2023年徐州幼兒師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年徐州幼兒師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年徐州幼兒師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年徐州幼兒師范高等專科學(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年徐州幼兒師范高等專科學(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩42頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年徐州幼兒師范高等專科學(xué)校高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.橢圓x2+my2=1的焦點在y軸上,長軸長是短軸長的兩倍,則m的值為()

A.

B.

C.2

D.4答案:A2.小王通過英語聽力測試的概率是,他連續(xù)測試3次,那么其中恰有1次獲得通過的概率是()

A.

B.

C.

D.答案:A3.若直線l的方程為x=2,則該直線的傾斜角是()A.60°B.45°C.90°D.180°答案:∵直線l的方程為x=2∴直線l與x軸垂直∴直線l的傾斜角為90°故選C4.已知圓的極坐標(biāo)方程為ρ=4cosθ,圓心為C,點P的極坐標(biāo)為(4,π3),則|CP|=______.答案:圓的極坐標(biāo)方程為ρ=4cosθ,圓的方程為:x2+y2=4x,圓心為C(2,0),點P的極坐標(biāo)為(4,π3),所以P的直角坐標(biāo)(2,23),所以|CP|=(2-2)2+(23-0)2=23.故為:23.5.橢圓上有一點P,F(xiàn)1,F(xiàn)2是橢圓的左、右焦點,△F1PF2為直角三角形,則這樣的點P有()

A.3個

B.4個

C.6個

D.8個答案:C6.已知橢圓的中心在原點,對稱軸為坐標(biāo)軸,焦點在x軸上,短軸的一個頂點B與兩個焦點F1,F(xiàn)2組成的三角形的周長為4+23,且∠F1BF2=2π3,求橢圓的標(biāo)準(zhǔn)方程.答案::設(shè)長軸長為2a,焦距為2c,則在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周長為2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求橢圓的標(biāo)準(zhǔn)方程為x24+y2=1.7.電子手表廠生產(chǎn)某批電子手表正品率為,次品率為,現(xiàn)對該批電子手表進行測試,設(shè)第X次首次測到正品,則P(1≤X≤2013)等于()

A.1-()2012

B.1-()2013

C.1-()2012

D.1-()2013答案:B8.已知復(fù)數(shù)z0=1-mi(m>0),z=x+yi和,其中x,y,x',y'均為實數(shù),i為虛數(shù)單位,且對于任意復(fù)數(shù)z,有w=.z0?.z,|w|=2|z|.

(Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關(guān)系式:

(Ⅱ)將(x、y)用為點P的坐標(biāo),(x'、y')作為點Q的坐標(biāo),上述關(guān)系式可以看作是坐標(biāo)平面上點的一個變換:它將平面上的點P變到這一平面上的點Q.已知點P經(jīng)該變換后得到的點Q的坐標(biāo)為(3,2),試求點P的坐標(biāo);

(Ⅲ)若直線y=kx上的任一點經(jīng)上述變換后得到的點仍在該直線上,試求k的值.答案:(I)由題設(shè)得,|w|=|.z0?.z|=|z0||z|=2|z|,∴|z0|=2,由1+m2=4,且m>0,得m=3,∴z0=1-3i,∵w=.z0?.z,∴x′+y′i=.(1-3i)?.(x+yi))=(1+3i)(x-yi)=x+3y+(3x-y)i,由復(fù)數(shù)相等得,x′=x+3yy′=3x-y,(Ⅱ)由(I)和題意得,x+3y=33x-y=2,解得x=343y=14

,即P點的坐標(biāo)為(343,14).

(Ⅲ)∵直線y=kx上的任意點P(x,y),其經(jīng)變換后的點Q(x+3y,3x-y)仍在該直線上,∴3x-y=k(x+3y),即(3k+1)y=(3-k)x∵當(dāng)k=0時,y=0,y=3x不是同一條直線,∴k≠0,于是3k+11=3-kk,即3k2+2k-3=0,解得k=33或k=-39.若f(x)是定義在R上的函數(shù),滿足對任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,且f(2)=3,則f(8)=______.答案:由題意可知:對任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,所以x=y=2,可知f(4)=f(2+2)=f(2)?f(2),所以f(4)=9;令x=y=4,可知f(8)=f(4+4)=f(4)?f(4)=92=81.故為:81.10.函數(shù)y=a|x|(a>1)的圖象是()

A.

B.

C.

D.

答案:B11.正方體的表面積與其外接球表面積的比為()A.3:πB.2:πC.1:2πD.1:3π答案:設(shè)正方體的棱長為a,不妨設(shè)a=1,正方體外接球的半徑為R,則由正方體的體對角線的長就是外接球的直徑的大小可知:2R=3a,即R=3a2=32?1=32;所以外接球的表面積為:S球=4πR2=3π.則正方體的表面積與其外接球表面積的比為:6:3π=2:π.故選B.12.點P(1,2,2)到原點的距離是()

A.9

B.3

C.1

D.5答案:B13.用數(shù)學(xué)歸納法證明:

對于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=n(n+1)(n+2)3.答案:證明:(1)當(dāng)n=1時,左邊=12+1=2,右邊=1×2×33=2,所以當(dāng)n=1時,命題成立;

…(2分)(2)設(shè)n=k時,命題成立,即有(12+1)+(22+2)+…+(k2+k)=k(k+1)(k+2)3…(4分)則當(dāng)n=k+1時,左邊=(12+1)+(22+2)+…+(k2+k)+[(k+1)2+(k+1)]…(5分)=k(k+1)(k+2)3+[(k+1)2+(k+1)]=(k+1)[k(k+2)+3(k+1)+3]3…(8分)=(k+1)(k2+5k+6)3=(k+1)(k+2)(k+3)3=(k+1)[(k+1)+1][(k+1)+2]3…(10分)所以當(dāng)n=k+1時,命題成立.綜合(1)(2)得:對于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=n(n+1)(n+2)3…(12分)14.我們稱正整數(shù)n為“好數(shù)”,如果n的二進制表示中1的個數(shù)多于0的個數(shù).如6=(110):為好數(shù),1984=(11111000000);不為好數(shù),則:

(1)二進制表示中恰有5位數(shù)碼的好數(shù)共有______個;

(2)不超過2012的好數(shù)共有______個.答案:(1)二進制表示中恰有5位數(shù)碼的二進制數(shù)分別為:10000,10001,10010,10011,10100,10101,10110,10111,11000,11001,11010,11011,11100,11101,11110,11111,共十六個數(shù),再結(jié)合好數(shù)的定義,得到其中好數(shù)有11個;(2)整數(shù)2012的二進制數(shù)為:11111011100,它是一個十一位的二進制數(shù).其中一位的二進制數(shù)是:1,共有C11個;其中二位的二進制數(shù)是:11,共有C22個;

