第十章壓桿穩(wěn)定_第1頁
第十章壓桿穩(wěn)定_第2頁
第十章壓桿穩(wěn)定_第3頁
第十章壓桿穩(wěn)定_第4頁
第十章壓桿穩(wěn)定_第5頁
已閱讀5頁,還剩47頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第十章壓

穩(wěn)

定主要內容§10-1壓桿穩(wěn)定性的概念§10-2兩端鉸支細長中心受壓桿臨界力的歐拉公式§10-3不同桿端約束下細長壓桿臨界力的歐拉公式§10-4歐拉公式的適用范圍、臨界應力總圖§10-5壓桿穩(wěn)定計算§10-6提高壓桿穩(wěn)定性的措施【學時】4【基本要求】【重點】壓桿穩(wěn)定的概念,臨界壓力和臨界應力的計算,以及壓桿穩(wěn)定的安全計算.【難點】壓桿穩(wěn)定的概念,壓桿穩(wěn)定的安全計算。

理解壓桿穩(wěn)定的概念。掌握臨界力的歐拉公式。掌握壓桿柔度的計算方法,以及判斷大柔度、中柔度、小柔度壓桿的原則

.

理解臨界應力總圖,能根據壓桿的類別選用合適的公式計算臨界應力.

掌握壓桿穩(wěn)定的安全計算。了解提高壓桿穩(wěn)定性的主要措施.一.問題的提出§10-1壓桿穩(wěn)定性的概念第一章中討論的受壓桿件,認為只要滿足:

事實:這僅對短粗桿成立,而對細長桿不適用。,就能保證正常工作。實驗知:高3cm左右時,壓壞需壓力為:長達100cm,就會突然發(fā)生顯著的彎曲變形,退出工作。

說明:細長壓桿,承載能力,不取決于軸向壓縮時的抗壓強度,而與受壓時突然變彎有關。

失穩(wěn):細長桿受壓時,其軸線不能維持原有直線形狀的平衡狀態(tài)而突然變到曲線形狀的平衡狀態(tài)這一現象稱為喪失穩(wěn)定,簡稱失穩(wěn)。壓桿失穩(wěn),會引起整個結構的破壞,甚至倒塌。失穩(wěn)的特點:較長的桿存在失穩(wěn)問題,短粗桿不存在.失穩(wěn)破壞是突然發(fā)生的,無事先預兆。

微小擾動就使小球遠離原來的平衡位置.即使擾動撤銷后,小球也是如此。

微小擾動使小球離開原來的平衡位置,但擾動撤銷后小球恢復到原來的平衡位置。11-1二.剛體平衡穩(wěn)定性的判別方法穩(wěn)定平衡凹面上不穩(wěn)定平衡凸面上三.壓桿的彈性穩(wěn)定性問題說明:判別原有位置處的平衡穩(wěn)定與否,使從該位置處稍有偏離,比如微小外力作用,然后看能否恢復原來的平衡位置,以區(qū)分原位置的平衡是穩(wěn)定平衡還是不穩(wěn)定平衡。

理想彈性壓桿(材料均勻、桿軸為直線、壓力沿軸線)。作用壓力F,給一橫向干擾力,出現類似現象:

穩(wěn)定平衡:

若干擾力撤消,直桿能回到原有的直線狀態(tài),圖b,

不穩(wěn)定平衡:若干擾力撤消,直桿不能回到原有直線狀態(tài),圖c,臨界平衡:

F=Fcr的平衡,是一種特殊的不穩(wěn)定平衡,是介于穩(wěn)定平衡和不穩(wěn)定平衡之間的臨界狀態(tài),是一個分界點。臨界平衡時,當壓力值有一任意微小正增量,它就變成了不穩(wěn)定平衡;而壓力有一任意微小負增量,它就成了穩(wěn)定平衡。失穩(wěn):壓桿喪失直線狀態(tài)的平衡,過渡到曲線狀態(tài)的平衡的過程,稱為失穩(wěn)或屈曲??梢?細長壓桿,直線平衡是否穩(wěn)定,視F是否超過Fcr而定。臨界力:

