2023年常州工程職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年常州工程職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年常州工程職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年常州工程職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年常州工程職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年常州工程職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.若關(guān)于x的不等式(1+k2)x≤k4+4的解集是M,則對任意實常數(shù)k,總有(

A.

B.

C.

D.,0∈M答案:A2.(幾何證明選講選做題)

如圖,已知PA是圓O的切線,切點為A,直線PO交圓O于B,C兩點,AC=2,∠PAB=120°,則切線PA的長度等于______.答案:∵∠PAB=120°,∴優(yōu)弧ACB=240°,∴劣弧AB=120°,∴∠ACB=60°,又∵OA=OC故∠AOP=60°,OA=AC=2,∠又∵PA是圓O的切線,切點為A,∴∠OAP=90°∴PA=3OA=23故為:233.正方體ABCD-A1B1C1D1的棱長為1,點M是棱AB的中點,點P是平面ABCD上的一動點,且點P到直線A1D1的距離兩倍的平方比到點M的距離的平方大4,則點P的軌跡為()A.圓B.橢圓C.雙曲線D.拋物線答案:在平面ABCD上,以AD為x軸,以AB為y軸建立平面直角坐標系,則M(,12,0),設(shè)P(x,y)則|MP|2=y2+(x-12)2點P到直線A1D1的距離為x2+1由題意得4(x2+1)=

y2+(x-12)2+4即3(x+12)2-y2=74選C4.北京期貨商會組織結(jié)構(gòu)設(shè)置如下:

(1)會員代表大會下設(shè)監(jiān)事會、會長辦公會,而會員代表大會于會長辦公會共轄理事會;

(2)會長辦公會設(shè)會長,會長管理秘書長;

(3)秘書長具體分管:秘書處、規(guī)范自律委員會、服務(wù)推廣委員會、發(fā)展創(chuàng)新委員會.

根據(jù)以上信息繪制組織結(jié)構(gòu)圖.答案:繪制組織結(jié)構(gòu)圖:5.4個人各寫一張賀年卡,集中后每人取一張別人的賀年卡,共有______種取法.答案:根據(jù)分類計數(shù)問題,可以列舉出所有的結(jié)果,1甲乙互換,丙丁互換2甲丙互換,乙丁互換3甲丁互換,乙丙互換4甲要乙的乙要丙的丙要丁的丁要甲的5甲要乙的乙要丁的丙要甲的丁要丙的6甲要丙的丙要乙的乙要丁的丁要甲的7甲要丙的丙要丁的乙要丁的丁要甲的8甲要丁的丁要乙的乙要丙的丙要甲的9甲要丁的丁要丙的乙要甲的丙要乙的通過列舉可以得到共有9種結(jié)果,故為:96.不等式log32x-log3x2-3>0的解集為()

A.(,27)

B.(-∞,-1)∪(27,+∞)

C.(-∞,)∪(27,+∞)

D.(0,)∪(27,+∞)答案:D7.某次我市高三教學(xué)質(zhì)量檢測中,甲、乙、丙三科考試成績的直方圖如如圖所示(由于人數(shù)眾多,成績分布的直方圖可視為正態(tài)分布),則由如圖曲線可得下列說法中正確的一項是()

A.甲科總體的標準差最小

B.丙科總體的平均數(shù)最小

C.乙科總體的標準差及平均數(shù)都居中

D.甲、乙、丙的總體的平均數(shù)不相同

答案:A8.在吸煙與患肺病這兩個分類變量的計算中,下列說法正確的是()

A.若k2的觀測值為k=6.635,我們有99%的把握認為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺病

B.從獨立性檢驗可知,有99%的把握認為吸煙與患肺病有關(guān)時,我們說某人吸煙,那么他有99%的可能患有肺病

C.若從統(tǒng)計量中求出有95%的把握認為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯誤

D.以上三種說法都不正確答案:D9.設(shè)U={x|x<7,x∈N+}A={1,2,5},B={2,3,4,5},求A∩B,CUA,A∪(CUB).答案:∵U={1,2,3,4,5,6}A∩B={2,5}CUA={3,4,6}A∪CUB={1}10.已知拋物線C的參數(shù)方程為x=8t2y=8t(t為參數(shù)),設(shè)拋物線C的焦點為F,準線為l,P為拋物線上一點,PA⊥l,A為垂足,如果直線AF的斜率為-3,那么|PF|=______.答案:把拋物線C的參數(shù)方程x=8t2y=8t(t為參數(shù)),消去參數(shù)化為普通方程為y2=8x.故焦點F(2,0),準線方程為x=-2,再由直線FA的斜率是-3,可得直線FA的傾斜角為120°,設(shè)準線和x軸的交點為M,則∠AFM=60°,且MF=p=4,∴∠PAF=180°-120°=60°.∴AM=MF?tan60°=43,故點A(0,43),把y=43代入拋物線求得x=6,∴點P(6,43),故|PF|=(6-2)2+(43-0)2=8,故為8.11.直線l1:y=ax+b,l2:y=bx+a

(a≠0,b≠0,a≠b),在同一坐標系中的圖形大致是()

A.

B.

C.

D.

答案:C12.能較好地反映一組數(shù)據(jù)的離散程度的是()

A.眾數(shù)

B.平均數(shù)

C.標準差

D.極差答案:C13.設(shè)A(1,-1,1),B(3,1,5),則線段AB的中點在空間直角坐標系中的位置是()

A.在y軸上

B.在xOy面內(nèi)

C.在xOz面內(nèi)

D.在yOz面內(nèi)答案:C14.拋物線C:y=x2上兩點M、N滿足MN=12MP,若OP=(0,-2),則|MN|=______.答案:設(shè)M(x1,x12),N(x2,x22),則MN=(x2-x1,x22-x12)MP=(-x1,-2-x12).因為MN=12MP,所以(x2-x1,x22-x12)=12(-x1,-2-x12),即x2-x1=-12x1,x22-x12=12(-2-x12),所以x1=2x2,2x22=-2+x12,聯(lián)立解得:x2=1,x1=2或x2=-1,x1=-2即M(1,1),N(2,4)或M(-1,1),N(-2,4)所以|MN|=10故為10.15.已知直線的傾斜角為α,且cosα=45,則此直線的斜率是______.答案:∵直線l的傾斜角為α,cosα=45,∴α的終邊在第一象限,故sinα=35故l的斜率為tanα=sinαcosα=34故為:3416.與原數(shù)據(jù)單位不一樣的是()

A.眾數(shù)

B.平均數(shù)

C.標準差

D.方差答案:D17.如圖,AB是半圓O的直徑,C是AB延長線上一點,CD切半圓于D,CD=4,AB=3BC,則AC的長是______.答案:∵CD是圓O的切線,∴由切割線定理得:CD2=CB×CA,∵AB=3BC,設(shè)BC=x,由CA=4x,又CD=4∴16=x×4x,x=2∴則AC的長是8.故填:8.18.如圖所示,PD⊥平面ABCD,且四邊形ABCD為正方形,AB=2,E是PB的中點,

cos〈,〉=.