其中三位的二進制數(shù)是:101,110,111,共有C12+C22個;

其中四位的二進制數(shù)是:1011,1101,1110,1111,共有C23+C33個;

其中五位的二進制數(shù)是:10011,10101,10110,11001,11010,11100,10111,11011,11101,11110,11111,共有C24+C34+C44個;

以此類推,其中十位的二進制數(shù)是:共有C49+C59+C69+C79+C89+C99個;其中十一位的小于2012二進制數(shù)是:共有24+4個;一共不超過2012的好數(shù)共有1164個.故1065個15.下列語句不屬于基本算法語句的是()

A.賦值語句

B.運算語句

C.條件語句

D.循環(huán)語句答案:B16.若圖中直線l1,l2,l3的斜率分別為k1,k2,k3,則()A.k2<k1<k3B.k3<k2<k1C.k2<k3<k1D.k1<k3<k2答案:∵直線l2的傾斜角為鈍角,∴k2<0.直線l1,l3的傾斜角為銳角,且直線l1的傾斜角小于l3的傾斜角,∴0<k1<k3.故選A.17.拋擲兩個骰子,若至少有一個1點或一個6點出現(xiàn),就說這次試驗失?。敲?,在3次試驗中成功2次的概率為()

A.

B.

C.

D.答案:D18.今天為星期六,則今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日答案:∵22010=8670=(7+1)670=C6700×7670×10+C6701×7669×11+C6702×7668×12+…+C6702010×70×1670∴22010除7的余數(shù)是1故今天為星期六,則今天后的第22010天是星期日故選D19.將正方形ABCD沿對角線BD折起,使平面ABD⊥平面CBD,E是CD中點,則∠AED的大小為()

A.45°

B.30°

C.60°

D.90°答案:D20.如圖,在等腰△ABC中,AC=AB,以AB為直徑的⊙O交BC于點E,過點E作⊙O的切線交AC于點D,交AB的延長線于點P.問:PD與AC是否互相垂直?請說明理由.答案:PD與AC互相垂直.理由如下:連接OE,則OE⊥PD;∵AC=AB,OE=OB,∴∠OEB=∠B=∠C,∴OE∥AC,∴PD與AC互相垂直.21.已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點為P(2,3),求過兩點Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直線方程.答案:∵P(2,3)在已知直線上,2a1+3b1+1=0,2a2+3b2+1=0.∴2(a1-a2)+3(b1-b2)=0,即b1-b2a1-a2=-23.∴所求直線方程為y-b1=-23(x-a1).∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0.22.已知平面α內(nèi)有一個點A(2,-1,2),α的一個法向量為=(3,1,2),則下列點P中,在平面α內(nèi)的是()

A.(1,-1,1)

B.(1,3,)

C.,(1,-3,)

D.(-1,3,-)答案:B23.設(shè)一次試驗成功的概率為p,進行100次獨立重復(fù)試驗,當(dāng)p=______時,成功次數(shù)的標(biāo)準(zhǔn)差的值最大,其最大值為______.答案:由獨立重復(fù)試驗的方差公式可以得到Dξ=npq≤n(p+q2)2=n4,等號在p=q=12時成立,∴Dξ=100×12×12=25,σξ=25=5.故為:12;524.已知的單調(diào)區(qū)間;

(2)若答案:(1)(2)證明略解析:(1)對已知函數(shù)進行降次分項變形

,得,(2)首先證明任意事實上,而

.25.在獨立性檢驗中,統(tǒng)計量Χ2有兩個臨界值:3.841和6.635.當(dāng)Χ2>3.841時,有95%的把握說明兩個事件有關(guān),當(dāng)Χ2>6.635時,有99%的把握說明兩個事件有關(guān),當(dāng)Χ2≤3.841時,認(rèn)為兩個事件無關(guān).在一項打鼾與患心臟病的調(diào)查中,共調(diào)查了2000人,經(jīng)計算Χ2=20.87.根據(jù)這一數(shù)據(jù)分析,認(rèn)為打鼾與患心臟病之間()

A.有95%的把握認(rèn)為兩者有關(guān)

B.約有95%的打鼾者患心臟病

C.有99%的把握認(rèn)為兩者有關(guān)

D.約有99%的打鼾者患心臟病答案:C26.已知鐳經(jīng)過100年,質(zhì)量便比原來減少4.24%,設(shè)質(zhì)量為1的鐳經(jīng)過x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100xD.0.9576100x答案:由題意可得,對于函數(shù),當(dāng)x=100時,y=95.76%=0.9576,結(jié)合選項檢驗選項A:x=100,y=0.0424,故排除A選項B:x=100,y=0.9576,故B正確故選:B解析:已知鐳經(jīng)過100年,質(zhì)量便比原來減少4.24%,設(shè)質(zhì)量為1的鐳經(jīng)過x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100x27.命題“存在x0∈R,2x0≤0”的否定是()

A.不存在x0∈R,2x0>0

B.存在x0∈R,2x0≥0

C.對任意的x∈R,2x≤0

D.對任意的x∈R,2x>0答案:D28.因為樣本是總體的一部分,是由某些個體所組成的,盡管對總體具有一定的代表性,但并不等于總體,為什么不把所有個體考查一遍,使樣本就是總體?答案:如果樣本就是總體,抽樣調(diào)查就變成普查了,盡管這樣確實反映了實際情況,但不是統(tǒng)計的基本思想,其操作性、可行性、人力、物力等方面,都會有制約因素存在,何況有些調(diào)查是破壞性的,如考查一批玻璃的抗碎能力,燈泡的使用壽命等,普查就全破壞了.29.已知實數(shù)x,y滿足2x+y+5=0,那么x2+y2的最小值為______.答案:x2+y2

表示直線2x+y+5=0上的點與原點的距離,其最小值就是原點到直線2x+y+5=0的距離|0+0+5|4+1=5,故為:5.30.某學(xué)校高一年級男生人數(shù)占該年級學(xué)生人數(shù)的40%,在一次考試中,男,女平均分?jǐn)?shù)分別為75、80,則這次考試該年級學(xué)生平均分?jǐn)?shù)為______.答案:設(shè)該班男生有x人,女生有y人,這次考試該年級學(xué)生平均分?jǐn)?shù)為a.根據(jù)題意可知:75x+80y=(x+y)×a,且xx+y=40%.所以a=78,則這次考試該年級學(xué)生平均分?jǐn)?shù)為78.故為:78.31.求證:不論λ取什么實數(shù)時,直線(2λ-1)x+(λ+3)y-(λ-11)=0都經(jīng)過一個定點,并求出這個定點的坐標(biāo).答案:證明:直線(2λ-1)x+(λ+3)y-(λ-11)=0即λ(2x+y-1)+(-x+3y+11)=0,根據(jù)λ的任意性可得2x+y-1=0-x+3y+11=0,解得x=2y=-3,∴不論λ取什么實數(shù)時,直線(2λ-1)x+(λ+3)y-(λ-11)=0都經(jīng)過一個定點(2,-3).32.如圖程序運行后輸出的結(jié)果為______.答案:由題意,列出如下表格s

