




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,直線AB∥CD,∠C=44°,∠E為直角,則∠1等于()A.132° B.134° C.136° D.138°2.如圖1,在△ABC中,AB=BC,AC=m,D,E分別是AB,BC邊的中點,點P為AC邊上的一個動點,連接PD,PB,PE.設AP=x,圖1中某條線段長為y,若表示y與x的函數關系的圖象大致如圖2所示,則這條線段可能是()A.PD B.PB C.PE D.PC3.如圖,四邊形ABCD內接于⊙O,若四邊形ABCO是平行四邊形,則∠ADC的大小為()A. B. C. D.4.加工爆米花時,爆開且不糊的粒數占加工總粒數的百分比稱為“可食用率”.在特定條件下,可食用率p與加工時間t(單位:分鐘)滿足的函數關系p=at2+bt+c(a,b,c是常數),如圖記錄了三次實驗的數據.根據上述函數模型和實驗數據,可得到最佳加工時間為()A.4.25分鐘 B.4.00分鐘 C.3.75分鐘 D.3.50分鐘5.如圖,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分別過點B,C作BE⊥AG于點E,CF⊥AG于點F,則AE-GF的值為()A.1 B.2 C.32 D.6.下列說法中正確的是()A.檢測一批燈泡的使用壽命適宜用普查.B.拋擲一枚均勻的硬幣,正面朝上的概率是,如果拋擲10次,就一定有5次正面朝上.C.“367人中有兩人是同月同日生”為必然事件.D.“多邊形內角和與外角和相等”是不可能事件.7.中國古代在利用“計里畫方”(比例縮放和直角坐標網格體系)的方法制作地圖時,會利用測桿、水準儀和照板來測量距離.在如圖所示的測量距離AB的示意圖中,記照板“內芯”的高度為EF,觀測者的眼睛(圖中用點C表示)與BF在同一水平線上,則下列結論中,正確的是()A. B. C. D.8.如圖,在矩形ABCD中,AB=2a,AD=a,矩形邊上一動點P沿A→B→C→D的路徑移動.設點P經過的路徑長為x,PD2=y,則下列能大致反映y與x的函數關系的圖象是()A. B.C. D.9.觀察下列圖案,是軸對稱而不是中心對稱的是()A. B. C. D.10.若二次函數的圖像與軸有兩個交點,則實數的取值范圍是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.=________12.如圖,在四邊形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=,則CD=_____.13.一個斜面的坡度i=1:0.75,如果一個物體從斜面的底部沿著斜面方向前進了20米,那么這個物體在水平方向上前進了_____米.14.已知正方形ABCD,AB=1,分別以點A、C為圓心畫圓,如果點B在圓A外,且圓A與圓C外切,那么圓C的半徑長r的取值范圍是_____.15.2018年1月4日在萍鄉(xiāng)市第十五屆人民代表大會第三次會議報告指出,去年我市城鎮(zhèn)居民人均可支配收入33080元,33080用科學記數法可表示為__.16.如圖,直線與雙曲線(k≠0)相交于A(﹣1,)、B兩點,在y軸上找一點P,當PA+PB的值最小時,點P的坐標為_________.三、解答題(共8題,共72分)17.(8分)進入冬季,某商家根據市民健康需要,代理銷售一種防塵口罩,進貨價為20元/包,經市場銷售發(fā)現(xiàn):銷售單價為30元/包時,每周可售出200包,每漲價1元,就少售出5包.若供貨廠家規(guī)定市場價不得低于30元/包.試確定周銷售量y(包)與售價x(元/包)之間的函數關系式;試確定商場每周銷售這種防塵口罩所獲得的利潤w(元)與售價x(元/包)之間的函數關系式,并直接寫出售價x的范圍;當售價x(元/包)定為多少元時,商場每周銷售這種防塵口罩所獲得的利潤w(元)最大?最大利潤是多少?18.(8分)某電器商場銷售甲、乙兩種品牌空調,已知每臺乙種品牌空調的進價比每臺甲種品牌空調的進價高20%,用7200元購進的乙種品牌空調數量比用3000元購進的甲種品牌空調數量多2臺.求甲、乙兩種品牌空調的進貨價;該商場擬用不超過16000元購進甲、乙兩種品牌空調共10臺進行銷售,其中甲種品牌空調的售價為2500元/臺,乙種品牌空調的售價為3500元/臺.請您幫該商場設計一種進貨方案,使得在售完這10臺空調后獲利最大,并求出最大利潤.19.