1BCHCodesExample: Letr=3,son=23-1=7.Usep(x)=1+x+x3toconstruct
GF(23),and010astheprimitiveelement.Recallthati
ximodp(x).ThereforeaparitycheckmatrixforaHammingcodeoflength7isBCHCodes3.DecodingthecyclicHammingcodew(x)=c(x)+e(x),wherec(x)isacodeword,e(x)istheerrorw()=e()ehasweight1,e()=j,jisthepositionofthe1inec(x)=w(x)+xjBCHCodesExample: SupposeGF(23)wasconstructedusing1+x+x3.m1(x)=1+x+x3isthegeneratorforacyclicHammingcodeoflength7.Suppose w(x)=1+x+x3+x6isreceived.Then w()=1+2+3+6 =100+001+110+101 =110 =3
e(x)=x3andc(x)=w(x)+x3=1+x2+x6
BCHCodes[4]BCHcodes1.BCH:Bose-Chaudhuri-HocquenghamAdmitarelativelyeasydecodingschemeTheclassofBCHcodesisquiteextensiveForanypositiveintegersrandtwitht2r-1-1,thereisaBCHcodesoflengthn=2r-1whichist-errorcorrectingandhasdimensionkn-rtBCHCodes2.
Paritycheckmatrixforthe2error-correctingBCHThe2error-correctingBCHcodesoflength2r-1isthecycliclinearcodes,generatedbyg(x)=,r4Thegeneratorpolynomial:g(x)=m1(x)m3(x)Degree(g(x))=2r,thecodehasdimensionn-2r=2r-1-2rBCHCodesExample:
isaprimitiveelementinGF(24)constructedwithp(x)=1+x+x4.Wehavethatm1(x)=1+x+x4andm3(x)=1+x+x2+x3+x4.Therefore g(x)=m1(x)m3(x)=1+x4+x6+x7+x8 isthegeneratorfora2error-correctingBCHcodeoflength15BCHCodes3.TheparitycheckmatrixofC15(distanced=5)
(Table3)BCHCodes[5]Decoding2error-correctingBCHcodes1.Errorlocatorpolynomial
w(x):receivedword
syndromewH=[w(),w(3)]=[s1,s3]Histheparitycheckmatrixforthe(2r-1,2r-2r-1,5)2error-correctingBCHcodewithgeneratorg(x)=m1(x)m3(x)wH=0ifnoerrorsoccurredIfoneerroroccurred,theerrorpolynomiale(x)=xi wH=eH=[e(),e(3)]=[i,3i]=[s1,s3],BCHCodesIftwoerrorsoccurred,sayinpositionsiandj,ij,e(x)=xi+xj,wH=eH=[e(),e(3)]=[i+j,3i+3j]=[s1,s3]Theerrorlocatorpolynomial:BCHCodesExample: Letww(x)beareceivedwordwithsyndromess1=0111=w()ands3=1010=w(3),wherewwasencodedusingC15.FromTable5.1wehavethats111ands38.Then Weformthepolynomialx2+11x+2andfindthatithasroots4and13.Thereforewecandecidethatthemostlikelyerrorsoccurredinpositions4and13,e(x)=x4+x13,themostlikelyerrorpatternis 0000100000000010BCHCodes2.DecodingalgorithmofBCHcodesCalculatethesyndromewH=[s1,s3]=[w(),w(3)]Ifs1=s3=0,noerrorsoccurredIfs1=0ands30,askforretransmissionIf(s1)3=s3,asingleerroratpositioni,wheres1=iFromthequadraticequation: (*)Ifequation(*)hastwodistinctrootsiandj,correcterrorsatpositionsiandjIfequation(*)doesnothavetwodistinctrootsinGF(2r),concludethatatleastthreeerrorsoccurredBCHCodesExample:
AssumewisreceivedandthesyndromeiswH=01111010[11,8].Now Inthiscaseequation(*)isx2+11x+2=0whichhasroots4and13.Correcterrorinpositionsi=4andj=13.Example:
AssumethesyndromeiswH=[w(),w(3)]=[3,9].Then(s1)3=(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 年度財(cái)務(wù)目標(biāo)達(dá)成計(jì)劃
- 廣告行業(yè)前臺(tái)工作總結(jié)
- IT行業(yè)安全管理工作總結(jié)
- 礦產(chǎn)資源行業(yè)會(huì)計(jì)的關(guān)鍵職責(zé)
- 醫(yī)學(xué)美容護(hù)士工作心得
- 2024年認(rèn)識(shí)小熊教案
- 2024年牧場(chǎng)之國(guó)教案
- 2024年計(jì)算機(jī)教室管理制度
- 分銷合同范本(2篇)
- 辦公室合同范本(2篇)
- 足球教練員素質(zhì)和角色
- 初中八年級(jí)語(yǔ)文課件 桃花源記【省一等獎(jiǎng)】
- 名校長(zhǎng)工作總結(jié)匯報(bào)
- 商務(wù)接待禮儀流程
- 護(hù)理不良事件用藥錯(cuò)誤講課
- 新教材人教版高中英語(yǔ)選擇性必修第一冊(cè)全冊(cè)教學(xué)設(shè)計(jì)
- 2024北京大興區(qū)初三(上)期末化學(xué)試卷及答案
- 媒體與新聞法律法規(guī)法律意識(shí)與職業(yè)素養(yǎng)
- 推土機(jī)-推土機(jī)構(gòu)造與原理
- 九年級(jí)化學(xué)課程綱要
-
評(píng)論
0/150
提交評(píng)論