0

5

9

12

n

5

4

3

2當(dāng)n=12時,不滿足“s<10”,則輸出n的值2故為:233.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(

)。答案:圓,雙曲線34.集合A={一條邊長為2,一個角為30°的等腰三角形},其中的元素個數(shù)為()A.2B.3C.4D.無數(shù)個答案:由題意,兩腰為2,底角為30°;兩腰為2,頂角為30°;底邊為2,底角為30°;底邊為2,頂角為30°.∴共4個元素,故選C.35.設(shè)圓M的方程為(x-3)2+(y-2)2=2,直線L的方程為x+y-3=0,點P的坐標(biāo)為(2,1),那么()

A.點P在直線L上,但不在圓M上

B.點P在圓M上,但不在直線L上

C.點P既在圓M上,又在直線L上

D.點P既不在直線L上,也不在圓M上答案:C36.______稱為向量的長度(或稱為模),記作

______,______稱為零向量,記作

______,______稱為單位向量.答案:向量AB所在線段AB的長度,即向量AB的大小,稱為向量AB的長度(或成為模),記作|AB|;長度為零的向量稱為零向量,記作0;長度等于1個單位的向量稱為單位向量.故為:向量AB所在線段AB的長度,即向量AB的大小,|AB|;長度為零的向量,0;長度等于1個單位的向量.37.已知平面向量=(3,1),=(x,3),且⊥,則實數(shù)x的值為()

A.9

B.1

C.-1

D.-9答案:C38.求證1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2).答案:證明:①當(dāng)n=1時,左邊=2,右邊=13×1×2×3=2,等式成立;②假設(shè)當(dāng)n=k時,等式成立,即1×2+2×3+3×4+…+k(k+1)=13k(k+1)(k+2)則當(dāng)n=k+1時,左邊=13k(k+1)(k+2)+(k+1)(k+2)=(k+1)(k+2)(13k+1)=13(k+1)(k+2)(k+3)即n=k+1時,等式也成立.所以1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2)對任意正整數(shù)都成立.39.命題“三角形中最多只有一個內(nèi)角是直角”的結(jié)論的否定是()

A.有兩個內(nèi)角是直角

B.有三個內(nèi)角是直角

C.至少有兩個內(nèi)角是直角

D.沒有一個內(nèi)角是直角答案:C40.命題:“若a>0,則a2>0”的否命題是()A.若a2>0,則a>0B.若a<0,則a2<0C.若a≤0,則a2≤0D.若a≤0,則a2≤0答案:否命題是將條件,結(jié)論同時否定,∴若a>0,則a2>0”的否命題是若a≤0,則a2≤0,故為:C41.若事件與相互獨立,且,則的值等于A.B.C.D.答案:B解析:事件“”表示的意義是事件與同時發(fā)生,因為二者相互獨立,根據(jù)相互獨立事件同時發(fā)生的概率公式得:.42.小李在一旅游景區(qū)附近租下一個小店面賣紀(jì)念品和T恤,由于經(jīng)營條件限制,他最多進50件T恤和30件紀(jì)念品,他至少需要T恤和紀(jì)念品40件才能維持經(jīng)營,已知進貨價為T恤每件36元,紀(jì)念品每件50元,現(xiàn)在他有2400元可進貨,假設(shè)每件T恤的利潤是18元,每件紀(jì)念品的利潤是20元,問怎樣進貨才能使他的利潤最大,最大利潤為多少?答案:設(shè)進T恤x件,紀(jì)念品y件,可得利潤為z元,由題意得x、y滿足的約束條件為:

0≤x≤50

0≤y≤30

x+y≥4036x+48y≤2400,且x、y∈N*目標(biāo)函數(shù)z=18x+20y約束條件的可行域如圖所示:五邊形ABCDE的各個頂點坐標(biāo)分別為:A(40,0),B(50,0),C(50,252),D(803,30),E(10,30),當(dāng)直線l:z=18x+20y經(jīng)過C(50,252)時取最大值,∵x,y必為整數(shù),∴當(dāng)x=50,y=12時,z取最大值即進50件T恤,12件紀(jì)念品時,可獲最大利潤,最大利潤為1140元.43.已知直線l:kx-y+1+2k=0.

(1)證明:直線l過定點;

(2)若直線l交x負(fù)半軸于A,交y正半軸于B,△AOB的面積為S,試求S的最小值并求出此時直線l的方程.答案:(1)證明:由已知得k(x+2)+(1-y)=0,∴無論k取何值,直線過定點(-2,1).(2)令y=0得A點坐標(biāo)為(-2-1k,0),令x=0得B點坐標(biāo)為(0,2k+1)(k>0),∴S△AOB=12|-2-1k||2k+1|=12(2+1k)(2k+1)=(4k+1k+4)≥12(4+4)=4.當(dāng)且僅當(dāng)4k=1k,即k=12時取等號.即△AOB的面積的最小值為4,此時直線l的方程為12x-y+1+1=0.即x-2y+4=044.(理)已知函數(shù)f(x)=sinπxx∈[0,1]log2011xx∈(1,+∞)若滿足f(a)=f(b)=f(c),(a、b、c互不相等),則a+b+c的取值范圍是______.答案:作出函數(shù)的圖象如圖,直線y=y0交函數(shù)圖象于如圖,由正弦曲線的對稱性,可得A(a,y0)與B(b,y0)關(guān)于直線x=12對稱,因此a+b=1當(dāng)直線線y=y0向上平移時,經(jīng)過點(2011,1)時圖象兩個圖象恰有兩個公共點(A、B重合)所以0<y0<1時,兩個圖象有三個公共點,此時滿足f(a)=f(b)=f(c),(a、b、c互不相等),說明1<c<2011,因此可得a+b+c∈(2,2012)故為(2,2012)45.某校有老師300人,男學(xué)生1200人,女學(xué)生1000人.現(xiàn)用分層抽樣的方法從所有師生中抽取一個容量為n的樣本,已知從女學(xué)生中抽取的人數(shù)為80,則n=()

A.171

B.184

C.200

D.392答案:C46.隋機變量X~B(6,),則P(X=3)=()

A.

B.

C.