(1)建立適當(dāng)?shù)目臻g坐標系,寫出點E的坐標;

(2)在平面PAD內(nèi)求一點F,使EF⊥平面PCB.答案:(1)點E的坐標是(1,1,1)(2)F是AD的中點時滿足EF⊥平面PCB解析:(1)如圖所示,以DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間直角坐標系,則A(2,0,0)、B(2,2,0)、C(0,2,0),設(shè)P(0,0,2m),則E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴點E的坐標是(1,1,1).(2)∵F∈平面PAD,∴可設(shè)F(x,0,z).則=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F點的坐標為(1,0,0)即點F是AD的中點時滿足EF⊥平面PCB.19.設(shè)a=(4,3),a在b上的投影為522,b在x軸上的投影為2,且|b|≤14,則b為()A.(2,14)B.(2,-27)C.(-2,27)D.(2,8)答案:∵b在x軸上的投影為2,∴設(shè)b=(2,y)∵a在b上的投影為522,∴8+3y4+y2=522∴7y2-96y-28=0,解可得y=-27或14,∵|b|≤14,即4+y2≤144,∴y=-27,b=(2,-27)故選B20.在下列圖象中,二次函數(shù)y=ax2+bx+c與函數(shù)(的圖象可能是()

A.

B.

C.

D.

答案:A21.函數(shù)y=a|x|(a>1)的圖象是()

A.

B.

C.

D.

答案:B22.設(shè)橢圓=1和x軸正方向的交點為A,和y軸的正方向的交點為B,P為第一象限內(nèi)橢圓上的點,使四邊形OAPB面積最大(O為原點),那么四邊形OAPB面積最大值為()

A.a(chǎn)b

B.ab

C.a(chǎn)b

D.2ab答案:B23.用反證法證明命題“若a、b∈N,ab能被2整除,則a,b中至少有一個能被2整除”,那么反設(shè)的內(nèi)容是______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的步驟,應(yīng)先假設(shè)要證命題的否定成立,而要證命題的否定為:“a,b都不能被2整除”,故為:a、b都不能被2整除.24.設(shè)M是□ABCD的對角線的交點,O為任意一點(且不與M重合),則OA+OB+OC+OD

等于()A.OMB.2OMC.3OMD.4OM答案:∵O為任意一點,不妨把A點O看成O點,則OA+OB+OC+OD=0+AB+AC

+AD,∵M是□ABCD的對角線的交點,∴0+AB+AC+AD=2AC=4AM故選D25.已知O是正方形ABCD對角線的交點,在以O(shè),A,B,C,D這5點中任意一點為起點,另一點為終點的所有向量中,

(1)與BC相等的向量有

______;

(2)與OB長度相等的向量有

______;

(3)與DA共線的向量有

______.答案:如圖:(1)與BC相等的向量有AD.(2)與OB長度相等的向量有OA、OC、OD、AO、CO、DO.(3)與DA共線的向量有

CB、BC.26.已知圓O:x2+y2=5和點A(1,2),則過A且與圓O相切的直線與兩坐標軸圍成的三角形的面積=______.答案:由題意知,點A在圓上,切線斜率為-1KOA=-121=-12,用點斜式可直接求出切線方程為:y-2=-12(x-1),即x+2y-5=0,從而求出在兩坐標軸上的截距分別是5和52,所以,所求面積為12×52×5=254.27.已知偶函數(shù)f(x)的圖象與x軸有五個公共點,那么方程f(x)=0的所有實根之和為______.答案:∵函數(shù)y=f(x)是偶函數(shù)∴其圖象關(guān)于y軸對稱∴其圖象與x軸有五個交點也關(guān)于y軸對稱其中一個為0.另四個關(guān)于y軸對稱.∴方程f(x)=0的所有實根之和為0故為:0.28.制作一個面積為1

m2,形狀為直角三角形的鐵架框,有下列四種長度的鐵管供選擇,較經(jīng)濟的(既夠用又耗材量少)是().A.5.2mB.5mC.4.8mD.4.6m答案:設(shè)一條直角邊為x,則另一條直角邊是2x,斜邊長為x2+4x2故周長

l=x+2x+x2+4x2≥22+2≈4.82當(dāng)且僅當(dāng)x=2時等號成立,故較經(jīng)濟的(既夠用又耗材量少)是5m故應(yīng)選B.29.用冒泡法對43,34,22,23,54從小到大排序,需要(

)趟排序。

A.2

B.3

C.4

D.5答案:A30.(坐標系與參數(shù)方程選做題)

直線x=-2+ty=1-t(t為參數(shù))被圓x=3+5cosθy=-1+5sinθ(θ為參數(shù),θ∈[0,2π))所截得的弦長為______.答案:直線和圓的參數(shù)方程化為普通方程得x+y+1=0,(x-3)2+(y+1)2=25,于是弦心距d=322,弦長l=225-92=82.故為:8231.將兩粒均勻的骰子各拋擲一次,觀察向上的點數(shù),計算:

(1)共有多少種不同的結(jié)果?并試著列舉出來.

(2)兩粒骰子點數(shù)之和等于3的倍數(shù)的概率;

(3)兩粒骰子點數(shù)之和為4或5的概率.答案:(1)每一粒均勻的骰子拋擲一次,都有6種結(jié)果,根據(jù)分步計數(shù)原理,所有可能結(jié)果共有6×6=36種.

…(4分)(2)兩粒骰子點數(shù)之和等于3的倍數(shù)的有以下12種:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(5,4),(4,5),(6,6),共有12個結(jié)果,因此,兩粒骰子點數(shù)之和等于3的倍數(shù)的概率是1236=13.

…(8分)(3)兩粒骰子點數(shù)之和為4或5的有以下7種:(2,2),(1,3),(3,1),(2,3),(3,2),(1,4),(4,1),因此,兩粒骰子點數(shù)之和為4或5的概率為736.

…(12分)32.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2答案:因為直線的斜率是其傾斜角的正切值,當(dāng)傾斜角大于90°小于180°時,斜率為負值,當(dāng)傾斜角大于0°小于90°時斜率為正值,且正切函數(shù)在(0°,90°)上為增函數(shù),由圖象三條直線的傾斜角可知,k2<k1<k3.故選C.33.如圖,在扇形OAB中,∠AOB=60°,C為弧AB上且與A,B不重合的一個動點,OC=xOA+yOB,若u=x+λy,(λ>0)存在最大值,則λ的取值范圍為()A.(12,1)B.(1,3)C.(12,2)D.(13,3)答案:設(shè)射線OB上存在為B',使OB′=1λOB,AB'交OC于C',由于OC=xOA+yOB=xOA+λy?1λOB=xOA+λy?OB′,設(shè)OC=tOC′,OC′=x′OA+λy′OB′,由A,B',C'三點共線可知x'+λy'=1,所以u=x+2y=tx'+t?2y'=t,則u=|OC||OC′|存在最大值,即在弧AB(不包括端點)上存在與AB'平行的切線,所以λ∈(12,2).故選C.34.與

向量

=(2,-1,2)共線且滿足方程=-18的向量為()

A.不存在

B.-2

C.(-4,2,-4)

D.(4,-2,4)答案:D35.已知全集U=R,A?U,B?U,如果命題P:2∈A∪B,則命題非P是()A.2?AB.2∈(CUA)C.2∈(CUA)∩(CUB)D.2∈(CUA)∪(CUB)答案:命題P:2∈A∪B,∴┐p為2∈(CUA)∩(CUB)故選C36.如圖是一個實物圖形,則它的左視圖大致為()A.

