版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年江西應用工程職業(yè)學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.“△ABC中,若∠C=90°,則∠A、∠B都是銳角”的否命題為()
A.△ABC中,若∠C≠90°,則∠A、∠B都不是銳角
B.△ABC中,若∠C≠90°,則∠A、∠B不都是銳角
C.△ABC中,若∠C≠90°,則∠A、∠B都不一定是銳角
D.以上都不對答案:B2.設a=20.3,b=0.32,c=log20.3,則用“>”表示a,b,c的大小關系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故為:a>b>c3.已知a,b,c是三條直線,且a∥b,a與c的夾角為θ,那么b與c夾角是______.答案:∵a∥b,∴b與c夾角等于a與c的夾角又∵a與c的夾角為θ∴b與c夾角也為θ故為:θ4.已知a=(1,0),b=(m,m)(m>0),則<a,b>=______.答案:∵b=(m,m)(m>0),∴b與第一象限的角平分線同向,且由原點指向遠處,而a=(1,0)同橫軸的正方向同向,∴<a,b>=45°,故為:45°5.已知100件產(chǎn)品中有5件次品,從中任意取出3件產(chǎn)品,設A表示事件“3件產(chǎn)品全不是次品”,B表示事件“3件產(chǎn)品全是次品”,C表示事件“3件產(chǎn)品中至少有1件次品”,則下列結論正確的是()
A.B與C互斥
B.A與C互斥
C.任意兩個事件均互斥
D.任意兩個事件均不互斥答案:B6.已知A(k,12,1),B(4,5,1),C(-k,10,1),且A、B、C三點共線,則k=______.答案:∵AB=(4-k,-7,0),BC=(-k-4,5,0),且A、B、C三點共線,∴存在實數(shù)λ滿足AB=λBC,即4-k=λ(-k-4)-7=5λ0=0,解得k=-23.故為-23.7.曲線x=sin2ty=sint(t為參數(shù))的普通方程為______.答案:因為曲線x=sin2ty=sint(t為參數(shù))∴sint=y,代入x=sin2t,可得x=y2,其中-1≤y≤1.故為:x=y2,(-1≤y≤1).8.某公司一年購買某種貨物400噸,每次都購買x噸,運費為4萬元/次,一年的總存儲費用為4x萬元,要使一年的總運費與總存儲費用之和最小,則x=______噸.答案:某公司一年購買某種貨物400噸,每次都購買x噸,則需要購買400x次,運費為4萬元/次,一年的總存儲費用為4x萬元,一年的總運費與總存儲費用之和為400x?4+4x萬元,400x?4+4x≥2(400x×4)×4x=160,當且僅當1600x=4x即x=20噸時,等號成立即每次購買20噸時,一年的總運費與總存儲費用之和最?。蕿椋?0.9.用反證法證明“如果a<b,那么“”,假設的內(nèi)容應是()
A.
B.