受壓桿件由直線平衡狀態(tài)過渡到微彎的曲線平衡狀態(tài)的最小荷載值。注意:求壓桿的臨界力,是解壓桿穩(wěn)定問題的關鍵。臨界力:壓桿失穩(wěn)時的最小值;保持穩(wěn)定的最大值。求臨界力有兩種途徑:實驗測定及理論計算。實驗以及理論計算表明:壓桿的臨界力,與壓桿兩端的支承情況有關,與壓桿材料性質有關,與壓桿橫截面的幾何尺寸形狀有關,也與壓桿的長度有關。壓桿一般稱為柱,壓桿的穩(wěn)定也稱為柱的穩(wěn)定,壓桿的失穩(wěn)現象是在縱向力作用下,使桿產生突然彎曲的,在縱向力作用下的彎曲,稱為縱彎曲。失穩(wěn)的現象不僅限于壓桿這一類構件,對受壓薄板,受外壓的薄壁容器等,都可能有失穩(wěn)現象發(fā)生。§10-2兩端鉸支細長中心受壓桿臨界力的歐拉公式思路:先假設壓桿在Fcr作用下,保持微彎平衡,并寫出彎矩表達式;然后由撓曲線近似微分方程求出非零解的Fcr值,取其最小值,即為所求臨界力。M(x)=Fcr

y(x)dx2d2y+k2y=0k2=FcrEIy=Asinkx

+Bcoskxy(0)=0,y(l)=00?A+1?B=0sinkl?A+coskl

?B=0y(0)=0y(l)=001sinkl

coskl=0sinkl

=0①彎矩②近似微分方程③微分方程的解④確定積分常數y—歐拉公式sinkl

=0k2=FcrEI

臨界力Fcr

是微彎下的最小壓力,故只能取n=1且壓桿總是繞

抗彎剛度最小的軸發(fā)生失穩(wěn)破壞。此公式的應用條件:理想壓桿線彈性范圍內兩端為球鉸支座兩端鉸支細長中心受壓桿臨界力的歐拉公式—長度系數(或約束系數)即壓桿臨界力歐拉公式的一般形式

其它端約束情況,分析思路與兩端鉸支的相同,并得出了臨界力公式§10-3不同桿端約束下細長壓桿臨界力的歐拉公式

—相當長度

各種約束條件下等截面細長壓桿臨界力歐拉公式解:變形如圖,其撓曲線近似微分方程為邊界條件為例10-1導出下述兩種細長壓桿的臨界力公式FlxFM0FM0FM0xFM0ww為了求最小臨界力,“k”應取的最小正值,即故臨界力為=0.5能不能應用歐拉公式計算四根壓桿的臨界載荷?§10-4歐拉公式的適用范圍、臨界

應力總圖一.問題的提出二.臨界應力和柔度臨界應力:壓桿處于臨界狀態(tài)時橫截面上的平均應力柔度:細長壓桿的臨界應力:引入記號它是一個無量綱的量,同長度、截面性質、支撐條件有關.三.歐拉公式的適用范圍cr

p—歐拉公式成立的條件歐拉公式適用范圍pQ235鋼,E=206GPap

=200MPa—與比例極限對應的柔度p—比例極限四.經驗公式、臨界應力總圖直線型經驗公式①p<<s

時:②s<

時:③臨界應力總圖細長桿中長桿

粗短桿拋物線型經驗公式我國建筑業(yè)常用:①P<<s

時:②s<

時:臨界應力的特點它的實質:象強度中的比例極限、屈服極限類似,除以安全因數就是穩(wěn)定中的應力極限同作為常數的比例極限、屈服極限不同,變化的臨界應力依賴壓桿自身因素而變例102截面為120mm200mm的矩形木柱,長l=7m,材料的彈性模量E=10GPa,p=8MPa。其支承情況是:在屏幕平面內失穩(wěn)時柱的兩端可視為固定端(圖a);若在垂直于屏幕平面內失穩(wěn)時,柱的兩端可視為鉸支端(圖b),試求該木柱的臨界力。l=7mFFl=7myb=120h=200z