B.

C.

D.

答案:∵左視圖是指由物體左邊向右做正投影得到的視圖,并且在左視圖中看到的線用實線,看不到的線用虛線,∴該幾何體的左視圖應(yīng)當(dāng)是包含一條從左上到右下的對角線的矩形,并且對角線在左視圖中為實線,故選D.37.根據(jù)如圖所示的偽代碼,可知輸出的結(jié)果a為______.答案:由題設(shè)循環(huán)體要執(zhí)行3次,圖知第一次循環(huán)結(jié)束后c=a+b=2,a=1.b=2,第二次循環(huán)結(jié)束后c=a+b=3,a=2.b=3,第三次循環(huán)結(jié)束后c=a+b=5,a=3.b=5,第四次循環(huán)結(jié)束后不滿足循環(huán)的條件是b<4,程序輸出的結(jié)果為3故為:3.38.用反證法證明:“a>b”,應(yīng)假設(shè)為()

A.a(chǎn)>b

B.a(chǎn)<b

C.a(chǎn)=b

D.a(chǎn)≤b答案:D39.設(shè)O是坐標原點,F(xiàn)是拋物線y2=2px(p>0)的焦點,A是拋物線上的一個動點,F(xiàn)A與x軸正方向的夾角為60°,求|OA|的值.答案:由題意設(shè)A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(負值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p40.設(shè)隨機變量X的分布列為P(X=k)=,k=1,2,3,4,5,則P()等于()

A.

B.

C.

D.答案:C41.球的表面積與它的內(nèi)接正方體的表面積之比是()A.π3B.π4C.π2D.π答案:設(shè):正方體邊長設(shè)為:a則:球的半徑為3a2所以球的表面積S1=4?π?R2=4π34a2=3πa2而正方體表面積為:S2=6a2所以比值為:S1S2=π2故選C42.已知關(guān)于的不等式的解集為,且,求的值答案:,,解析:用數(shù)形結(jié)合法,如圖顯然解集是,即,從而此時=與交點橫坐標為5,從而縱坐標為4,將交點坐標代入可得所以,,43.如圖,圓與圓內(nèi)切于點,其半徑分別為與,圓的弦交圓于點(不在上),求證:為定值。

答案:見解析解析:考察圓的切線的性質(zhì)、三角形相似的判定及其性質(zhì),容易題。證明:由弦切角定理可得44.如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G.

(1)求證:圓心O在直線AD上.

(2)求證:點C是線段GD的中點.答案:證明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CD=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分線∴圓心O在直線AD上.(5分)(II)連接DF,由(I)知,DH是⊙O的直徑,∴∠DHF=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O與AC相切于點F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴點C是線段GD的中點.(10分)45.如圖,已知⊙O是△ABC的外接圓,AB為直徑,若PA⊥AB,PO過AC的中點M,求證:PC是⊙O的切線.答案:證明:連接OC,∵PA⊥AB,∴∠PA0=90°.(1分)∵PO過AC的中點M,OA=OC,∴PO平分∠AOC.∴∠AOP=∠COP.(3分)∴在△PAO與△PCO中有OA=OC,∠AOP=∠COP,PO=PO.∴△PAO≌△PCO.(6分)∴∠PCO=∠PA0=90°.即PC是⊙O的切線.(7分)46.已知直線l過點P(2,1)且與x軸、y軸的正半軸分別交于A、B兩點,O為坐標原點,則三角形OAB面積的最小值為______.答案:設(shè)A(a,0)、B(0,b),a>0,b>0,AB方程為xa+

yb=1,點P(2,1)代入得2a+1b=1≥22ab,∴ab≥8

(當(dāng)且僅當(dāng)a=4,b=2時,等號成立),故三角形OAB面積S=12

ab≥4,故為4.47.已知兩組樣本數(shù)據(jù)x1,x2,…xn的平均數(shù)為h,y1,y2,…ym的平均數(shù)為k,則把兩組數(shù)據(jù)合并成一組以后,這組樣本的平均數(shù)為()

A.

B.

C.

D.答案:B48.在(x+2y)n的展開式中第六項與第七項的系數(shù)相等,求展開式中二項式系數(shù)最大的項.答案:∵在(x+2y)n的展開式中第六項與第七項的系數(shù)相等,∴Cn525=Cn626,∴n=8,∴二項式共有9項,最中間一項的系數(shù)最大即展開式中二項式系數(shù)最大的項是第5項.49.已知:正四棱柱ABCD—A1B1C1D1中,底面邊長為2,側(cè)棱長為4,E、F分別為棱AB、BC的中點.

(1)求證:平面B1EF⊥平面BDD1B1;

(2)求點D1到平面B1EF的距離.答案:(1)證明略(2)解析:(1)

建立如圖所示的空間直角坐標系,則D(0,0,0),B(2,2,0),E(2,,0),F(xiàn)(,2,0),D1(0,0,4),B1(2,2,4).=(-,,0),=(2,2,0),=(0,0,4),∴·=0,·=0.∴EF⊥DB,EF⊥DD1,DD1∩BD=D,∴EF⊥平面BDD1B1.又EF平面B1EF,∴平面B1EF⊥平面BDD1B1.(2)

由(1)知=(2,2,0),=(-,,0),=(0,-,-4).設(shè)平面B1EF的法向量為n,且n=(x,y,z)則n⊥,n⊥即n·=(x,y,z)·(-,,0)=-x+y=0,n·=(x,y,z)·(0,-,-4)=-y-4z=0,令x=1,則y=1,z=-,∴n="(1,1,-")∴D1到平面B1EF的距離d===.50.已知直線l的斜率為k=-1,經(jīng)過點M0(2,-1),點M在直線上,以M0M的數(shù)量t為參數(shù),則直線l的參數(shù)方程為______.答案:∵直線l經(jīng)過點M0(2,-1),斜率為k=-1,傾斜角為3π4,∴直線l的參數(shù)方程為x=2+tcos3π4y=-1+tsin3π4

(t為參數(shù));即為x=2-22ty=-1+22t(t為參數(shù)).故為:x=2-22ty=-1+22t(t為參數(shù)).第2卷一.綜合題(共50題)1.一名同學(xué)先后投擲一枚骰子兩次,第一次向上的點數(shù)記為x,第二次向上的點數(shù)記為y,在直角坐標系xOy中,以(x,y)為坐標的點落在直線2x+y=8上的概率為()A.16B.112C.536D.19答案:由題意知本題是一個古典概型,∵試驗發(fā)生包含的事件是先后擲兩次骰子,共有6×6=36種結(jié)果,滿足條件的事件是(x,y)為坐標的點落在直線2x+y=8上,當(dāng)x=1,y=6;x=2,y=4;x=3,y=2,共有3種結(jié)果,∴根據(jù)古典概型的概率公式得到P=336=112,故選B.2.若方程2ax2-x-1=0在(0,1)內(nèi)恰有一解,則a的取值范圍是______.答案:當(dāng)a>0時,方程對應(yīng)的函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰有一解,必有f(0)?f(1)<0,即-1×(2a-2)<0,解得a>1當(dāng)a≤0時函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰無解.故為:a>13.已知點G是△ABC的重心,點P是△GBC內(nèi)一點,若,則λ+μ的取值范圍是()

A.

