2022-2023學年四川省南充市閬中學中考數(shù)學模試卷含解析_第1頁
2022-2023學年四川省南充市閬中學中考數(shù)學模試卷含解析_第2頁
2022-2023學年四川省南充市閬中學中考數(shù)學模試卷含解析_第3頁
2022-2023學年四川省南充市閬中學中考數(shù)學模試卷含解析_第4頁
2022-2023學年四川省南充市閬中學中考數(shù)學模試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列四個幾何體中,左視圖為圓的是()A. B. C. D.2.□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF3.若點A(2,),B(-3,),C(-1,)三點在拋物線的圖象上,則、、的大小關系是()A.B.C.D.4.如圖分別是某班全體學生上學時乘車、步行、騎車人數(shù)的分布直方圖和扇形統(tǒng)計圖(兩圖都不完整),下列結(jié)論錯誤的是()A.該班總?cè)藬?shù)為50 B.步行人數(shù)為30C.乘車人數(shù)是騎車人數(shù)的2.5倍 D.騎車人數(shù)占20%5.圖為小明和小紅兩人的解題過程.下列敘述正確的是()計算:+A.只有小明的正確 B.只有小紅的正確C.小明、小紅都正確 D.小明、小紅都不正確6.的相反數(shù)是()A. B.- C. D.7.如圖,實數(shù)﹣3、x、3、y在數(shù)軸上的對應點分別為M、N、P、Q,這四個數(shù)中絕對值最小的數(shù)對應的點是()A.點M B.點N C.點P D.點Q8.一、單選題在反比例函數(shù)的圖象中,陰影部分的面積不等于4的是()A. B. C. D.9.如圖1,將三角板的直角頂點放在直角尺的一邊上,D1=30°,D2=50°,則D3的度數(shù)為A.80° B.50° C.30° D.20°10.對于不為零的兩個實數(shù)a,b,如果規(guī)定:a★b=,那么函數(shù)y=2★x的圖象大致是()A. B. C. D.11.化簡的結(jié)果為()A.﹣1 B.1 C. D.12.如圖,將函數(shù)的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(-4,m),B(-1,n),平移后的對應點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達式是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在兩個同心圓中,三條直徑把大、小圓都分成相等的六個部分,若隨意向圓中投球,球落在黑色區(qū)域的概率是______.14.如圖,AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于點C,若OC=6,則AB的長等于__.15.如圖,矩形紙片ABCD中,AB=3,AD=5,點P是邊BC上的動點,現(xiàn)將紙片折疊使點A與點P重合,折痕與矩形邊的交點分別為E,F(xiàn),要使折痕始終與邊AB,AD有交點,BP的取值范圍是_____.16.如圖是一個幾何體的三視圖(圖中尺寸單位:),根據(jù)圖中數(shù)據(jù)計算,這個幾何體的表面積為__________.17.如圖,直線a∥b,∠BAC的頂點A在直線a上,且∠BAC=100°.若∠1=34°,則∠2=_____°.18.一般地,當α、β為任意角時,sin(α+β)與sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα?cosβ+cosα?sinβ;sin(α﹣β)=sinα?cosβ﹣cosα?sinβ.例如sin90°=sin(60°+30°)=sin60°?cos30°+cos60°?sin30°==1.類似地,可以求得sin15°的值是_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某商人制成了一個如圖所示的轉(zhuǎn)盤,取名為“開心大轉(zhuǎn)盤”,游戲規(guī)定:參與者自由轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針指向字母“A”,則收費2元,若指針指向字母“B”,則獎勵3元;若指針指向字母“C”,則獎勵1元.一天,前來尋開心的人轉(zhuǎn)動轉(zhuǎn)盤80次,你認為該商人是盈利的可能性大還是虧損的可能性大?為什么?20.(6分)(1)計算:;(2)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.21.(6分)如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點D、E,得到DE?。笞C:AB為⊙C的切線.求圖中陰影部分的面積.22.(8分)如圖,直線l切⊙O于點A,點P為直線l上一點,直線PO交⊙O于點C、B,點D在線段AP上,連接DB,且AD=DB.(1)求證:DB為⊙O的切線;(2)若AD=1,PB=BO,求弦AC的長.23.(8分)如圖,△ABC內(nèi)接于⊙O,∠B=600,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑.24.(10分)科研所計劃建一幢宿舍樓,因為科研所實驗中會產(chǎn)生輻射,所以需要有兩項配套工程.①在科研所到宿舍樓之間修一條高科技的道路;②對宿含樓進行防輻射處理;已知防輻射費y萬元與科研所到宿舍樓的距離xkm之間的關系式為y=ax+b(0≤x≤3).當科研所到宿舍樓的距離為1km時,防輻射費用為720萬元;當科研所到宿含樓的距離為3km或大于3km時,輻射影響忽略不計,不進行防輻射處理,設修路的費用與x2成正比,且比例系數(shù)為m萬元,配套工程費w=防輻射費+修路費.(1)當科研所到宿舍樓的距離x=3km時,防輻射費y=____萬元,a=____,b=____;(2)若m=90時,求當科研所到宿舍樓的距離為多少km時,配套工程費最少?(3)如果最低配套工程費不超過675萬元,且科研所到宿含樓的距離小于等于3km,求m的范圍?25.(10分)如圖,拋物線與y軸交于A點,過點A的直線與拋物線交于另一點B,過點B作BC⊥x軸,垂足為點C(3,0).(1)求直線AB的函數(shù)關系式;(2)動點P在線段OC上從原點出發(fā)以每秒一個單位的速度向C移動,過點P作PN⊥x軸,交直線AB于點M,交拋物線于點N.設點P移動的時間為t秒,MN的長度為s個單位,求s與t的函數(shù)關系式,并寫出t的取值范圍;(3)設在(2)的條件下(不考慮點P與點O,點C重合的情況),連接CM,BN,當t為何值時,四邊形BCMN為平行四邊形?問對于所求的t值,平行四邊形BCMN是否菱形?請說明理由26.(12分)如圖,在等腰△ABC中,AB=BC,以AB為直徑的⊙O與AC相交于點D,過點D作DE⊥BC交AB延長線于點E,垂足為點F.(1)證明:DE是⊙O的切線;(2)若BE=4,∠E=30°,求由、線段BE和線段DE所圍成圖形(陰影部分)的面積,(3)若⊙O的半徑r=5,sinA=,求線段EF的長.27.(12分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求證:△ABC≌△AED;當∠B=140°時,求∠BAE的度數(shù).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