(8分)如圖,已知AB是圓O的直徑,F(xiàn)是圓O上一點,∠BAF的平分線交⊙O于點E,交⊙O的切線BC于點C,過點E作ED⊥AF,交AF的延長線于點D.求證:DE是⊙O的切線;若DE=3,CE=2.①求的值;②若點G為AE上一點,求OG+EG最小值.20.(8分)某商店準備購進甲、乙兩種商品.已知甲商品每件進價15元,售價20元;乙商品每件進價35元,售價45元.(1)若該商店同時購進甲、乙兩種商品共100件,恰好用去2700元,求購進甲、乙兩種商品各多少件?(2)若該商店準備用不超過3100元購進甲、乙兩種商品共100件,且這兩種商品全部售出后獲利不少于890元,問應該怎樣進貨,才能使總利潤最大,最大利潤是多少?(利潤=售價﹣進價)21.(8分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.如圖1,當點E在邊BC上時,求證DE=EB;如圖2,當點E在△ABC內部時,猜想ED和EB數量關系,并加以證明;如圖1,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.22.(10分)計算:2tan45°-(-)o-23.(12分)2013年6月,某中學結合廣西中小學閱讀素養(yǎng)評估活動,以“我最喜愛的書籍”為主題,對學生最喜愛的一種書籍類型進行隨機抽樣調查,收集整理數據后,繪制出以下兩幅未完成的統(tǒng)計圖,請根據圖1和圖2提供的信息,解答下列問題:在這次抽樣調查中,一共調查了多少名學生?請把折線統(tǒng)計圖(圖1)補充完整;求出扇形統(tǒng)計圖(圖2)中,體育部分所對應的圓心角的度數;如果這所中學共有學生1800名,那么請你估計最喜愛科普類書籍的學生人數.24.在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點,連接BE.如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;如圖2,D為AB上一點,且滿足AE=AD,過點A作AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】過E作EF∥AB,求出AB∥CD∥EF,根據平行線的性質得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:過E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC為直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故選B.“點睛”本題考查了平行線的性質的應用,能正確作出輔助線是解此題的關鍵.2、C【解析】觀察可得,點P在線段AC上由A到C的運動中,線段PE逐漸變短,當EP⊥AC時,PE最短,過垂直這個點后,PE又逐漸變長,當AP=m時,點P停止運動,符合圖像的只有線段PE,故選C.點睛:本題考查了動點問題的函數圖象,對于此類問題來說是典型的數形結合,圖象應用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時,要理清圖象的含義即會識圖.3、C【解析】
根據平行四邊形的性質和圓周角定理可得出答案.【詳解】根據平行四邊形的性質可知∠B=∠AOC,根據圓內接四邊形的對角互補可知∠B+∠D=180°,根據圓周角定理可知∠D=∠AOC,因此∠B+∠D=∠AOC+∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故選C【點睛】該題主要考查了圓周角定理及其應用問題;應牢固掌握該定理并能靈活運用.4、C【解析】
根據題目數據求出函數解析式,根據二次函數的性質可得.【詳解】根據題意,將(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:解得:a=?0.2,b=1.5,c=?2,即p=?0.2t2+1.5t?2,當t=?=3.75時,p取得最大值,故選C.【點睛】本題考查了二次函數的應用,熟練掌握性質是解題的關鍵.5、D【解析】
設AE=x,則AB=2x,由矩形的性質得出∠BAD=∠D=90°,CD=AB,證明△ADG是等腰直角三角形,得出AG=2AD=2,同理得出CD=AB=2x,CG=CD-DG=2x-1,CG=2GF,得出GF,即可得出結果.【詳解】設AE=x,
∵四邊形ABCD是矩形,