D.答案:C47.已知F1、F2為橢圓x225+y216=1的左、右焦點,若M為橢圓上一點,且△MF1F2的內(nèi)切圓的周長等于3π,則滿足條件的點M有

()個.A.0B.1C.2D.4答案:設(shè)△MF1F2的內(nèi)切圓的內(nèi)切圓的半徑等于r,則由題意可得2πr=3π,∴r=32.由橢圓的定義可得

MF1+MF2=2a=10,又2c=6,∴△MF1F2的面積等于12

(MF1+MF2+2c)r=8r=12.又△MF1F2的面積等于12

2cyM=12,∴yM=4,故M是橢圓的短軸頂點,故滿足條件的點M有2個,故選

C.48.由直線y=x+1上的一點向圓(x-3)2+y2=1引切線,則切線長的最小值為()

A.1

B.2

C.

D.3答案:C49.已知函數(shù)f(x)=|log2x-1|+|log2x-2|,解不等式f(x)>4.答案:f(x)=|log2x-1|+|log2x-2|,取絕對值得:f(x)=3-2log2x,0<x<21,2≤x≤42log2x-3,x>4所以f(x)>4等價于:0<x≤23-2log2x>4或x≥42log2x-3>4,解得:0<x<22或x>82.50.已知集合A={2,x,y},B={2x,y2,2}且x,y≠0,若A=B,則實數(shù)x+y的值______.答案:因為集合A={2,x,y},B={2x,y2,2}且x,y≠0,所以x=y2y=2x,解得x=14y=12,所以x+y=34.故為:34.第2卷一.綜合題(共50題)1.已知函數(shù)f(x)=f(x+1)(x<4)2x(x≥4),則f(log23)=______.答案:因為1<log23<2,所以4<log23+3<5,所以f(log23)=f(log23+3)=f(log224)=2log224=24.故為:24.2.方程組的解集為()

A.{2,1}

B.{1,2}

C.{(2,1)}

D.(2,1)答案:C3.已知平面向量a,b,c滿足a+b+c=0,且a與b的夾角為135°,c與b的夾角為120°,|c|=2,則|a|=______.答案:∵a+b+c=0∴三個向量首尾相接后,構(gòu)成一個三角形且a與b的夾角為135°,c與b的夾角為120°,|c|=2,故所得三角形如下圖示:其中∠C=45°,∠A=60°,AB=2∴|a|=AB?Sin∠Asin∠C=6故為:64.一個簡單多面體的面都是三角形,頂點數(shù)V=6,則它的面數(shù)為______個.答案:∵已知多面體的每個面有三條邊,每相鄰兩條邊重合為一條棱,∴棱數(shù)E=32F,代入公式V+F-E=2,得F=2V-4.∵V=6,∴F=8,E=12,即多面體的面數(shù)F為8,棱數(shù)E為12.故為8.5.點P,設(shè)△ABC的面積是△PBC的面積的m倍,那么m=()

A.1

B.

C.4

D.2答案:B6.將橢圓x2+6y2-2x-12y-13=0按向量a平移,使中心與原點重合,則a的坐標(biāo)是()A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)答案:橢圓方程x2+6y2-2x-12y-13=0變形為:(x-1)2+6(y-1)2=20,則橢圓中心(1,1),即需按a=(-1,-1)平移,中心與原點重合.故選C.7.已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相切,則三條邊長分別為|a|、|b|、|c|的三角形()

A.是銳角三角形

B.是直角三角形

C.是鈍角三角形

D.不存在答案:B8.下列在曲線上的點是(

A.

B.

C.

D.答案:B9.已知x,y的取值如下表:

x0134y2.24.34.86.7從散點圖分析,y與x線性相關(guān),則回歸方程為.y=bx+a必過點______.答案:.X=0+1+3+44=2,.Y=2.2+4.3+4.8+6.74=92,故樣本中心點的坐標(biāo)為(2,92).故為:(2,92).10.甲射擊運動員擊中目標(biāo)為事件A,乙射擊運動員擊中目標(biāo)為事件B,則事件A,B為()

A.互斥事件

B.獨立事件

C.對立事件

D.不相互獨立事件答案:B11.種植兩株不同的花卉,它們的存活率分別為p和q,則恰有一株存活的概率為(

)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率為p(1-q)+(1-p)q=p+q-2pq。12.已知向量,,則“,λ∈R”成立的必要不充分條件是()

A.

B與方向相同

C.

D.答案:D13.已知a=3i+2j-k,b=i-j+2k,則5a與3b的數(shù)量積等于______.答案:a=3i+2j-k=(3,2,-1),5a=(15,10,-5)b=i-j+2k=(1,-1,2),3b=(3,-3,6)5a?3b=15×3+10×(-3)+(-5)×6=-15故為:-1514.點M(4,)化成直角坐標(biāo)為()

A.(2,)

B.(-2,-)

C.(,2)

D.(-,-2)答案:B15.一元二次不等式ax2+bx+c≤0的解集是全體實數(shù)所滿足的條件是(

)

A.

B.

C.

D.答案:D16.求過點A(2,3)且被兩直線3x+4y-7=0,3x+4y+8=0截得線段為32的直線方程.答案:設(shè)所求直線l的斜率為k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2條直線的夾角為45°,∴|

k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直線的方程為y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.17.過點(0,2)且與圓x2+y2=4只有一個交點的直線方程是______.答案:∵圓x2+y2=4的圓心是O(0,0),半徑r=2,點(0,2)到圓心O(0,0)的距離是d=0+4=2=r,∴點(0,2)在圓x2+y2=4上,∴過點(0,2)且與圓x2+y2=4只有一個交點的直線方程是0x+2y=4,即y=2.故為:y=2.18.極坐標(biāo)方程pcosθ=表示()

A.一條平行于x軸的直線

B.一條垂直于x軸的直線

C.一個圓

D.一條拋物線答案:B19.l1,l2,l3是空間三條不同的直線,則下列命題正確的是[

]A.l1⊥l2,l2⊥l3l1∥l3

B.l1⊥l2,l2∥l3l1⊥l3

C.l1∥l2∥l3l1,l2,l3共面

D.l1,l2,l3共點l1,l2,l3共面答案:B20.某個命題與自然數(shù)n有關(guān),若n=k(k∈N*)時命題成立,那么可推得當(dāng)n=k+1時該命題也成立.現(xiàn)已知當(dāng)n=5時,該命題不成立,那么可推得()

A.當(dāng)n=6時,該命題不成立

B.當(dāng)n=6時,該命題成立

C.當(dāng)n=4時,該命題不成立

D.當(dāng)n=4時,該命題成立答案:C21.已知雙曲線的焦點在y軸,實軸長為8,離心率e=2,過雙曲線的弦AB被點P(4,2)平分;

(1)求雙曲線的標(biāo)準(zhǔn)方程;

(2)求弦AB所在直線方程;

(3)求直線AB與漸近線所圍成三角形的面積.答案:(1)∵雙曲線的焦點在y軸,∴設(shè)雙曲線的標(biāo)準(zhǔn)方程為y2a2-x2b2=1;∵實軸長為8,離心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵實軸長為8,離心率e=2,∴雙曲線為等軸雙曲線,a=b=4.∴雙曲線的標(biāo)準(zhǔn)方程為y216-x216=1.(2)設(shè)弦AB所在直線方程為y-2=k(x-4),A,B的坐標(biāo)為A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1

y2216-x2216=1?y12-y2216-x12-x2216=0?(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直線方程為y-2=2(x-4),即2x-y-6=0.(3)等軸雙曲線y216-x216=1的漸近線方程為y=±x.∴直線AB與漸近線所圍成三角形為直角三角形.又漸近線與弦AB所在直線的交點坐標(biāo)分別為(6,6),(2,-2),∴直角三角形兩條直角邊的長度分別為62、22;∴直線AB與漸近線所圍成三角形的面積S=12×62×22=12.22.有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.