根據(jù)三視圖的法則可得出答案.【詳解】解:左視圖為從左往右看得到的視圖,A.球的左視圖是圓,B.圓柱的左視圖是長方形,C.圓錐的左視圖是等腰三角形,D.圓臺的左視圖是等腰梯形,故符合題意的選項是A.【點睛】錯因分析較容易題.失分原因是不會判斷常見幾何體的三視圖.2、B【解析】【分析】根據(jù)平行線的判定方法結(jié)合已知條件逐項進行分析即可得.【詳解】A、如圖,∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四邊形AECF是平行四邊形,故不符合題意;B、如圖所示,AE=CF,不能得到四邊形AECF是平行四邊形,故符合題意;C、如圖,∵四邊形ABCD是平行四邊形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AFCE,∴四邊形AECF是平行四邊形,故不符合題意;D、如圖,∵四邊形ABCD是平行四邊形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AECF,∴四邊形AECF是平行四邊形,故不符合題意,故選B.【點睛】本題考查了平行四邊形的性質(zhì)與判定,熟練掌握平行四邊形的判定定理與性質(zhì)定理是解題的關鍵.3、C【解析】首先求出二次函數(shù)的圖象的對稱軸x==2,且由a=1>0,可知其開口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在對稱軸的左側(cè),而在對稱軸的左側(cè),y隨x得增大而減小,所以.總結(jié)可得.故選C.點睛:此題主要考查了二次函數(shù)的圖像與性質(zhì),解答此題的關鍵是(1)找到二次函數(shù)的對稱軸;(2)掌握二次函數(shù)的圖象性質(zhì).4、B【解析】

根據(jù)乘車人數(shù)是25人,而乘車人數(shù)所占的比例是50%,即可求得總?cè)藬?shù),然后根據(jù)百分比的含義即可求得步行的人數(shù),以及騎車人數(shù)所占的比例.【詳解】A、總?cè)藬?shù)是:25÷50%=50(人),故A正確;B、步行的人數(shù)是:50×30%=15(人),故B錯誤;C、乘車人數(shù)是騎車人數(shù)倍數(shù)是:50%÷20%=2.5,故C正確;D、騎車人數(shù)所占的比例是:1-50%-30%=20%,故D正確.由于該題選擇錯誤的,故選B.【點睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.5、D【解析】