C.且
D.或
答案:D10.給出下列四個命題,其中正確的一個是()
A.在線性回歸模型中,相關指數(shù)R2=0.80,說明預報變量對解釋變量的貢獻率是80%
B.在獨立性檢驗時,兩個變量的2×2列聯(lián)表中對角線上數(shù)據(jù)的乘積相差越大,說明這兩個變量沒有關系成立的可能性就越大
C.相關指數(shù)R2用來刻畫回歸效果,R2越小,則殘差平方和越大,模型的擬合效果越好
D.線性相關系數(shù)r的絕對值越接近于1,表明兩個隨機變量線性相關性越強答案:D11.在極坐標系中,圓ρ=-2cosθ的圓心的極坐標是()
A.(1,)
B.(1,-)
C.(1,0)
D.(1,π)答案:D12.已知|a|=8,e是單位向量,當它們之間的夾角為π3時,a在e方向上的投影為
______.答案:a在e方向上的投影為a?e=|a||e|cosπ3=4故為:413.已知函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過點P(12,12),則常數(shù)a的值為()A.2B.4C.12D.14答案:∵函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過點P(12,12),∴a12=12,?a=14.故選D.14.直線(t為參數(shù))的傾斜角是()
A.20°
B.70°
C.45°
D.135°答案:D15.已知0<k<4,直線l1:kx-2y-2k+8=0和直線l:2x+k2y-4k2-4=0與兩坐標軸圍成一個四邊形,則使得這個四邊形面積最小的k值為______.答案:如圖所示:直線l1:kx-2y-2k+8=0即k(x-2)-2y+8=0,過定點B(2,4),與y軸的交點C(0,4-k),直線l:2x+k2y-4k2-4=0,即2x-4+k2(y-4)=0,過定點(2,4),與x軸的交點A(2k2+2,0),由題意知,四邊形的面積等于三角形ABD的面積和梯形OCBD的面積之和,故所求四邊形的面積為12×4×(2k2+2-2)+2×(4-k+4)2=4k2-k+8,∴k=18時,所求四邊形的面積最小,故為18.16.有一個質地均勻的正四面體,它的四個面上分別標有1,2,3,4這四個數(shù)字.現(xiàn)將它連續(xù)拋擲3次,其底面落于桌面,記三次在正四面體底面的數(shù)字和為S,則“S恰好為4”的概率為______.答案:由題意知本題是一個古典概型,試驗發(fā)生包含的事件是拋擲這顆正四面體骰子兩次,共有4×4×4=64種結果,滿足條件的事件是三次在正四面體底面的數(shù)字和為S,S恰好為4,可以列舉出這種事件,(1,1,2),(1,2,1),(2,1,1)共有3種結果,根據(jù)古典概型概率公式得到P=364,故為:364.17.若非零向量滿足,則()
A.
B.
C.
D.答案:C18.如圖所示,已知點P在正方體ABCD—A′B′C′D′的對角線
BD′上,∠PDA=60°.
(1)求DP與CC′所成角的大小;
(2)求DP與平面AA′D′D所成角的大小.答案:(1)DP與CC′所成的角為45°(2)DP與平面AA′D′D所成的角為30°解析:如圖所示,以D為原點,DA為單位長度建立空間直角坐標系D—xyz.則=(1,0,0),=(0,0,1).連接BD,B′D′.在平面BB′D′D中,延長DP交B′D′于H.設="(m,m,1)"(m>0),由已知〈,〉=60°,由·=||||cos〈,〉,可得2m=.解得m=,所以=(,,1).(1)因為cos〈,〉==,所以〈,〉=45°,即DP與CC′所成的角為45°.(2)平面AA′D′D的一個法向量是=(0,1,0).因為cos〈,〉==,所以〈,〉=60°,可得DP與平面AA′D′D所成的角為30°.19.若|x-4|+|x+5|>a對于x∈R均成立,則a的取值范圍為______.答案:∵|x-4|+|x+5|=|4-x|+|x+5|≥|4-x+x+5|=9,故|x-4|+|x+5|的最小值為9.再由題意可得,當a<9時,不等式對x∈R均成立.故為(-∞,9).20.不等式|x-500|≤5的解集是______.答案:因為不等式|x-500|≤5,由絕對值不等式的幾何意義可知:{x|495≤x≤505}.故為:{x|495≤x≤505}.21.已知a=(3,3,2),b=(4,-3,7),c=(0,5,1),則(a+b)?c=______.答案:由于a=(3,3,2),b=(4,-3,7),則a+b=(7,0,9)又由c=(0,5,1),則(a+b)?c=(7,0,9)?(0,5,1)=9故為922.設a,b是不共線的兩個向量,已知=2+m,=+,=-2.若A,B,D三點共線,則m的值為()
A.1
B.2
C.-2
D.-1答案:D23.在直角坐標系xOy中,i,j分別是與x軸,y軸平行的單位向量,若在Rt△ABC中,AB=i+j,AC=2i+mj,則實數(shù)m=______.答案:把AB、AC平移,使得點A與原點重合,則AB=(1,1)、AC=(2,m),故BC=(1,m-1),若∠B=90°時,AB?BC=0,∴(1,1)?(2-1,m-1)=0,得m=0;若∠A=90°時,AB?AC=0,∴(1,1)?(2,m)=0,得m=-2.若∠C=90°時,AC?BC=0,即2+m2-m=0,此方程無解,綜上,m為-2或0滿足三角形為直角三角形.故為-2或024.當圓x=4cosθy=4sinθ上一點P的旋轉角為θ=23π時,點P的坐標為______.答案:根據(jù)圓的參數(shù)方程的意義,當圓x=4cosθy=4sinθ上一點P的旋轉角為θ=23π時,點P的坐標為(4cos2π3,4sin2π3),即(-2,23).故為:(-2,23).25.一只袋中裝有2個白球、3個紅球,這些球除顏色外都相同.