B.

C.

D.(1,2)答案:B4.橢圓x=5cosαy=3sinα(α是參數(shù))的一個焦點到相應(yīng)準線的距離為______.答案:橢圓x=5cosαy=3sinα(α是參數(shù))的標準方程為:x225+y29=1,它的右焦點(4,0),右準線方程為:x=254.一個焦點到相應(yīng)準線的距離為:254-4=94.故為:94.5.把下列直角坐標方程或極坐標方程進行互化:

(1)ρ(2cos?-3sin?)+1=0

(2)x2+y2-4x=0.答案:(1)將原極坐標方程ρ(2cosθ-3sinθ)+1=0展開后化為:2ρcosθ-3ρsinθ+1=0,化成直角坐標方程為:2x-3y+1=0,(2)把公式x=ρcosθ、y=ρsinθ代入曲線的直角坐標方程為x2+y2-4x=0,可得極坐標方程ρ2-4ρcosθ=0,即ρ=4cosθ.6.用系統(tǒng)抽樣法要從160名學(xué)生中抽取容量為20的樣本,將160名學(xué)生隨機地從1~160編號,按編號順序平均分成20組(1~8號,9~16號,…,153~160號),若第16組抽出的號碼為126,則第1組中用抽簽的方法確定的號碼是______.答案:不妨設(shè)在第1組中隨機抽到的號碼為x,則在第16組中應(yīng)抽出的號碼為120+x.設(shè)第1組抽出的號碼為x,則第16組應(yīng)抽出的號碼是8×15+x=126,∴x=6.故為:6.7.一口袋內(nèi)裝有5個黃球,3個紅球,現(xiàn)從袋中往外取球,每次取出一個,取出后記下球的顏色,然后放回,直到紅球出現(xiàn)10次時停止,停止時取球的次數(shù)ξ是一個隨機變量,則P(ξ=12)=______.(填算式)答案:若ξ=12,則取12次停止,第12次取出的是紅球,前11次中有9次是紅球,∴P(ξ=12)=C119(38)9×(58)2×38=C911(38)10(58)2

故為C911(38)10(58)28.如圖,PA切圓O于點A,割線PBC經(jīng)過圓心O,OB=PB=1,OA繞點O逆時針旋轉(zhuǎn)600到OD,則PD的長為()

A.3

B.

C.

D.

答案:D9.已知點A(1,3),B(4,-1),則與向量同方向的單位向量為()

A.(,-)

B.(,-)

C.(-,)

D.(-,)答案:A10.P為△ABC內(nèi)一點,且PA+3PB+7PC=0,則△PAC與△ABC面積的比為______.答案:(如圖)分別延長

PB、PC

B1、C1,使

PB1=3PB,PC1=7PC,則由已知可得:PA+PB1+PC1=0,故點P是三角形

AB1C1

的重心,設(shè)三角形

AB1C1

的面積為

3S,則S△APC1=S△APB1=S△PB1C1=S,而S△APC=17S△APC1=S7,S△ABP=13S△APB1=S3,S△PBC=13×17S△PB1C1=S21,所以△PAC與△ABC面積的比為:S7S7+S3+S21=311,故為:31111.如圖在長方形ABCD中,AB=,BC=1,E為線段DC上一動點,現(xiàn)將△AED沿AE折起,使點D在面ABC上的射影K在直線AE上,當(dāng)E從D運動到C,則K所形成軌跡的長度為()

A.

B.

C.

D.答案:B12.根據(jù)下列條件,求圓的方程:

(1)過點A(1,1),B(-1,3)且面積最??;

(2)圓心在直線2x-y-7=0上且與y軸交于點A(0,-4),B(0,-2).答案:(1)過A、B兩點且面積最小的圓就是以線段AB為直徑的圓,∴圓心坐標為(0,2),半徑r=12|AB|=12(-1+1)2+(1-3)2=12×8=2,∴所求圓的方程為x2+(y-2)2=2;(2)由圓與y軸交于點A(0,-4),B(0,-2)可知,圓心在直線y=-3上,由2x-y-7=0y=-3,解得x=2y=-3,∴圓心坐標為(2,-3),半徑r=5,∴所求圓的方程為(x-2)2+(y+3)2=5.13.已知A(4,1,3),B(2,-5,1),C是線段AB上一點,且,則C點的坐標為()

A.

B.

C.

D.答案:C14.從5名男學(xué)生、3名女學(xué)生中選3人參加某項知識對抗賽,要求這3人中既有男生又有女生,則不同的選法共有()A.45種B.56種C.90種D.120種答案:由題意知本題是一個分類計數(shù)問題,要求這3人中既有男生又有女生包括兩種情況,一是兩女一男,二是兩男一女,當(dāng)包括兩女一男時,有C32C51=15種結(jié)果,當(dāng)包括兩男一女時,有C31C52=30種結(jié)果,∴根據(jù)分類加法得到共有15+30=45故選A.15.以過橢圓+=1(a>b>0)的右焦點的弦為直徑的圓與其右準線的位置關(guān)系是()

A.相交

B.相切

C.相離

D.不能確定答案:C16.已知a=(5,4),b=(3,2),則與2a-3b同向的單位向量為

______.答案:∵a=(5,4),b=(3,2),∴2a-3b=(1,2)設(shè)與2a-3b平行的單位向量為e=(x,y),則2a-3b=λe,|e|=1∴(1,2)=(λx,λy);x2+y2=1∴1=λx2=λyx2+y2=1解之x=55y=255或x=-55y=-255故為e=±(55,255)17.已知點A(1,0,-3)和向量AB=(-1,-2,0),則點B的坐標為______.答案:設(shè)B(x,y,z),根據(jù)向量的坐標運算,AB=(x,y,z)

-

(1,0,-3)=(x-1,y,z+3)=(-1,-2,0)∴x=0,y=-2,z=-3.故為:(0,-2,-3).18.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成績進行分析,抽取了總成績介于350分到650分之間的10000名學(xué)生成績,并根據(jù)這10000名學(xué)生的總成績畫了樣本的頻率分布直方圖.為了進一步分析學(xué)生的總成績與各科成績等方面的關(guān)系,要從這10000名學(xué)生中,再用分層抽樣方法抽出200人作進一步調(diào)查,則總成績在[400,500)內(nèi)共抽出()