直接利用分式的加減運算法則計算得出答案.【詳解】解:=﹣+=﹣+==,故小明、小紅都不正確.故選:D.【點睛】此題主要考查了分式的加減運算,正確進行通分運算是解題關鍵.6、C【解析】

根據(jù)只有符號不同的兩個數(shù)互為相反數(shù)進行解答即可.【詳解】與只有符號不同,所以的相反數(shù)是,故選C.【點睛】本題考查了相反數(shù)的定義,熟練掌握相反數(shù)的定義是解題的關鍵.7、D【解析】∵實數(shù)-3,x,3,y在數(shù)軸上的對應點分別為M、N、P、Q,

∴原點在點M與N之間,

∴這四個數(shù)中絕對值最大的數(shù)對應的點是點Q.

故選D.8、B【解析】

根據(jù)反比例函數(shù)中k的幾何意義,過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|解答即可.【詳解】解:A、圖形面積為|k|=1;B、陰影是梯形,面積為6;C、D面積均為兩個三角形面積之和,為2×(|k|)=1.故選B.【點睛】主要考查了反比例函數(shù)中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)常考查的一個知識點;這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系即S=|k|.9、D【解析】試題分析:根據(jù)平行線的性質(zhì),得∠4=∠2=50°,再根據(jù)三角形的外角的性質(zhì)∠3=∠4-∠1=50°-30°=20°.故答案選D.考點:平行線的性質(zhì);三角形的外角的性質(zhì).10、C【解析】

先根據(jù)規(guī)定得出函數(shù)y=2★x的解析式,再利用一次函數(shù)與反比例函數(shù)的圖象性質(zhì)即可求解.【詳解】由題意,可得當2<x,即x>2時,y=2+x,y是x的一次函數(shù),圖象是一條射線除去端點,故A、D錯誤;當2≥x,即x≤2時,y=﹣,y是x的反比例函數(shù),圖象是雙曲線,分布在第二、四象限,其中在第四象限時,0<x≤2,故B錯誤.故選:C.【點睛】本題考查了新定義,函數(shù)的圖象,一次函數(shù)與反比例函數(shù)的圖象性質(zhì),根據(jù)新定義得出函數(shù)y=2★x的解析式是解題的關鍵.11、B【解析】

先把分式進行通分,把異分母分式化為同分母分式,再把分子相加,即可求出答案.【詳解】解:.故選B.12、D【解析】分析:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),AC=-1-(-1)=3,根據(jù)平移的性質(zhì)以及曲線段AB掃過的面積為9(圖中的陰影部分),得出AA′=3,然后根據(jù)平移規(guī)律即可求解.詳解:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),∴AC=-1-(-1)=3,∵曲線段AB掃過的面積為9(圖中的陰影部分),∴矩形ACDA′的面積等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函數(shù)的圖是將函數(shù)y=(x-2)2+1的圖象沿y軸向上平移3個單位長度得到的,∴新圖象的函數(shù)表達式是y=(x-2)2+1+3=(x-2)2+1.故選D.點睛:此題主要考查了二次函數(shù)圖象變換以及矩形的面積求法等知識,根據(jù)已知得出AA′的長度是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

根據(jù)幾何概率的求法:球落在黑色區(qū)域的概率就是黑色區(qū)域的面積與總面積的比值.【詳解】解:由圖可知黑色區(qū)域與白色區(qū)域的面積相等,故球落在黑色區(qū)域的概率是=.【點睛】本題考查幾何概率的求法:首先根據(jù)題意將代數(shù)關系用面積表示出來,一般用陰影區(qū)域表示所求事件(A);然后計算陰影區(qū)域的面積在總面積中占的比例,這個比例即事件(A)發(fā)生的概率.14、18【解析】連接OB,∵OA=OB,∴∠B=∠A=30°,∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,∴∠BOC=∠B,∴CB=OC=6,∴AB=AC+BC=18,故答案為18.15、1≤x≤1【解析】