(1)選修4-2:矩陣與變換

已知點A(1,0),B(2,2),C(3,0),矩陣M表示變換”順時針旋轉(zhuǎn)45°”.

(Ⅰ)寫出矩陣M及其逆矩陣M-1;

(Ⅱ)請寫出△ABC在矩陣M-1對應(yīng)的變換作用下所得△A1B1C1的面積.

(2)選修4-4:坐標(biāo)系與參數(shù)方程

過P(2,0)作傾斜角為α的直線l與曲線E:x=cosθy=22sinθ(θ為參數(shù))交于A,B兩點.

(Ⅰ)求曲線E的普通方程及l(fā)的參數(shù)方程;

(Ⅱ)求sinα的取值范圍.

(3)(選修4-5

不等式證明選講)

已知正實數(shù)a、b、c滿足條件a+b+c=3,

(Ⅰ)求證:a+b+c≤3;

(Ⅱ)若c=ab,求c的最大值.答案:(1)(Ⅰ)M=cos(-45°)-sin(-45°)sin(-45°)

cos(-45°)=2222-2222∵矩陣M表示變換“順時針旋轉(zhuǎn)45°”∴矩陣M-1表示變換“逆時針旋轉(zhuǎn)45°”∴M-1=cos45°-sin45°sin45°

cos45°=22-2222

22(Ⅱ)三角形ABC的面積S△ABC=12×(3-1)×2=2,由于△ABC在旋轉(zhuǎn)變換下所得△A1B1C1與△ABC全等,故三角形的面積不變,即S△A1B1C1=2.(2)(Ⅰ)曲線E的普通方程為x2+2y2=1L的參數(shù)方程為x=2+tcosαy=tsinα(t為參數(shù))

(Ⅱ)將L的參數(shù)方程代入由線E的方程得(1+sin2α)t2+(4cosα)t+3=0由△=(4cosα)2-4(1+sin2α)×3≥0得sin2α≤17∴0≤sinα≤77(3)(Ⅰ)證明:由柯西不等式得(a+b+c)2≤(a+b+c)(1+1+1)代入已知a+b+c=3,∴(a+b+c)2≤9a+b+c≤3當(dāng)且僅當(dāng)a=b=c=1,取等號.(Ⅱ)由a+b≥2ab得2ab+c≤3,若c=ab,則2c+c≤3,(c+3)(c-1)≤0,所以c≤1,c≤1,當(dāng)且僅當(dāng)a=b=1時,c有最大值1.23.已知下列命題(其中a,b為直線,α為平面):

①若一條直線垂直于一個平面內(nèi)無數(shù)條直線,則這條直線與這個平面垂直;

②若一條直線平行于一個平面,則垂直于這條直線的直線必垂直于這個平面;

③若a∥α,b⊥α,則a⊥b;

④若a⊥b,則過b有且只有一個平面與a垂直.

上述四個命題中,真命題是()A.①,②B.②,③C.②,④D.③,④答案:①平面內(nèi)無數(shù)條直線均為平行線時,不能得出直線與這個平面垂直,將“無數(shù)條”改為“所有”才正確;故①錯誤;②垂直于這條直線的直線與這個平面可以是任何的位置關(guān)系,有可能是平行、相交、線在面內(nèi),故②錯誤.③若a∥α,b⊥α,則必有a⊥b,正確;④若a⊥b,則過b有且只有一個平面與a垂直,顯然正確.故選D.24.設(shè)隨機變量ζ~N(2,p),隨機變量η~N(3,p),若,則P(η≥1)=()

A.

B.

C.

D.答案:D25.已知向量a表示“向東航行1km”,向量b表示“向北航行3km”,則向量a+b表示()A.向東北方向航行2kmB.向北偏東30°方向航行2kmC.向北偏東60°方向航行2kmD.向東北方向航行(1+3)km答案:如圖,作OA=a,OB=b.則OC=a+b,所以|OC|=3+1=2,且sin∠BOC=12,所以∠BOC=30°.因此

a+b表示向北偏東30°方向航行2km.故選B.26.如圖,從圓O外一點P引圓O的切線PA和割線PBC,已知PA=22,PC=4,圓心O到BC的距離為3,則圓O的半徑為______.答案:∵PA為圓的切線,PBC為圓的割線,由線割線定理得:PA2=PB?PC又∵PA=22,PC=4,∴PB=2,BC=2又∵圓心O到BC的距離為3,∴R=2故為:227.已知曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)上一點P,原點為0,直線P0的傾斜角為π4,則P點的坐標(biāo)是______.答案:根據(jù)題意,曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)消去參數(shù)化成普通方程,得x29+y216=1(y≥0)∵直線P0的傾斜角為π4,∴P點在直線y=x上,將其代入橢圓方程得x29+x216=1,解之得x=y=125(舍負(fù)),因此點P的坐標(biāo)為(125,125)故為:(125,125)28.如圖,⊙O與⊙O′交于

A,B,⊙O的弦AC與⊙O′相切于點A,⊙O′的弦AD與⊙O相切于A點,則下列結(jié)論中正確的是()

A.∠1>∠2

B.∠1=∠2

C.∠1<∠2

D.無法確定

答案:B29.已知A(0,1),B(3,7),C(x,15)三點共線,則x的值是()