A.100人

B.90人

C.65人

D.50人

答案:B19.已知圖形F上的點A按向量平移前后的坐標分別是和,若B()是圖形F上的又一點,則在F按向量平移后得到的圖形F,上B,的坐標是(

)A.B.C.D.答案:選D解析:設(shè)向量,則平移公式為依題意有∴平移公式為將B點坐標代入可得B,點的坐標為.所以選D.20.抽樣調(diào)查在抽取調(diào)查對象時()A.按一定的方法抽取B.隨意抽取C.全部抽取D.根據(jù)個人的愛好抽取答案:一般地,抽樣方法分為3種:簡單隨機抽樣、分層抽樣和系統(tǒng)抽樣無論是哪種抽樣方法,都遵循機會均等的原理,即在抽樣過程中,各個體被抽到的概率是相等的.根據(jù)以上分析,可知只有A項符合題意.故選:A21.正方體ABCD-A1B1C1D1的棱長為2,MN是它的內(nèi)切球的一條弦(把球面上任意兩點之間的線段稱為球的弦),P為正方體表面上的動點,當(dāng)弦MN最長時.PM?PN的最大值為______.答案:設(shè)點O是此正方體的內(nèi)切球的球心,半徑R=1.∵PM?PN≤|PM|

|PN|,∴當(dāng)點P,M,N三點共線時,PM?PN取得最大值.此時PM?PN≤(PO-MO)?(PO+ON),而MO=ON,∴PM?PN≤PO2-R2=PO2-1,當(dāng)且僅當(dāng)點P為正方體的一個頂點時上式取得最大值,∴(PM?PN)max=(232)2-1=2.故為2.22.△ABC中,若有一個內(nèi)角不小于120°,求證:最長邊與最短邊之比不小于3.答案:設(shè)最大角為∠A,最小角為∠C,則最大邊為a,最小邊為c因為A≥120°,所以B+C≤60°,且C≤B,所以2C≤B+C≤60°,C≤30°.所以ac=sinAsinC=sin(B+C)sinC≥sin2CsinC=2cosC≥3.23.向量在基底{,,}下的坐標為(1,2,3),則向量在基底{}下的坐標為()

A.(3,4,5)

B.(0,1,2)

C.(1,0,2)

D.(0,2,1)答案:D24.若向量=(2,-3,1),=(2,0,3),=(0,2,2),則(+)=()

A.4

B.15

C.7

D.3答案:D25.設(shè)矩陣M=.32-121232.的逆矩陣是M-1=.abcd.,則a+c的值為______.答案:由題意,矩陣M的行列式為.32-121232.=32×32+12×12=1∴矩陣M=.32-121232.的逆矩陣是M-1=.3212-1232.∴a+c=3-12故為3-1226.如圖算法輸出的結(jié)果是______.答案:當(dāng)I=1時,滿足循環(huán)的條件,進而循環(huán)體執(zhí)行循環(huán)則S=2,I=4;當(dāng)I=4時,滿足循環(huán)的條件,進而循環(huán)體執(zhí)行循環(huán)則S=4,I=7;當(dāng)I=7時,滿足循環(huán)的條件,進而循環(huán)體執(zhí)行循環(huán)則S=8,I=10;當(dāng)I=10時,滿足循環(huán)的條件,進而循環(huán)體執(zhí)行循環(huán)則S=16,I=13;當(dāng)I=13時,不滿足循環(huán)的條件,退出循環(huán),輸出S值16故為:1627.2007年10月24日18時05分,在西昌衛(wèi)星發(fā)射中心,“嫦娥一號”衛(wèi)星順利升空,24分鐘后,星箭成功分離,衛(wèi)星首次進入以地心為焦點的橢圓形調(diào)相軌道,衛(wèi)星近地點為約200公里,遠地點為約51000公里.設(shè)地球的半經(jīng)為R,則衛(wèi)星軌道的離心率為______(結(jié)果用R的式子表示)答案:由題意衛(wèi)星進入以地心為焦點的橢圓形調(diào)相軌道,衛(wèi)星近地點為約200公里,遠地點為約51000公里.設(shè)地球的半經(jīng)為R,易知,a=25600+R,c=25400,則衛(wèi)星軌道的離心率e=2540025600+R.故為:2540025600+R.28.如圖,從圓O外一點A引切線AD和割線ABC,AB=3,BC=2,則切線AD的長為______.答案:由切割線定理可得AD2=AB?AC=3×5,∴AD=15.故為15.29.引入復(fù)數(shù)后,數(shù)系的結(jié)構(gòu)圖為()

A.

B.

C.

D.

答案:A30.如圖所示,正四面體V—ABC的高VD的中點為O,VC的中點為M.

(1)求證:AO、BO、CO兩兩垂直;

(2)求〈,〉.答案:(1)證明略(2)45°解析:(1)

設(shè)=a,=b,=c,正四面體的棱長為1,則=(a+b+c),=(b+c-5a),=(a+c-5b),=(a+b-5c)∴·=(b+c-5a)·(a+c-5b)=(18a·b-9|a|2)=(18×1×1·cos60°-9)=0.∴⊥,∴AO⊥BO,同理⊥,BO⊥CO,∴AO、BO、CO兩兩垂直.(2)

=+=-(a+b+c)+=(-2a-2b+c).∴||==,||==,·=(-2a-2b+c)·(b+c-5a)=,∴cos〈,〉==,∵〈,〉∈(0,),∴〈,〉=45°.31.設(shè)k>1,則關(guān)于x,y的方程(1-k)x2+y2=k2-1所表示的曲線是()

A.長軸在x軸上的橢圓

B.長軸在y軸上的橢圓

C.實軸在x軸上的雙曲線

D.實軸在y軸上的雙曲線答案:D32.下列4個命題

㏒1/2x>㏒1/3x

其中的真命題是()

、A.(B.C.D.答案:D解析:取x=,則=1,=<1,p2正確當(dāng)x∈(0,)時,()x<1,而>1.p4正確33.已知數(shù)列{an}的前n項和Sn=an2+bn=c

(a、b、c∈R),則“c=0”是“{an}是等差數(shù)列”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既非充分也非必要條件答案:數(shù)列{an}的前n項和Sn=an2+bn+c根據(jù)等差數(shù)列的前n項和的公式,可以看出當(dāng)c=0時,Sn=an2+bn表示等差數(shù)列的前n項和,則數(shù)列是一個等差數(shù)列,當(dāng)數(shù)列是一個等差數(shù)列時,表示前n項和時,c=0,故前者可以推出后者,后者也可以推出前者,∴前者是后者的充要條件,故選C.34.下列各組向量中,可以作為基底的是()A.e1=(0,0),e2=(-2,1)B.e1=(4,6),e2=(6,9)C.e1=(2,-5),e2=(-6,4)D.e1=(2,-3),e2=(12,-34)答案:A、中的2個向量的坐標對應(yīng)成比例,0-2=01,所以,這2個向量是共線向量,故不能作為基底.B、中的2個向量的坐標對應(yīng)成比例,46=69,所以,這2個向量是共線向量,故不能作為基底.C中的2個向量的坐標對應(yīng)不成比例,2-6≠-54,所以,這2個向量不是共線向量,故可以作為基底.D、中的2個向量的坐標對應(yīng)成比例,212=-3-34,這2個向量是共線向量,故不能作為基底.故選C.35.若a為實數(shù),,則a等于()

A.