∴∠BAD=∠D=90°,CD=AB,∵AG平分∠BAD,∴∠DAG=45°,∴△ADG是等腰直角三角形,∴DG=AD=1,∴AG=2AD=2,同理:BE=AE=x,CD=AB=2x,∴CG=CD-DG=2x-1,同理:CG=2GF,∴FG=22∴AE-GF=x-(x-22)=2故選D.【點睛】本題考查了矩形的性質、等腰直角三角形的判定與性質,勾股定理;熟練掌握矩形的性質和等腰直角三角形的性質,并能進行推理計算是解決問題的關鍵.6、C【解析】【分析】根據相關的定義(調查方式,概率,可能事件,必然事件)進行分析即可.【詳解】A.檢測一批燈泡的使用壽命不適宜用普查,因為有破壞性;B.拋擲一枚均勻的硬幣,正面朝上的概率是,如果拋擲10次,就可能有5次正面朝上,因為這是隨機事件;C.“367人中有兩人是同月同日生”為必然事件.因為一年只有365天或366天,所以367人中至少有兩個日子相同;D.“多邊形內角和與外角和相等”是可能事件.如四邊形內角和和外角和相等.故正確選項為:C【點睛】本題考核知識點:對(調查方式,概率,可能事件,必然事件)理解.解題關鍵:理解相關概念,合理運用舉反例法.7、B【解析】分析:由平行得出相似,由相似得出比例,即可作出判斷.詳解:∵EF∥AB,∴△CEF∽△CAB,∴,故選B.點睛:本題考查了相似三角形的應用,熟練掌握相似三角形的判定與性質是解答本題的關鍵.8、D【解析】解:(1)當0≤t≤2a時,∵,AP=x,∴;(2)當2a<t≤3a時,CP=2a+a﹣x=3a﹣x,∵,∴=;(3)當3a<t≤5a時,PD=2a+a+2a﹣x=5a﹣x,∵=y,∴=;綜上,可得,∴能大致反映y與x的函數關系的圖象是選項D中的圖象.故選D.9、A【解析】試題解析:試題解析:根據軸對稱圖形和中心對稱圖形的概念進行判斷可得:A、是軸對稱圖形,不是中心對稱圖形,故本選項符合題意;B、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;C、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;D、是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意.故選A.點睛:在同一平面內,如果把一個圖形繞某一點旋轉,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.這個旋轉點,就叫做對稱中心.10、D【解析】
由拋物線與x軸有兩個交點可得出△=b2-4ac>0,進而可得出關于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=x2-2x+m與x軸有兩個交點,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故選D.【點睛】本題考查了拋物線與x軸的交點,牢記“當△=b2-4ac>0時,拋物線與x軸有2個交點”是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、13【解析】=2+9-4+6=13.故答案是:13.12、【解析】
延長AD和BC交于點E,在直角△ABE中利用三角函數求得BE的長,則EC的長即可求得,然后在直角△CDE中利用三角函數的定義求解.【詳解】如圖,延長AD、BC相交于點E,∵∠B=90°,∴,∴BE=,∴CE=BE-BC=2,AE=,∴,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,,∴CD=.13、1.【解析】
直接根據題意得出直角邊的比值,即可表示出各邊長進而得出答案.【詳解】如圖所示:∵坡度i=1:0.75,∴AC:BC=1:0.75=4:3,∴設AC=4x,則BC=3x,∴AB==5x,∵AB=20m,∴5x=20,解得:x=4,故3x=1,故這個物體在水平方向上前進了1m.故答案為:1.【點睛】此題主要考查坡度的運用,需注意的是坡度是坡角的正切值,是鉛直高度h和水平寬l的比,我們把斜坡面與水平面的夾角叫做坡角,若用α表示坡角,可知坡度與坡角的關系是.14、﹣1<r<.【解析】
首先根據題意求得對角線AC的長,設圓A的半徑為R,根據點B在圓A外,得出0<R<1,則-1<-R<0,再根據圓A與圓C外切可得R+r=,利用不等式的性質即可求出r的取值范圍.【詳解】∵正方形ABCD中,AB=1,
∴AC=,
設圓A的半徑為R,
∵點B在圓A外,
∴0<R<1,
∴-1<-R<0,
∴-1<-R<.
∵以A、C為圓心的兩圓外切,
∴兩圓的半徑的和為,
∴R+r=,r=-R,
∴-1<r<.