此題需要運用極端原理求解;①BP最小時,F(xiàn)、D重合,由折疊的性質(zhì)知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的長,進而可求得BP的值,即BP的最小值;②BP最大時,E、B重合,根據(jù)折疊的性質(zhì)即可得到AB=BP=1,即BP的最大值為1;【詳解】解:如圖:①當F、D重合時,BP的值最?。桓鶕?jù)折疊的性質(zhì)知:AF=PF=5;在Rt△PFC中,PF=5,F(xiàn)C=1,則PC=4;∴BP=xmin=1;②當E、B重合時,BP的值最大;由折疊的性質(zhì)可得BP=AB=1.所以BP的取值范圍是:1≤x≤1.故答案為:1≤x≤1.【點睛】此題主要考查的是圖形的翻折變換,正確的判斷出x的兩種極值下F、E點的位置,是解決此題的關鍵.16、【解析】分析:由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀,確定圓錐的母線長和底面半徑,從而確定其表面積.詳解:由主視圖和左視圖為三角形判斷出是錐體,由俯視圖是圓形可判斷出這個幾何體應該是圓錐;根據(jù)三視圖知:該圓錐的母線長為6cm,底面半徑為2cm,故表面積=πrl+πr2=π×2×6+π×22=16π(cm2).故答案為:16π.點睛:考查學生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.17、46【解析】試卷分析:根據(jù)平行線的性質(zhì)和平角的定義即可得到結(jié)論.解:∵直線a∥b,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°?34°?100°=46°,故答案為46°.18、.【解析】試題分析:sin15°=sin(60°﹣45°)=sin60°?cos45°﹣cos60°?sin45°==.故答案為.考點:特殊角的三角函數(shù)值;新定義.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、商人盈利的可能性大.【解析】試題分析:根據(jù)幾何概率的定義,面積比即概率.圖中A,B,C所占的面積與總面積之比即為A,B,C各自的概率,算出相應的可能性,乘以錢數(shù),比較即可.試題解析:商人盈利的可能性大.商人收費:80××2=80(元),商人獎勵:80××3+80××1=60(元),因為80>60,所以商人盈利的可能性大.20、(1);(1)1.【解析】

(1)先計算負整數(shù)指數(shù)冪、化簡二次根式、代入三角函數(shù)值、計算零指數(shù)冪,再計算乘法和加減運算可得;(1)先根據(jù)整式的混合運算順序和運算法則化簡原式,再利用完全平方公式因式分解,最后將a?b的值整體代入計算可得.【詳解】(1)原式=4+1﹣8×﹣1=4+1﹣4﹣1=1﹣1;(1)原式=a1﹣4a+4+b1﹣1ab+4a﹣4=a1﹣1ab+b1=(a﹣b)1,當a﹣b=時,原式=()1=1.【點睛】本題主要考查實數(shù)和整式的混合運算,解題的關鍵是掌握實數(shù)與整式的混合運算順序和運算法則及完全平方公式因式分解的能力.21、(1)證明見解析;(2)1-π.【解析】

(1)解直角三角形求出BC,根據(jù)勾股定理求出AB,根據(jù)三角形面積公式求出CF,根據(jù)切線的判定得出即可;(2)分別求出△ACB的面積和扇形DCE的面積,即可得出答案.【詳解】(1)過C作CF⊥AB于F.∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.∵△ACB的面積S,∴CF2,∴CF為⊙C的半徑.∵CF⊥AB,∴AB為⊙C的切線;(2)圖中陰影部分的面積=S△ACB﹣S扇形DCE1﹣π.【點睛】本題考查了勾股定理,扇形的面積,解直角三角形,切線的性質(zhì)和判定等知識點,能求出CF的長是解答此題的關鍵.22、(1)見解析;(2)AC=1.【解析】