A.5

B.6

C.7

D.8答案:C30.給定兩個長度為1的平面向量OA和OB,它們的夾角為90°.如圖所示,點C在以O(shè)為圓心的圓弧AB上變動,若OC=xOA+yOB,其中x,y∈R,則xy的范圍是______.答案:由OC=xOA+yOB?OC2=x2OA2+y2OB2+2xyOA?OB,又|OC|=|OA|=|OB|=1,OA?OB=0,∴1=x2+y2≥2xy,得xy≤12,而點C在以O(shè)為圓心的圓弧AB上變動,得x,y∈[0,1],于是,0≤xy≤12,故為[0,12].31.已知集合M={0,1},N={2x+1|x∈M},則M∩N=()A.{1}B.{0,1}C.{0,1,3}D.空集答案:∵M={0,1},N={2x+1|x∈M},當(dāng)x=0時,2x+1=1;當(dāng)x=1時,2x+1=3,∴N={1,3}則M∩N={1}.故選A.32.已知函數(shù)y=f(x)是偶函數(shù),其圖象與x軸有四個交點,則f(x)=0的所有實數(shù)根之和為______.答案:∵函數(shù)y=f(x)是偶函數(shù)∴其圖象關(guān)于y軸對稱∴其圖象與x軸有四個交點也關(guān)于y軸對稱∴方程f(x)=0的所有實根之和為0故為:033.點(1,1)在圓(x-a)2+(y+a)2=4的內(nèi)部,則a的取值范圍是(

A.-1<a<1

B.0<a<1

C.a(chǎn)<-1或a>1

D.a(chǎn)=±1答案:A34.如圖,四邊形OABC是邊長為1的正方形,OD=3,點P為△BCD內(nèi)(含邊界)的動點,設(shè)(α,β∈R),則α+β的最大值等于

()

A.

B.

C.

D.1

答案:B35.點P(1,3,5)關(guān)于平面xoz對稱的點是Q,則向量=()

A.(2,0,10)

B.(0,-6,0)

C.(0,6,0)

D.(-2,0,-10)答案:B36.對變量x,y

有觀測數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點圖1;對變量u,v

有觀測數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點圖2.下列說法正確的是()

A.變量x

與y

正相關(guān),u

與v

正相關(guān)

B.變量x

與y

負(fù)相關(guān),u

與v

正相關(guān)

C.變量x

與y

正相關(guān),u

與v

負(fù)相關(guān)

D.變量x

與y

負(fù)相關(guān),u

與v

負(fù)相關(guān)答案:B37.一個箱子中裝有質(zhì)量均勻的10個白球和9個黑球,一次摸出5個球,在已知它們的顏色相同的情況下,該顏色是白色的概率是______.答案:10個白球中取5個白球有C105種9個黑球中取5個黑球有C95種∴一次摸出5個球,它們的顏色相同的有C105+C95種∴一次摸出5個球,在已知它們的顏色相同的情況下,該顏色是白色的概率=C510C510+C59=23故為:2338.橢圓x=5cosαy=3sinα(α是參數(shù))的一個焦點到相應(yīng)準(zhǔn)線的距離為______.答案:橢圓x=5cosαy=3sinα(α是參數(shù))的標(biāo)準(zhǔn)方程為:x225+y29=1,它的右焦點(4,0),右準(zhǔn)線方程為:x=254.一個焦點到相應(yīng)準(zhǔn)線的距離為:254-4=94.故為:94.39.設(shè)過點A(p,0)(p>0)的直線l交拋物線y2=2px(p>0)于B、C兩點,

(1)設(shè)直線l的傾斜角為α,寫出直線l的參數(shù)方程;

(2)設(shè)P是BC的中點,當(dāng)α變化時,求P點軌跡的參數(shù)方程,并化為普通方程.答案:(1)l的參數(shù)方程為x=p+tcosαy=tsinα(t為參數(shù))其中α≠0(2)將直線的參數(shù)方程代入拋物線方程中有:t2sin2α-2ptcosα-2p2=0設(shè)B、C兩點對應(yīng)的參數(shù)為t1,t2,其中點P的坐標(biāo)為(x,y),則點P所對應(yīng)的參數(shù)為t1+t22,由t1+t2=2pcosαsin2αt1t2=-2p2sin2α,當(dāng)α≠90°時,應(yīng)有x=p+t1+t22cosα=p+ptan2αy=t1+t22sinα=ptanα(α為參數(shù))消去參數(shù)得:y2=px-p2當(dāng)α=90°時,P與A重合,這時P點的坐標(biāo)為(p,0),也是方程的解綜上,P點的軌跡方程為y2=px-p240.若方程2ax2-x-1=0在(0,1)內(nèi)恰有一解,則a的取值范圍是______.答案:當(dāng)a>0時,方程對應(yīng)的函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰有一解,必有f(0)?f(1)<0,即-1×(2a-2)<0,解得a>1當(dāng)a≤0時函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰無解.故為:a>141.已知定點A(12.0),M為曲線x=6+2cosθy=2sinθ上的動點,若AP=2AM,試求動點P的軌跡C的方程.答案:設(shè)M(6+2cosθ,2sinθ),動點(x,y)由AP=2AM,即M為線段AP的中點故6+2cosθ=x+122,2sinθ=y+02即x=4cosθy=4sinθ即x2+y2=16∴動點P的軌跡C的方程為x2+y2=1642.直線的參數(shù)方程為,l上的點P1對應(yīng)的參數(shù)是t1,則點P1與P(a,b)之間的距離是(

A.|t1|

B.2|t1|

C.

D.答案:C43.已知定直線l及定點A(A不在l上),n為過點A且垂直于l的直線,設(shè)N為l上任意一點,線段AN的垂直平分線交n于B,點B關(guān)于AN的對稱點為P,求證:點P的軌跡為拋物線.答案:證明:如圖所示,建立平面直角坐標(biāo)系,并且連結(jié)PA,PN,NB.由題意知PB垂直平分AN,且點B關(guān)于AN的對稱點為P,∴AN也垂直平分PB.∴四邊形PABN為菱形,∴PA=PN.∵AB⊥l,∴PN⊥l.故點P符合拋物線上點的條件:到定點A的距離和到定直線l的距離相等,∴點P的軌跡為拋物線.44.若A∩B=A∪B,則A______B.答案:設(shè)有集合W=A∪B=B∩C,根據(jù)并集的性質(zhì),W=A∪B?A?W,B?W,根據(jù)交集的性質(zhì),W=A∩B?W?A,W?B由集合子集的性質(zhì),A=B=W,故為:=.45.已知隨機變量ξ服從二項分布ξ~B(6,),則E(2ξ+4)=()

A.10

B.4

C.3

D.9答案:A46.設(shè)隨機變量X~N(μ,δ2),且p(X≤c)=p(X>c),則c的值()

A.0

B.1

C.μ

D.μ答案:C47.

如圖,已知平行六面體OABC-O1A1B1C1,點G是上底面O1A1B1C1的中心,且,則用

表示向量為(

A.

B.

C.

D.