(Ⅰ)從袋中任意摸出1個球,求摸到的球是白球的概率;
(Ⅱ)從袋中任意摸出2個球,求摸出的兩個球都是白球的概率;
(Ⅲ)從袋中任意摸出2個球,求摸出的兩個球顏色不同的概率.答案:(Ⅰ)從5個球中摸出1個球,共有5種結果,其中是白球的有2種,所以從袋中任意摸出1個球,摸到白球的概率為25.
…(4分)(Ⅱ)從袋中任意摸出2個球,共有C25=10種情況,其中全是白球的有1種,故從袋中任意摸出2個球,摸出的兩個球都是白球的概率為110.…(9分)(Ⅲ)由(Ⅱ)可知,摸出的兩個球顏色不同的情況共有2×3=6種,故從袋中任意摸出2個球,摸出的2個球顏色不同的概率為610=35.
…(14分)26.兩平行直線x+3y-4=0與2x+6y-9=0的距離是
______.答案:由直線x+3y-4=0取一點A,令y=0得到x=4,即A(4,0),則兩平行直線的距離等于A到直線2x+6y-9=0的距離d=|8-9|22+62=1210=1020.故為:102027.用數(shù)學歸納法證明“<n+1
(n∈N*)”.第二步證n=k+1時(n=1已驗證,n=k已假設成立),這樣證明:=<=(k+1)+1,所以當n=k+1時,命題正確.此種證法()
A.是正確的
B.歸納假設寫法不正確
C.從k到k+1推理不嚴密
D.從k到k+1推理過程未使用歸納假設答案:D28.已知平面向量.a,b的夾角為60°,.a=(3,1),|b|=1,則|.a+2b|=______.答案:∵平面向量.a,b的夾角為60°,.a=(3,1),∴|.a|=2.b2
再由|b|=1,可得.a?b=2×1cos60°=1,∴|.a+2b|=(.a+2b)2=a2+4a?b+4b2=23,故為23.29.某校有學生1
200人,為了調查某種情況打算抽取一個樣本容量為50的樣本,問此樣本若采用簡單隨便機抽樣將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學生都編上號0001,0002,0003…用抽簽法做1200個形狀、大小相同的號簽,然后將這些號簽放到同一個箱子里,進行均勻攪拌,抽簽時,每次從中抽一個號簽,連續(xù)抽取50次,就得到一個容量為50的樣本.30.
若向量
=(3,2),=(0,-1),=(-1,2),則向量2-的坐標坐標是(
)
A.(3,-4)
B.(-3,4)
C.(3,4)
D.(-3,-4)答案:D31.已知直線l:(t為參數(shù))的傾斜角是()
A.
B.
C.
D.答案:D32.已知點G是△ABC的重心,O是空間任一點,若OA+OB+OC=λOG,則實數(shù)λ=______.答案:由于G是三角形ABC的重心,則有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故為:333.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i為虛數(shù)單位),求復數(shù)z2+i的虛部.