B.-

C.2

D.-2答案:B36.正方體的表面積與其外接球表面積的比為()A.3:πB.2:πC.1:2πD.1:3π答案:設(shè)正方體的棱長為a,不妨設(shè)a=1,正方體外接球的半徑為R,則由正方體的體對角線的長就是外接球的直徑的大小可知:2R=3a,即R=3a2=32?1=32;所以外接球的表面積為:S球=4πR2=3π.則正方體的表面積與其外接球表面積的比為:6:3π=2:π.故選B.37.用“斜二測畫法”作正三角形ABC的水平放置的直觀圖△A′B′C′,則△A′B′C′與△ABC的面積之比為______.答案:設(shè)正三角形的標出為:1,正三角形的高為:32,所以正三角形的面積為:34;按照“斜二測畫法”畫法,△A′B′C′的面積是:12×1×34×sin45°=616;所以△A′B′C′與△ABC的面積之比為:61634=24,故為:2438.已知x,y的取值如下表所示:

x3711y102024從散點圖分析,y與x線性相關(guān),且y=74x+a,則a=______.答案:∵線性回歸方程為y=74x+a,,又∵線性回歸方程過樣本中心點,.x=3+7+113=7,.y=10+20+243=18,∴回歸方程過點(7,18)∴18=74×7+a,∴a=234.故為:234.39.給出以下四個對象,其中能構(gòu)成集合的有()

①教2011屆高一的年輕教師;

②你所在班中身高超過1.70米的同學(xué);

③2010年廣州亞運會的比賽項目;

④1,3,5.A.1個B.2個C.3個D.4個答案:解析:因為未規(guī)定年輕的標準,所以①不能構(gòu)成集合;由于②③④中的對象具備確定性、互異性,所以②③④能構(gòu)成集合.故選C.40.已知=(-3,2,5),=(1,x,-1),且=2,則x的值為()

A.3

B.4

C.5

D.6答案:C41.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a與b的夾角為60°

(1)求|c|2;(2)若向量d=ma-b,且d∥c,求實數(shù)m的值.答案:(1)∵|a|=1,|b|=2,a和b的夾角為60°∴a?b=|a||b|cos60°=1∴|c|2=(

2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在實數(shù)λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共線∴2λ=m,λ=-1∴m=-242.在極坐標系中,極點到直線ρcosθ=2的距離為______.答案:直線ρcosθ=2即x=2,極點的直角坐標為(0,0),故極點到直線ρcosθ=2的距離為2,故為2.43.利用獨立性檢驗對兩個分類變量是否有關(guān)系進行研究時,若有99.5%的把握說事件A和B有關(guān)系,則具體計算出的數(shù)據(jù)應(yīng)該是()

A.K2≥6.635

B.K2<6.635

C.K2≥7.879

D.K2<7.879答案:C44.直線(a+1)x-(2a+5)y-6=0必過一定點,定點的坐標為(

)。答案:(-4,-2)45.某地位于甲、乙兩條河流的交匯處,根據(jù)統(tǒng)計資料預(yù)測,今年汛期甲河流發(fā)生洪水的概率為0.25,乙河流發(fā)生洪水的概率為0.18(假設(shè)兩河流發(fā)生洪水與否互不影響).現(xiàn)有一臺大型設(shè)備正在該地工作,為了保護設(shè)備,施工部門提出以下三種方案:

方案1:運走設(shè)備,此時需花費4000元;

方案2:建一保護圍墻,需花費1000元,但圍墻只能抵御一個河流發(fā)生的洪水,當(dāng)兩河流同時發(fā)生洪水時,設(shè)備仍將受損,損失約56

000元;

方案3:不采取措施,此時,當(dāng)兩河流都發(fā)生洪水時損失達60000元,只有一條河流發(fā)生洪水時,損失為10000元.

(1)試求方案3中損失費ξ(隨機變量)的分布列;

(2)試比較哪一種方案好.答案:(1)在方案3中,記“甲河流發(fā)生洪水”為事件A,“乙河流發(fā)生洪水”為事件B,則P(A)=0.25,P(B)=0.18,所以,有且只有一條河流發(fā)生洪水的概率為P(A?.B+.A?B)=P(A)?P(.B)+P(.A)?P(B)=0.34,兩河流同時發(fā)生洪水的概率為P(A?B)=0.045,都不發(fā)生洪水的概率為P(.A?.B)=0.75×0.82=0.615,設(shè)損失費為隨機變量ξ,則ξ的分布列為:(2)對方案1來說,花費4000元;對方案2來說,建圍墻需花費1000元,它只能抵御一條河流的洪水,但當(dāng)兩河流都發(fā)生洪水時,損失約56000元,而兩河流同時發(fā)生洪水的概率為P=0.25×0.18=0.045.所以,該方案中可能的花費為:1000+56000×0.045=3520(元).對于方案來說,損失費的數(shù)學(xué)期望為:Eξ=10000×0.34+60000×0.045=6100(元),比較可知,方案2最好,方案1次之,方案3最差.46.已知按向量平移得到,則

.答案:3解析:由平移公式可得解得.47.已知復(fù)數(shù)z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均為實數(shù),i為虛數(shù)單位,且對于任意復(fù)數(shù)z,有w=.z0?.z,|w|=2|z|.

(Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關(guān)系式;

(Ⅱ)將(x、y)作為點P的坐標,(x'、y')作為點Q的坐標,上述關(guān)系可以看作是坐標平面上點的一個變換:它將平面上的點P變到這一平面上的點Q,當(dāng)點P在直線y=x+1上移動時,試求點P經(jīng)該變換后得到的點Q的軌跡方程;

(Ⅲ)是否存在這樣的直線:它上面的任一點經(jīng)上述變換后得到的點仍在該直線上?若存在,試求出所有這些直線;若不存在,則說明理由.答案:(Ⅰ)由題設(shè),|w|=|.z0?.z|=|z0||z|=2|z|,∴|z0|=2,于是由1+m2=4,且m>0,得m=3,…(3分)因此由x′+y′i=.(1-3i)?.(x+yi)=x+3y+(3x-y)i,得關(guān)系式x′=x+3yy′=3x-y…(5分)(Ⅱ)設(shè)點P(x,y)在直線y=x+1上,則其經(jīng)變換后的點Q(x',y')滿足x′=(1+3)x+3y′=(3x-1)x-1,…(7分)消去x,得y′=(2-3)x′-23+2,故點Q的軌跡方程為y=(2-3)x-23+2…(10分)(3)假設(shè)存在這樣的直線,∵平行坐標軸的直線顯然不滿足條件,∴所求直線可設(shè)為y=kx+b(k≠0),…(12分)[解法一]∵該直線上的任一點P(x,y),其經(jīng)變換后得到的點Q(x+3y,3x-y)仍在該直線上,∴3x-y=k(x+3y)+b,即-(3k+1)y=(k-3)x+b,當(dāng)b≠0時,方程組-(3k+1)=1k-3=k無解,故這樣的直線不存在.