故答案為:-1<r<.【點睛】本題考查了圓與圓的位置關系,點與圓的位置關系,正方形的性質,勾股定理,不等式的性質.掌握位置關系與數量之間的關系是解題的關鍵.15、3.308×1.【解析】
正確用科學計數法表示即可.【詳解】解:33080=3.308×1【點睛】科學記數法的表示形式為的形式,其中1<|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值大于10時,n是正數;當原數的絕對值小于1時,n是負數.16、(0,).【解析】試題分析:把點A坐標代入y=x+4得a=3,即A(﹣1,3),把點A坐標代入雙曲線的解析式得3=﹣k,即k=﹣3,聯(lián)立兩函數解析式得:,解得:,,即點B坐標為:(﹣3,1),作出點A關于y軸的對稱點C,連接BC,與y軸的交點即為點P,使得PA+PB的值最小,則點C坐標為:(1,3),設直線BC的解析式為:y=ax+b,把B、C的坐標代入得:,解得:,所以函數解析式為:y=x+,則與y軸的交點為:(0,).考點:反比例函數與一次函數的交點問題;軸對稱-最短路線問題.三、解答題(共8題,共72分)17、(1)y=﹣5x+350;(2)w=﹣5x2+450x﹣7000(30≤x≤40);(3)當售價定為45元時,商場每周銷售這種防塵口罩所獲得的利潤w(元)最大,最大利潤是1元.【解析】試題分析:(1)根據題意可以直接寫出y與x之間的函數關系式;(2)根據題意可以直接寫出w與x之間的函數關系式,由供貨廠家規(guī)定市場價不得低于30元/包,且商場每周完成不少于150包的銷售任務可以確定x的取值范圍;(3)根據第(2)問中的函數解析式和x的取值范圍,可以解答本題.試題解析:解:(1)由題意可得:y=200﹣(x﹣30)×5=﹣5x+350即周銷售量y(包)與售價x(元/包)之間的函數關系式是:y=﹣5x+350;(2)由題意可得,w=(x﹣20)×(﹣5x+350)=﹣5x2+450x﹣7000(30≤x≤70),即商場每周銷售這種防塵口罩所獲得的利潤w(元)與售價x(元/包)之間的函數關系式是:w=﹣5x2+450x﹣7000(30≤x≤40);(3)∵w=﹣5x2+450x﹣7000=﹣5(x﹣45)2+1∵二次項系數﹣5<0,∴x=45時,w取得最大值,最大值為1.答:當售價定為45元時,商場每周銷售這種防塵口罩所獲得的利潤最大,最大利潤是1元.點睛:本題考查了二次函數的應用,解題的關鍵是明確題意,可以寫出相應的函數解析式,并確定自變量的取值范圍以及可以求出函數的最值.18、(1)甲種品牌的進價為1500元,乙種品牌空調的進價為1800元;(2)當購進甲種品牌空調7臺,乙種品牌空調3臺時,售完后利潤最大,最大為12100元【解析】
(1)設甲種品牌空調的進貨價為x元/臺,則乙種品牌空調的進貨價為1.2x元/臺,根據數量=總價÷單價可得出關于x的分式方程,解之并檢驗后即可得出結論;(2)設購進甲種品牌空調a臺,所獲得的利潤為y元,則購進乙種品牌空調(10-a)臺,根據總價=單價×數量結合總價不超過16000元,即可得出關于a的一元一次不等式,解之即可得出a的取值范圍,再由總利潤=單臺利潤×購進數量即可得出y關于a的函數關系式,利用一次函數的性質即可解決最值問題.【詳解】(1)由(1)設甲種品牌的進價為x元,則乙種品牌空調的進價為(1+20%)x元,由題意,得,解得x=1500,經檢驗,x=1500是原分式方程的解,乙種品牌空調的進價為(1+20%)×1500=1800(元).答:甲種品牌的進價為1500元,乙種品牌空調的進價為1800元;(2)設購進甲種品牌空調a臺,則購進乙種品牌空調(10-a)臺,由題意,得1500a+1800(10-a)≤16000,解得≤a,設利潤為w,則w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,因為-700<0,則w隨a的增大而減少,當a=7時,w最大,最大為12100元.答:當購進甲種品牌空調7臺,乙種品牌空調3臺時,售完后利潤最大,最大為12100元.【點睛】本題考查了一次函數的應用、分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)根據數量=總價÷單價列出關于x的分式方程;(2)根據總利潤=單臺利潤×購進數量找出y關于a的函數關系式.19、(1)證明見解析(2)①②3【解析】
(1)作輔助線,連接OE.根據切線的判定定理,只需證DE⊥OE即可;(2)①連接BE.根據BC、DE兩切線的性質證明△ADE∽△BEC;又由角平分線的性質、等腰三角形的兩個底角相等求得△ABE∽△AFD,所以;②連接OF,交AD于H,由①得∠FOE=∠FOA=60°,連接EF,則△AOF、△EOF都是等邊三角形,故四邊形AOEF是菱形,由對稱性可知GO=GF,過點G作GM⊥OE于M,則GM=EG,OG+EG=GF+GM,根據兩點之間線段最短,當F、G、M三點共線,OG+EG=GF+GM=FM最小,此時FM=3.故OG+EG最小值是3.