(Ⅱ)已知z1=a+2i,z2=3-4i(i為虛數(shù)單位),且z1z2為純虛數(shù),求實數(shù)a的值.答案:(Ⅰ)設z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,復數(shù)z2+i=3+4i2+i=2+i,虛部為1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2為純虛數(shù)則3a-8=0,且4a+6≠0,解得a=8334.命題“存在x0∈R,使x02+1<0”的否定是______.答案:∵命題“存在x0∈R,使x02+1<0”是一個特稱命題∴命題“存在x0∈R,使x02+1<0”的否定是“對任意x0∈R,使x02+1≥0”故為:對任意x0∈R,使x02+1≥035.如圖的曲線是指數(shù)函數(shù)y=ax的圖象,已知a的值取,,,則相應于曲線①②③④的a的值依次為()
A.,,,
B.,,,
C.,,,
D.,,,
答案:A36.在平面直角坐標系xOy中,設P(x,y)是橢圓上的一個動點,則S=x+y的最大值是()
A.1
B.2
C.3
D.4答案:B37.已知關于x的方程2kx2-2x-3k-2=0的兩實根一個小于1,另一個大于1,求實數(shù)k的取值范圍。答案:解:令,為使方程f(x)=0的兩實根一個小于1,另一個大于1,只需或,即或,解得k>0或k<-4,故k的取值范圍是k>0或k<-4.38.在下列條件中,使M與不共線三點A、B、C,一定共面的是
[
]答案:C39.直線y=33x繞原點逆時針方向旋轉30°后,所得直線與圓(x-2)2+y2=3的交點個數(shù)是______.答案:∵直線y=33x的斜率為33,∴此直線的傾斜角為30°,∴此直線繞原點逆時針方向旋轉30°后傾斜角為60°,∴此直線旋轉后的方程為y=3x,由圓(x-2)2+y2=3,得到圓心坐標為(2,0),半徑r=3,∵圓心到直線y=3x的距離d=232=3=r,∴該直線與圓相切,則直線與圓(x-2)2+y2=3的交點個數(shù)是1.故為:140.若方程x2-3x+mx+m=0的兩根均在(0,+∞)內(nèi),則m的取值范圍是(
)
A.m≤1
B.0<m≤1
C.m>1
D.0<m<1答案:B41.如圖所示,O點在△ABC內(nèi)部,D、E分別是AC,BC邊的中點,且有OA+2OB+3OC=O,則△AEC的面積與△AOC的面積的比為()
A.2
B.
C.3
D.
答案:B42.某航空公司經(jīng)營A,B,C,D這四個城市之間的客運業(yè)務,它們之間的直線距離的部分機票價格如下:AB為2000元;AC為1600元;AD為2500元;CD為900元;BC為1200元,若這家公司規(guī)定的機票價格與往返城市間的直線距離成正比,則BD間直線距離的票價為(設這四個城在同一水平面上)()
A.1500元
B.1400元
C.1200元
D.1000元答案:A43.設m∈R,向量=(1,m).若||=2,則m等于()
A.1
B.
C.±1
D.±答案:D44.設復數(shù)z=lg(m2-2m-2)+(m2+3m+2)i,試求實數(shù)m的取值范圍,使得:
(1)z是純虛數(shù);
(2)z是實數(shù);
(3)z對應的點位于復平面的第二象限.答案:(1)若z=lg(m2-2m-2)+(m2+3m+2)i是純虛數(shù),則可得lg(m2-2m-2)=0m2+3m+2≠0,即m2-2m-2=1m2+3m+2≠0,解之得m=3(舍去-1);…(3分)(2)若z=lg(m2-2m-2)+(m2+3m+2)i是實數(shù),則可得m2+3m+2=0,解之得m=-1或m=-2…(6分)(3)∵z=lg(m2-2m-2)+(m2+3m+2)i對應的點坐標為(lg(m2-2m-2),m2+3m+2)∴若該對應點位于復平面的第二象限,則可得lg(m2-2m-2)<0m2+3m+2>0,即0<m2-2m-2<1m2+3m+2>0,解之得-1<m<1-3或1+3<m<3.…(10分)45.選修4-4:坐標系與參數(shù)方程
已知直線l:x=m+tcosαy=tsinα(t為參數(shù))經(jīng)過橢圓C:x=2cosφy=3sinφ(φ為參數(shù))的左焦點F.