(1)要證明DB為⊙O的切線,只要證明∠OBD=90即可.(2)根據(jù)已知及直角三角形的性質(zhì)可以得到PD=2BD=2DA=2,再利用等角對等邊可以得到AC=AP,這樣求得AP的值就得出了AC的長.【詳解】(1)證明:連接OD;∵PA為⊙O切線,∴∠OAD=90°;在△OAD和△OBD中,,∴△OAD≌△OBD,∴∠OBD=∠OAD=90°,∴OB⊥BD∴DB為⊙O的切線(2)解:在Rt△OAP中;∵PB=OB=OA,∴OP=2OA,∴∠OPA=10°,∴∠POA=60°=2∠C,∴PD=2BD=2DA=2,∴∠OPA=∠C=10°,∴AC=AP=1.【點睛】本題考查了切線的判定及性質(zhì),全等三全角形的判定等知識點的掌握情況.23、(1)見解析(2)2【解析】解:(1)證明:連接OA,∵∠B=600,∴∠AOC=2∠B=1.∵OA=OC,∴∠OAC=∠OCA=2.又∵AP=AC,∴∠P=∠ACP=2.∴∠OAP=∠AOC﹣∠P=3.∴OA⊥PA.∵OA是⊙O的半徑,∴PA是⊙O的切線.(2)在Rt△OAP中,∵∠P=2,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OA.∵PD=,∴2OA=2PD=2.∴⊙O的直徑為2..(1)連接OA,根據(jù)圓周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=2,再由AP=AC得出∠P=2,繼而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,從而得出結(jié)論.(2)利用含2的直角三角形的性質(zhì)求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直徑.24、(1)0,﹣360,101;(2)當距離為2公里時,配套工程費用最少;(3)0<m≤1.【解析】

(1)當x=1時,y=720,當x=3時,y=0,將x、y代入y=ax+b,即可求解;(2)根據(jù)題目:配套工程費w=防輻射費+修路費分0≤x≤3和x≥3時討論.①當0≤x≤3時,配套工程費W=90x2﹣360x+101,②當x≥3時,W=90x2,分別求最小值即可;(3)0≤x≤3,W=mx2﹣360x+101,(m>0),其對稱軸x=,然后討論:x==3時和x=>3時兩種情況m取值即可求解.【詳解】解:(1)當x=1時,y=720,當x=3時,y=0,將x、y代入y=ax+b,解得:a=﹣360,b=101,故答案為0,﹣360,101;(2)①當0≤x≤3時,配套工程費W=90x2﹣360x+101,∴當x=2時,Wmin=720;②當x≥3時,W=90x2,W隨x最大而最大,當x=3時,Wmin=810>720,∴當距離為2公里時,配套工程費用最少;(3)∵0≤x≤3,W=mx2﹣360x+101,(m>0),其對稱軸x=,當x=≤3時,即:m≥60,Wmin=m()2﹣360()+101,∵Wmin≤675,解得:60≤m≤1;當x=>3時,即m<60,當x=3時,Wmin=9m<675,解得:0<m<60,故:0<m≤1.【點睛】本題考查了二次函數(shù)的性質(zhì)在實際生活中的應用.最值問題常利函數(shù)的增減性來解答.25、(1);(2)(0≤t≤3);(3)t=1或2時;四邊形BCMN為平行四邊形;t=1時,平行四邊形BCMN是菱形,t=2時,平行四邊形BCMN不是菱形,理由見解析.【解析】

(1)由A、B在拋物線上,可求出A、B點的坐標,從而用待定系數(shù)法求出直線AB的函數(shù)關系式.(2)用t表示P、M、N的坐標,由等式得到函數(shù)關系式.(3)由平行四邊形對邊相等的性質(zhì)得到等式,求出t.再討論鄰邊是否相等.【詳解】解:(1)x=0時,y=1,∴點A的坐標為:(0,1),∵BC⊥x軸,垂足為點C(3,0),∴點B的橫坐標為3,當x=3時,y=,∴點B的坐標為(3,),設直線AB的函數(shù)關系式為y=kx+b,,解得,,則直線AB的函數(shù)關系式(2)當x=t時,y=t+1,∴點M的坐標為(t,t+1),當x=t時,∴點N的坐標為(0≤t≤3);(3)若四邊形BCMN為平行四邊形,則有MN=BC,

∴,解得t1=1,t2=2,∴當t=1或2時,四邊形BCMN為平行四邊形,

①當t=1時,MP=,PC=2,∴MC==MN,此時四邊形BCMN為菱形,②當t=2時,MP=2,PC=1,∴MC=≠MN,此時四邊形BCMN不是菱形.【點睛】本題考查的是二次函數(shù)的性質(zhì)、待定系數(shù)法求函數(shù)解析式、菱形的判定,正確求出二次函數(shù)的解析式、利用配方法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論