(b)

(a)解:由于該柱在兩個形心主慣性平面內的支承條件不相同,因此,首先必須判斷,如果木柱失穩(wěn),朝哪個方向彎?從臨界應力總圖,我們知道,越大,越容易失穩(wěn)。∵兩端固定∴y=0.5計算y

z在屏幕平面繞

y

軸失穩(wěn)時在垂直于屏幕平面內繞z軸失穩(wěn)時∵兩端鉸支∴z=1∵z

>y

∴如果木柱失穩(wěn),將在垂直于屏幕平面內繞z軸失穩(wěn)。z

>p

∴應采用歐拉公式計算

一.穩(wěn)定安全系數法考慮一定的安全儲備,穩(wěn)定條件為:F:工作壓力Fcr:臨界壓力nst:額定穩(wěn)定安全系數nst:額定穩(wěn)定安全系數§10-5壓桿穩(wěn)定計算穩(wěn)定計算的一般步驟:分別計算各個彎曲平面內的柔度y、z

,從而得到max;

計算Fcr=crA,利用穩(wěn)定條件計算s

、p

,根據max確定計算壓桿臨界壓力的公式,小柔度桿cr=s,中柔度桿用經驗公式,如cr=ab,大柔度桿進行穩(wěn)定計算。解:CD梁:AB桿103AB桿AB為大柔度桿AB桿滿足穩(wěn)定性要求103例104圖示結構,立柱CD為外徑D=100mm,

內徑d=80mm的鋼管,其材料為Q235鋼,3mCFB3.5m2mADp=200MPa,s=240MPa,E=206GPa,穩(wěn)定安全系數為nst=3。試求容許荷截[F]。解:由桿ACB的平衡條件易求得外力F與CD桿軸向壓力的關系為:ACNFBxAyA3m2m兩端鉸支=1p∴可用歐拉公式由穩(wěn)定條件二.折減系數法

工程中為了簡便起見,對壓桿的穩(wěn)定計算還常采用折減系數法。即將材料的壓縮許用應力[]乘上一個小于1的折減系數作為壓桿的許用臨界應力,即:<1,稱為折減系數,隨壓桿柔度而改變.λ為已知可查表得F:工作壓力

:折減系數A:橫截面面積[]:材料抗壓許用值根據穩(wěn)定條件例105圖示千斤頂,已知絲桿長度l=0.375m,ldF直徑為d=0.04m,材料為Q235鋼,強度許用應力[]=160MPa,符合鋼結構設計規(guī)范(GBJ17-88)中b類桿件要求,最大起重量為F=80kN,試校核該絲桿的穩(wěn)定性。解:首先計算該壓桿柔度,該絲桿可簡化為圖示下端固定,上端自由的壓桿。查表得,

=0.72故此千斤頂穩(wěn)定性足夠。Pl=0.375m例10-6拔桿的

AB

桿為圓松木,長L=6m,[]=11MPa,直徑

d=0.3m,試此桿的容許壓力解:折減系數法①最大柔度xOy面內,

=1.0zOy面內,=2.0T1ABWT2xyzO②求折減系數③求容許壓力歐拉公式越大越穩(wěn)定減小壓桿長度l減小長度系數μ(增強約束)合理選擇截面形狀增大彈性模量E(合理選擇材料)§10-6提高壓桿穩(wěn)定性的措施盡可能使I增大;盡可能使各方向值相等失穩(wěn)或屈曲:受壓直桿在受到干擾后,由直線平衡形式轉變?yōu)閺澢胶庑问?,而且干擾撤除后,壓桿仍保持為彎曲平衡形式,則稱壓桿喪失穩(wěn)定,簡稱失穩(wěn)或屈曲。臨界力:壓桿失穩(wěn)的條件:是受的壓力一.基本概念本章小結二.各種約束情形下的臨界力計算:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論