…(16分)當(dāng)b=0時,由-(3k+1)1=k-3k,得3k2+2k-3=0,解得k=33或k=-3,故這樣的直線存在,其方程為y=33x或y=-3x,…(18分)[解法二]取直線上一點P(-bk,0),其經(jīng)變換后的點Q(-bk,-3bk)仍在該直線上,∴-3bk=k(-bk)+b,得b=0,…(14分)故所求直線為y=kx,取直線上一點P(0,k),其經(jīng)變換后得到的點Q(1+3k,3-k)仍在該直線上.∴3-k=k(1+3k),…(16分)即3k2+2k-3=0,得k=33或k=-3,故這樣的直線存在,其方程為y=33x或y=-3x,…(18分)48.已知點M(1,2),N(1,1),則直線MN的傾斜角是()A.90°B.45°C.135°D.不存在答案:∵點M(1,2),N(1,1),則直線MN的斜率不存在,故直線MN的傾斜角是90°,故選A.49.若,,,則

(

)

A.

B.

C.

D.答案:A50.已知橢圓的中心在原點,對稱軸為坐標軸,焦點在x軸上,短軸的一個頂點B與兩個焦點F1,F(xiàn)2組成的三角形的周長為4+23,且∠F1BF2=2π3,求橢圓的標準方程.答案::設(shè)長軸長為2a,焦距為2c,則在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周長為2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求橢圓的標準方程為x24+y2=1.第3卷一.綜合題(共50題)1.某種細菌在培養(yǎng)過程中,每15分鐘分裂一次(由一個分裂成兩個),這種細菌由1個繁殖成4096個需經(jīng)過()A.12小時B.4小時C.3小時D.2小時答案:設(shè)共分裂了x次,則有2x=4

096,∴2x=212,又∵每次為15分鐘,∴共15×12=180(分鐘),即3個小時.故為C2.若集合M={a,b,c}中的元素是△ABC的三邊長,則△ABC一定不是()

A.銳角三角形

B.直角三角形

C.鈍角三角形

D.等腰三角形答案:D3.(文)若拋物線y2=2px的焦點與橢圓x26+y22=1的右焦點重合,則實數(shù)p的值是______.答案:∵x26+y22=1

中a2=6,b2=2,∴c2=4,c=2∴右焦點坐標為(2,0)∵拋物線y2=2px的焦點與橢圓x26+y22=1的右焦點重合∴拋物線y2=2px中p=4故為44.若x~B(3,13),則P(x=1)=______.答案:∵x~B(3,13),∴P(x=1)=C13(13)(1-13)2=49.故為:49.5.在畫兩個變量的散點圖時,下面哪個敘述是正確的()

A.預(yù)報變量x軸上,解釋變量y軸上

B.解釋變量x軸上,預(yù)報變量y軸上

C.可以選擇兩個變量中任意一個變量x軸上

D.可以選擇兩個變量中任意一個變量y軸上答案:B6.設(shè)隨機變量X~B(10,0.8),則D(2X+1)等于()

A.1.6

B.3.2

C.6.4

D.12.8答案:C7.敘述并證明勾股定理.答案:證明:如圖左邊的正方形是由1個邊長為a的正方形和1個邊長為b的正方形以及4個直角邊分別為a、b,斜邊為c的直角三角形拼成的.右邊的正方形是由1個邊長為c的正方形和4個直角邊分別為a、b,斜邊為c的直角三角形拼成的.因為這兩個正方形的面積相等(邊長都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化簡得a2+b2=c2.下面是一個錯誤證法:勾股定理:直角三角形的兩直角邊的平方和等于斜邊的平方這一特性叫做勾股定理或勾股弦定理,又稱畢達哥拉斯定理或畢氏定理證明:作兩個全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b(b>a),斜邊長為c.再做一個邊長為c的正方形.把它們拼成如圖所示的多邊形,使E、A、C三點在一條直線上.過點Q作QP∥BC,交AC于點P.過點B作BM⊥PQ,垂足為M;再過點F作FN⊥PQ,垂足為N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一個矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可證Rt△QNF≌Rt△AEF.即a2+b2=c28.已知100件產(chǎn)品中有5件次品,從中任意取出3件產(chǎn)品,設(shè)A表示事件“3件產(chǎn)品全不是次品”,B表示事件“3件產(chǎn)品全是次品”,C表示事件“3件產(chǎn)品中至少有1件次品”,則下列結(jié)論正確的是()

A.B與C互斥

B.A與C互斥

C.任意兩個事件均互斥

D.任意兩個事件均不互斥答案:B9.袋子里有大小相同的3個紅球和4個黑球,今從袋子里隨機取球.

(Ⅰ)若有放回地取3次,每次取1個球,求取出1個紅球2個黑球的概率;

(Ⅱ)若無放回地取3次,每次取1個球,

①求在前2次都取出紅球的條件下,第3次取出黑球的概率;

②求取出的紅球數(shù)X

的分布列和數(shù)學(xué)期望.答案:(Ⅰ)記“取出1個紅球2個黑球”為事件A,根據(jù)題意有P(A)=C13(37)×(47)2=144343;

所以取出1個紅球2個黑球的概率是144343.(Ⅱ)①記“在前2次都取出紅球”為事件B,“第3次取出黑球”為事件C,則P(B)=3×27×6=17,P(BC)=3×2×47×6×5=435,所以P(C|B)=P(BC)P(B)=43517=45.所以在前2次都取出紅球的條件下,第3次取出黑球的概率是45.②隨機變量X

的所有取值為0,1,2,3.P(X=0)=C34?A33A37=435,P(X=1)=C24C13?A33A37=1835,P(X=2)=C14C23?A33A37=1235,P(X=3)=C33?A33A37=135.所以X的分布列為:所以EX=0×435+1×1835+2×1235+3×135=4535=97.10.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()

A.

B.

C.

D.4答案:C11.求圓心在直線y=-4x上,并且與直線l:x+y-1=0相切于點P(3,-2)的圓的方程.答案:設(shè)圓的方程為(x-a)2+(y-b)2=r2(r>0)由題意有:b=-4a|a+b+1|2=rb+2a-3?(-1)=-1解之得a=1b=-4r=22∴所求圓的方程為(x-1)2+(y+4)2=812.直線和圓交于兩點,則的中點

坐標為(

)A.B.C.D.答案:D解析:,得,中點為13.若命題p的否命題是q,命題q的逆命題是r,則r是p的逆命題的()A.原命題B.逆命題C.否命題D.逆否命題答案:設(shè)命題p為“若k,則s”;則其否命題q是“若¬k,則¬s”;∴命題q的逆命題r是“若¬s,則¬k”,而p的逆命題為“若s,則k”,故r是p的逆命題的否命題.故選C.14.若平面α與β的法向量分別是a=(1,0,-2),b=(-1,0,2),則平面α與β的位置關(guān)系是()A.平行B.垂直C.相交不垂直D.無法判斷答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分別是平面α與β的法向量∴平面α與β的法向量平行,可得平面α與β互相平行.15.點(2,-2)的極坐標為______.答案:∵點(2,-2)中x=2,y=-2,∴ρ=x2+y2=4+4=22,tanθ=yx=-1,∴取θ=-π4.∴點(2,-2)的極坐標為(22,-π4)故為(22,-π4).16.已知隨機變量ξ服從正態(tài)分布N(2,σ2),且P(ξ<0)=0.2,則P(ξ>4)=()

A.0.6

B.0.4

C.0.3

D.0.2答案:D17.給出一個程序框圖,輸出的結(jié)果為s=132,則判斷框中應(yīng)填()

A.i≥11

B.i≥10

C.i≤11

D.i≤12

答案:A18.某工廠生產(chǎn)的產(chǎn)品,用速度恒定的傳送帶將產(chǎn)品送入包裝車間之前,質(zhì)檢員每隔3分鐘從傳送帶上是特定位置取一件產(chǎn)品進行檢測,這種抽樣方法是()

A.簡單隨機抽樣

B.系統(tǒng)抽樣

C.分層抽樣

D.其它抽樣方法答案:B19.已知向量,,則“=λ,λ∈R”成立的必要不充分條件是()

A.+=

B.與方向相同

C.⊥

D.∥答案:D20.如圖,已知點P在正方體ABCD-A′B′C′D′的對角線BD′上,∠PDA=60°.