【詳解】(1)連接OE∵OA=OE,∴∠AEO=∠EAO∵∠FAE=∠EAO,∴∠FAE=∠AEO∴OE∥AF∵DE⊥AF,∴OE⊥DE∴DE是⊙O的切線(2)①解:連接BE∵直徑AB∴∠AEB=90°∵圓O與BC相切∴∠ABC=90°∵∠EAB+∠EBA=∠EBA+∠CBE=90°∴∠EAB=∠CBE∴∠DAE=∠CBE∵∠ADE=∠BEC=90°∴△ADE∽△BEC∴②連接OF,交AE于G,由①,設BC=2x,則AE=3x∵△BEC∽△ABC∴∴解得:x1=2,(不合題意,舍去)∴AE=3x=6,BC=2x=4,AC=AE+CE=8∴AB=,∠BAC=30°∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°∴∠FOE=∠FOA=60°,連接EF,則△AOF、△EOF都是等邊三角形,∴四邊形AOEF是菱形由對稱性可知GO=GF,過點G作GM⊥OE于M,則GM=EG,OG+EG=GF+GM,根據兩點之間線段最短,當F、G、M三點共線,OG+EG=GF+GM=FM最小,此時FM=FOsin60o=3.故OG+EG最小值是3.【點睛】本題考查了切線的性質、相似三角形的判定與性質.比較復雜,解答此題的關鍵是作出輔助線,利用數形結合解答.20、(1)商店購進甲種商品40件,購進乙種商品60件;(2)應購進甲種商品20件,乙種商品80件,才能使總利潤最大,最大利潤為900元.【解析】
(1)設購進甲、乙兩種商品分別為x件與y件,根據甲種商品件數+乙種商品件數=100,甲商品的總進價+乙種商品的總進價=2700,列出關于x與y的方程組,求出方程組的解即可得到x與y的值,得到購進甲、乙兩種商品的件數;(2)設商店購進甲種商品a件,則購進乙種商品(100-a)件,根據甲商品的總進價+乙種商品的總進價小于等于3100,甲商品的總利潤+乙商品的總利潤大于等于890列出關于a的不等式組,求出不等式組的解集,得到a的取值范圍,根據a為正整數得出a的值,再表示總利潤W,發(fā)現(xiàn)W與a成一次函數關系式,且為減函數,故a取最小值時,W最大,即可求出所求的進貨方案與最大利潤.【詳解】(1)設購進甲種商品x件,購進乙商品y件,根據題意得:,解得:,答:商店購進甲種商品40件,購進乙種商品60件;(2)設商店購進甲種商品a件,則購進乙種商品(100﹣a)件,根據題意列得:,解得:20≤a≤22,∵總利潤W=5a+10(100﹣a)=﹣5a+1000,W是關于a的一次函數,W隨a的增大而減小,∴當a=20時,W有最大值,此時W=900,且100﹣20=80,答:應購進甲種商品20件,乙種商品80件,才能使總利潤最大,最大利潤為900元.【點睛】此題考查了二元一次方程組的應用,一次函數的性質,以及一元一次不等式組的應用,弄清題中的等量關系及不等關系是解本題的關鍵.21、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解析】
(1)、根據等邊三角形的性質得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點O,連接CO、EO,根據△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取AB的中點O,連接CO、EO、EB,根據題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設CG=a,則AG=5a,OD=a,根據題意列出一元一次方程求出a的值得出答案.【詳解】(1)∵△CDE是等邊三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中點O,連接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO為等邊三角形,∴CA=CO,∵△CDE是等邊三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中點O,連接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,設CG=a,則AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.22、2-【解析】
先求三角函數,再根據實數混合運算法計算.【詳解】解:原式=2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 食品安全教育與商業(yè)合作的創(chuàng)新模式
- 零基礎學游泳家庭水中的鍛煉方法
- 營銷策略在教育行業(yè)的應用及品牌影響力提升
- 財富管理的捷徑-探索適合不同人群的家庭財務管理軟件
- 2024-2025新員工崗前安全培訓考試試題帶下載答案
- 2025工廠員工安全培訓考試試題含完整答案【考點梳理】
- 2025員工安全培訓考試試題附答案(培優(yōu)A卷)
- 2024-2025工廠員工安全培訓考試試題及下載答案
- 2025年項目部治理人員安全培訓考試試題附參考答案(鞏固)
- 高科技企業(yè)的封面設計及傳達的戰(zhàn)略思維
- 監(jiān)控工程驗收單-范本模板
- 浙江開放大學2024年《法律文化》形考作業(yè)1-4答案
- 政治審查表(模板)
- T∕CACM 1107-2018 中醫(yī)治未病實踐指南 亞健康中醫(yī)干預
- 數字貿易學 課件 第20、21章 數字絲綢之路與數字基礎設施、數字自由貿易與數字貿易壁壘
- 地理畢業(yè)生實習報告5000字范本2篇
- (完整版)鋁合金門窗施工合同范本
- 新生兒音樂療法課件
- 2023年心理健康知識競賽題庫100題(含答案)
- 2024年國家電投集團海南分公司招聘筆試參考題庫含答案解析
- 【中醫(yī)課件】經絡學說
評論
0/150
提交評論