答案:A48.對于一組數(shù)據(jù)的兩個函數(shù)模型,其殘差平方和分別為153.4

和200,若從中選取一個擬合程度較好的函數(shù)模型,應(yīng)選殘差平方和為______的那個.答案:殘差的平方和是用來描述n個點與相應(yīng)回歸直線在整體上的接近程度殘差的平方和越小,擬合效果越好,由于153.4<200,故擬合效果較好的是殘差平方和是153.4的那個模型.故為:153.4.49.已知直線y=kx+1與橢圓x25+y2m=1恒有公共點,則實數(shù)m的取值范圍為()A.m≥1B.m≥1,或0<m<1C.0<m<5,且m≠1D.m≥1,且m≠5答案:由于直線y=kx+1恒過點M(0,1)要使直線y=kx+1與橢圓x25+y2m=1恒有公共點,則只要M(0,1)在橢圓的內(nèi)部或在橢圓上從而有m>0m≠505+1m≤1,解可得m≥1且m≠5故選D.50.函數(shù)f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函數(shù)f(x)=11+x2(x∈R),∴1+x2≥1,所以原函數(shù)的值域是(0,1],故選B.第3卷一.綜合題(共50題)1.“所有9的倍數(shù)(M)都是3的倍數(shù)(P),某奇數(shù)(S)是9的倍數(shù)(M),故此奇數(shù)(S)是3的倍數(shù)(P)”,上述推理是()

A.小前提錯

B.結(jié)論錯

C.正確的

D.大前提錯答案:C2.對變量x,y

有觀測數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點圖1;對變量u,v

有觀測數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點圖2.下列說法正確的是()

A.變量x

與y

正相關(guān),u

與v

正相關(guān)

B.變量x

與y

負(fù)相關(guān),u

與v

正相關(guān)

C.變量x

與y

正相關(guān),u

與v

負(fù)相關(guān)

D.變量x

與y

負(fù)相關(guān),u

與v

負(fù)相關(guān)答案:B3.已知直線l的方程為x=2-4

ty=1+3

t,則直線l的斜率為______.答案:直線x=2-4

ty=1+3

t,所以直線的普通方程為:(y-1)=-34(x-2);所以直線的斜率為:-34;故為:-34.4.如圖,在等腰△ABC中,AC=AB,以AB為直徑的⊙O交BC于點E,過點E作⊙O的切線交AC于點D,交AB的延長線于點P.問:PD與AC是否互相垂直?請說明理由.答案:PD與AC互相垂直.理由如下:連接OE,則OE⊥PD;∵AC=AB,OE=OB,∴∠OEB=∠B=∠C,∴OE∥AC,∴PD與AC互相垂直.5.若3π2<α<2π,則直線xcosα+ysinα=1必不經(jīng)過()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:令x=0,得y=sinα<0,令y=0,得x=cosα>0,直線過(0,sinα),(cosα,0)兩點,因而直線不過第二象限.故選B6.某醫(yī)療研究所為了檢驗?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計算得Χ2≈3.918,經(jīng)查對臨界值表知P(Χ2≥3.841)≈0.05.則下列結(jié)論中,正確結(jié)論的序號是______

(1)有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”

(2)若某人未使用該血清,那么他在一年中有95%的可能性得感冒

(3)這種血清預(yù)防感冒的有效率為95%

(4)這種血清預(yù)防感冒的有效率為5%答案:查對臨界值表知P(Χ2≥3.841)≈0.05,故有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”950/0僅是指“血清與預(yù)防感冒”可信程度,但也有“在100個使用血清的人中一個患感冒的人也沒有”的可能.故為:(1).7.P是以F1,F(xiàn)2為焦點的橢圓上一點,過焦點F2作∠F1PF2外角平分線的垂線,垂足為M,則點M的軌跡是()

A.橢圓

B.圓

C.雙曲線

D.雙曲線的一支答案:B8.有一農(nóng)場種植一種水稻在同一塊稻田中連續(xù)8年的年平均產(chǎn)量如下:(單位:kg)

450

430

460

440

450

440

470

460;

則其方差為()

A.120

B.80

C.15

D.150答案:D9.等于()

A.a(chǎn)16

B.a(chǎn)8

C.a(chǎn)4

D.a(chǎn)2答案:C10.某種肥皂原零售價每塊2元,凡購買2塊以上(包括2塊),商場推出兩種優(yōu)惠銷售辦法。第一種:一塊肥皂按原價,其余按原價的七折銷售;第二種:全部按原價的八折銷售。你在購買相同數(shù)量肥皂的情況下,要使第一種方法比第二種方法得到的優(yōu)惠多,最少需要買(

)塊肥皂。

A.5

B.2

C.3

D.4答案:D11.(幾何證明選講選做題)

如圖,已知PA是圓O的切線,切點為A,直線PO交圓O于B,C兩點,AC=2,∠PAB=120°,則切線PA的長度等于______.答案:∵∠PAB=120°,∴優(yōu)弧ACB=240°,∴劣弧AB=120°,∴∠ACB=60°,又∵OA=OC故∠AOP=60°,OA=AC=2,∠又∵PA是圓O的切線,切點為A,∴∠OAP=90°∴PA=3OA=23故為:2312.設(shè)直線l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()

A.

B.

C.

D.答案:C13.在命題“若a>b,則ac2>bc2”及它的逆命題、否命題、逆否命題之中,其中真命題有()A.4個B.3個C.2個D.1個答案:命題“若a>b,則ac2>bc2”為假命題;其逆命題為“若ac2>bc2,則a>b”為真命題;其否命題為“若a≤b,則ac2≤bc2”為真命題;其逆否命題為“若ac2≤bc2,則a≤b”為假命題;故選C14.已知P:2+2=5,Q:3>2,則下列判斷錯誤的是()A.“P或Q”為真,“非Q”為假B.“P且Q”為假,“非P”為真C.“P且Q”為假,“非P”為假D.“P且Q”為假,“P或Q”為真答案:∵P:2+2=5,假;Q:3>2,真;∴“非P”為真,“非Q”為假,∴“P或Q”為真,“P且Q”為假,∴A,B,D均正確;C錯誤.故選C.15.命題“若A∪B=A,則A∩B=B”的否命題是()A.若A∪B≠A,則A∩B≠BB.若A∩B=B,則A∪B=AC.若A∩B≠A,則A∪B≠BD.若A∪B=B,則A∩B=A答案:“若A∪B=A,則A∩B=B”的否命題:“若A∪B≠A則A∩B≠B”故選A.16.已知△ABC,D為AB邊上一點,若AD=2DB,CD=13CA+λCB,則λ=

.答案:∵AD=2DB,CD=13CA+λCB,CD=CA+AD=CA+23AB=CA+23(

CB-CA)=13CA+23CB,∴λ=23,故為:23.17.從甲、乙、丙、丁四人中任選兩名代表,甲被選中的概率為

______.答案:由題意:甲、乙、丙、丁四人中任選兩名代表,共有六種情況:甲和乙、甲和丙、甲和丁、乙和丙、乙和丁、丙和丁,因每種情況出現(xiàn)的可能性相等,所以甲被選中的概率為12.故為:12.18.求下列函數(shù)的定義域及值域.