(Ⅰ)求DP與CC′所成角的大小;

(Ⅱ)求DP與平面AA′D′D所成角的大?。鸢福悍椒ㄒ唬喝鐖D,以D為原點,DA為單位長建立空間直角坐標系D-xyz.則DA=(1,0,0),CC′=(0,0,1).連接BD,B'D'.在平面BB'D'D中,延長DP交B'D'于H.設(shè)DH=(m,m,1)(m>0),由已知<DH,DA>=60°,由DA?DH=|DA||DH|cos<DA,DH>可得2m=2m2+1.解得m=22,所以DH=(22,22,1).(4分)(Ⅰ)因為cos<DH,CC′>=22×0+22×0+1×11×2=22,所以<DH,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個法向量是DC=(0,1,0).因為cos<DH,DC>=22×0+22×1+1×01×2=12,所以<DH,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)方法二:如圖,以D為原點,DA為單位長建立空間直角坐標系D-xyz.則DA=(1,0,0),CC′=(0,0,1),BD′=(-1,-1,1).設(shè)P(x,y,z)則BP=λBD′,∴(x-1,y-1,z)=(-λ,-λ,λ)∴x=1-λy=1-λz=λ,則DP=(1-λ,1-λ,λ),由已知,<DP,DA>=60°,∴λ2-4λ+2=0,解得λ=2-2,∴DP=(2-1,2-1,2-2)(4分)(Ⅰ)因為cos<DP,CC′>=2-22(2-1)=22,所以<DP,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個法向量是DC=(0,1,0).因為cos<DP,DC>=2-12(2-1)=12,所以<DP,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)21.已知命題p:?x∈R,x2-x+1>0,則命題¬p

是______.答案:∵命題p:?x∈R,x2-x+1>0,∴命題p的否定是“?x∈R,x2-x+1≤0”故為:?x∈R,x2-x+1≤0.22.已知直線l:kx-y+1+2k=0.

(1)證明l經(jīng)過定點;

(2)若直線l交x軸負半軸于A,交y軸正半軸于B,△AOB的面積為S,求S的最小值并求此時直線l的方程;

(3)若直線不經(jīng)過第四象限,求k的取值范圍.答案:(1)由kx-y+1+2k=0,得y-1=k(x+2),所以,直線l經(jīng)過定點(-2,1).(2)由題意得A(2k+1-k,0),B(0,2k+1),且2k+1-k<01+2k>0,故k>0,△AOB的面積為S=12×2k+1k×(2k+1)=4k2+4k+12k=2k+2+12k≥4,當(dāng)且僅當(dāng)k=12時等號成立,此時面積取最小值4,k=12,直線的方程是:x-2y+4=0.(3)由直線過定點(-2,1),可得當(dāng)斜率k>0或k=0時,直線不經(jīng)過第四象限.故k的取值范圍為[0,+∞).23.如圖給出了一個算法程序框圖,該算法程序框圖的功能是()A.求a,b,c三數(shù)的最大數(shù)B.求a,b,c三數(shù)的最小數(shù)C.將a,b,c按從小到大排列D.將a,b,c按從大到小排列答案:逐步分析框圖中的各框語句的功能,第一個條件結(jié)構(gòu)是比較a,b的大小,并將a,b中的較小值保存在變量a中,第二個條件結(jié)構(gòu)是比較a,c的大小,并將a,c中的較小值保存在變量a中,故變量a的值最終為a,b,c中的最小值.由此程序的功能為求a,b,c三個數(shù)的最小數(shù).故選B24.從A處望B處的仰角為α,從B處望A處的俯角為β,則α、β的關(guān)系為()A.α>βB.α=βC.α+β=90°D.α+β=180°答案:從點A看點B的仰角與從點B看點A的俯角互為內(nèi)錯角,大小相等.仰角和俯角都是水平線與視線的夾角,故α=β.故選:B.25.設(shè)

是不共線的向量,(k,m∈R),則A、B、C三點共線的充要條件是()

A.k+m=0

B.k=m

C.km+1=0

D.km-1=0答案:D26.如圖為一個求50個數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語句為()

A.i>50

B.i<50

C.i>=50

D.i<=50

答案:A27.對任意實數(shù)x,y,定義運算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運算是通常的加法和乘法運算。已知1*2=3,2*3=4,并且有一個非零常數(shù)m,使得對任意實數(shù)x,都有x*m=x,則m的值是[

]

A.4

B.-4

C.-5

D.6答案:A28.如圖,已知AP是⊙O的切線,P為切點,AC是⊙O的割線,與⊙O交于B,C兩點,圓心O在∠PAC的內(nèi)部,點M是BC的中點.

(Ⅰ)證明A,P,O,M四點共圓;

(Ⅱ)求∠OAM+∠APM的大小.答案:證明:(Ⅰ)連接OP,OM.因為AP與⊙O相切于點P,所以O(shè)P⊥AP.因為M是⊙O的弦BC的中點,所以O(shè)M⊥BC.于是∠OPA+∠OMA=180°.由圓心O在∠PAC的內(nèi)部,可知四邊形M的對角互補,所以A,P,O,M四點共圓.(Ⅱ)由(Ⅰ)得A,P,O,M四點共圓,所以∠OAM=∠OPM.由(Ⅰ)得OP⊥AP.由圓心O在∠PAC的內(nèi)部,可知∠OPM+∠APM=90°.又∵A,P,O,M四點共圓∴∠OPM=∠OAM所以∠OAM+∠APM=90°.29.設(shè)f(x)=ex(x≤0)ln

x(x>0),則f[f(13)]=______.答案:因為f(x)=ex(x≤0)ln

x(x>0),所以f(13)=ln13<0,所以f[f(13)]=f(ln13)=eln13=13,故為13.30.已知函數(shù)f(x)=x21+x2,那么f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=______.答案:∵f(x)=x21+x2,∴f(1x)=11+x2∴f(x)+f(1x)=1∴f(2)+f(12)=1,f(3)+f(13)=1,f(4)+f(14)=1,f(1)=12∴f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72故為:7231.如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G.

(1)求證:圓心O在直線AD上.

(2)求證:點C是線段GD的中點.答案:證明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CD=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分線∴圓心O在直線AD上.(5分)(II)連接DF,由(I)知,DH是⊙O的直徑,∴∠DHF=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O與AC相切于點F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴點C是線段GD的中點.(10分)32.已知

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論