(1)y=234x+1;

(2)y=4-8x.答案:(1)要使函數(shù)y=234x+1有意義,只需4x+1≠0,即x≠-14,所以,函數(shù)的定義域為{x|x≠-14}.設(shè)y=2u,u=34x+1≠0,則u>0,由函數(shù)y=2u,得y≠20=1,所以函數(shù)的值域為{y|0<y且y≠1}.(2)由4-8x≥0,得x≤23,所以函數(shù)的定義域為{x|x≤23}.因0≤4-8x<4,所以0≤y<2,所以函數(shù)的值域為[0,2).19.已知雙曲線的兩漸近線方程為y=±32x,一個焦點坐標(biāo)為(0,-26),

(1)求此雙曲線方程;

(2)寫出雙曲線的準(zhǔn)線方程和準(zhǔn)線間的距離.答案:(1)由題意得,c=26,ba=32,26=a2+b2,∴a2=18,b2=8,故該雙曲線的標(biāo)準(zhǔn)方程為y218-x28=1.(2)由(1)得,雙曲線的準(zhǔn)線方程為y=±1826x;準(zhǔn)線間的距離為2a2c=2×1826=182613.20.某次我市高三教學(xué)質(zhì)量檢測中,甲、乙、丙三科考試成績的直方圖如如圖所示(由于人數(shù)眾多,成績分布的直方圖可視為正態(tài)分布),則由如圖曲線可得下列說法中正確的一項是()

A.甲科總體的標(biāo)準(zhǔn)差最小

B.丙科總體的平均數(shù)最小

C.乙科總體的標(biāo)準(zhǔn)差及平均數(shù)都居中

D.甲、乙、丙的總體的平均數(shù)不相同

答案:A21.若直線l的方程為x=2,則該直線的傾斜角是()A.60°B.45°C.90°D.180°答案:∵直線l的方程為x=2∴直線l與x軸垂直∴直線l的傾斜角為90°故選C22.圓心為(-2,3),且與y軸相切的圓的方程是()A.x2+y2+4x-6y+9=0B.x2+y2+4x-6y+4=0C.x2+y2-4x+6y+9=0D.x2+y2-4x+6y+4=0答案:根據(jù)圓心坐標(biāo)(-2,3)到y(tǒng)軸的距離d=|-2|=2,則所求圓的半徑r=d=2,所以圓的方程為:(x+2)2+(y-3)2=4,化為一般式方程得:x2+y2+4x-6y+9=0.故選A23.若函數(shù)f(x)=loga(x+b)的圖象如圖,其中a,b為常數(shù).則函數(shù)g(x)=ax+b的大致圖象是(

)

答案:D解析:試題分析:解:由函數(shù)f(x)=loga(x+b)的圖象為減函數(shù)可知0<a<1,f(x)=loga(x+b)的圖象由f(x)=logax向左平移可知0<b<1,故函數(shù)g(x)=ax+b的大致圖象是D故選D.24.下列函數(shù)中,定義域為(0,+∞)的是()A.y=1xB.y=xC.y=1x2D.y=12x答案:由于函數(shù)y=1x的定義域為(0,+∞),函數(shù)y=x的定義域為[0,+∞),函數(shù)y=1x2的定義域為{x|x≠0},函數(shù)y=12x的定義域為R,故只有A中的函數(shù)滿足定義域為(0,+∞),故選A.25.從A處望B處的仰角為α,從B處望A處的俯角為β,則α、β的關(guān)系為()A.α>βB.α=βC.α+β=90°D.α+β=180°答案:從點A看點B的仰角與從點B看點A的俯角互為內(nèi)錯角,大小相等.仰角和俯角都是水平線與視線的夾角,故α=β.故選:B.26.已知z是純虛數(shù),z+21-i是實數(shù),則z=______.答案:令Z=bi,則z+21-i=(2+bi)(1+i)(1-i)(1+i)=(2-b)+(2+b)i2又z+21-i是實數(shù),故b=-2則Z=-2i故為:-2i27.下列四組函數(shù),表示同一函數(shù)的是()A.f(x)=x2,g(x)=xB.f(x)=x,g(x)=x2xC.f(x)=lnx2,g(x)=2lnxD.f(x)=logaax(0<a≠1),g(x)=3x3答案:同一函數(shù)必然具有相同的定義域、值域、對應(yīng)關(guān)系,A中的2個函數(shù)的值域不同,B中的2個函數(shù)的定義域不同,C中的2個函數(shù)的對應(yīng)關(guān)系不同,只有D的2個函數(shù)的定義域、值域、對應(yīng)關(guān)系完全相同,故選D.28.若一個底面為正三角形、側(cè)棱與底面垂直的棱柱的三視圖如下圖所示,則這個棱柱的體積為()A.123B.363C.273D.6答案:此幾何體為一個三棱柱,棱柱的高是4,底面正三角形的高是33,設(shè)底面邊長為a,則32a=33,∴a=6,故三棱柱體積V=12?62?32?4=363.故選B29.{,,}=是空間向量的一個基底,設(shè)=+,=+,=+,給出下列向量組:①{,,},②{,},③{,,},④{,,},其中可以作為空間向量基底的向量組有()組.

A.1

B.2

C.3

D.4答案:C30.在統(tǒng)計中,樣本的標(biāo)準(zhǔn)差可以近似地反映總體的()

A.平均狀態(tài)

B.頻率分布

C.波動大小

D.最大值和最小值答案:C31.已知|a|<1,|b|<1,求證:<1.答案:證明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0

(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.32.正方體的全面積為18cm2,則它的體積是()A.4cm3B.8cm3C.11272cm3D.33cm3答案:設(shè)正方體邊長是acm,根據(jù)題意得6a2=18,解得a=3,∴正方體的體積是33cm3.故選D.33.設(shè)O為坐標(biāo)原點,給定一個定點A(4,3),而點B(x,0)在x正半軸上移動,l(x)表示AB的長,則△OAB中兩邊長的比值的最大值為()

A.

B.

C.

D.答案:B34.(文)將圖所示的一個直角三角形ABC(∠C=90°)繞斜邊AB旋轉(zhuǎn)一周,所得到的幾何體的正視圖是下面四個圖形中的(

A.

B.

C.

D.

答案:B35.已知拋物線和雙曲線都經(jīng)過點M(1,2),它們在x軸上有共同焦點,拋物線的頂點為坐標(biāo)原點,則雙曲線的標(biāo)準(zhǔn)方程是______.答案:設(shè)拋物線方程為y2=2px(p>0),將M(1,2)代入y2=2px,得P=2.∴拋物線方程為y2=4x,焦點為F

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論