(Ⅰ)求m的值;
(Ⅱ)設直線l與橢圓C交于A、B兩點,求|FA|?|FB|的最大值和最小值.答案:(Ⅰ)將橢圓C的參數(shù)方程化為普通方程,得x24+y23=1.a(chǎn)=2,b=3,c=1,則點F坐標為(-1,0).l是經(jīng)過點(m,0)的直線,故m=-1.…(4分)(Ⅱ)將l的參數(shù)方程代入橢圓C的普通方程,并整理,得(3cos2α+4sin2α)t2-6tcosα-9=0.設點A,B在直線參數(shù)方程中對應的參數(shù)分別為t1,t2,則|FA|?|FB|=|t1t2|=93cos2α+4sin2α=93+sin2α.當sinα=0時,|FA|?|FB|取最大值3;當sinα=±1時,|FA|?|FB|取最小值94.…(10分)46.“因為指數(shù)函數(shù)y=ax是增函數(shù)(大前提),而y=()x是指數(shù)函數(shù)(小前提),所以y=()x是增函數(shù)(結論)”,上面推理的錯誤是()
A.大前提錯導致結論錯
B.小前提錯導致結論錯
C.推理形式錯導致結論錯
D.大前提和小前提錯都導致結論錯答案:A47.鐵路托運行李,從甲地到乙地,按規(guī)定每張客票托運行李不超過50kg時,每千克0.2元,超過50kg時,超過部分按每千克0.25元計算,畫出計算行李價格的算法框圖.答案:程序框圖:48.證明不等式的最適合的方法是()
A.綜合法
B.分析法
C.間接證法
D.合情推理法答案:B49.已知拋物線y=14x2,則過其焦點垂直于其對稱軸的直線方程為______.答案:拋物線y=14x2的標準方程為x2=4y的焦點F(0,1),對稱軸為y軸所以拋物線y=14x2,則過其焦點垂直于其對稱軸的直線方程為y=1故為y=1.50.在極坐標中,由三條曲線θ=0,θ=,ρcosθ+ρsinθ=1圍成的圖形的面積是()
A.
B.
C.
D.答案:A第2卷一.綜合題(共50題)1.在平面直角坐標系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數(shù))和直線l:x=4t+6y=-3t-2(t為參數(shù)),則直線l與圓C相交所得的弦長等于______.答案:∵在平面直角坐標系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數(shù)),∴(x+1)2+(y-2)2=25,∴圓心為(-1,2),半徑為5,∵直線l:x=4t+6y=-3t-2(t為參數(shù)),∴3x+4y-10=0,∴圓心到直線l的距離d=|-3+8-10|5=1,∴直線l與圓C相交所得的弦長=2×52-1=46.故為46.2.已知函數(shù)y=與y=ax2+bx,則下列圖象正確的是(
)
A.
B.
C.
D.
答案:C3.下列函數(shù)中,既是偶函數(shù),又在(0,1)上單調遞增的函數(shù)是()A.y=|log3x|B.y=x3C.y=e|x|D.y=cos|x|答案:對于A選項,函數(shù)定義域是(0,+∞),故是非奇非偶函數(shù),不合題意,A選項不正確;對于B選項,函數(shù)y=x3是一個奇函數(shù),故不是正確選項;對于C選項,函數(shù)的定義域是R,是偶函數(shù),且當x∈(0,+∞)時,函數(shù)是增函數(shù),故在(0,1)上單調遞增,符合題意,故C選項正確;對于D選項,函數(shù)y=cos|x|是偶函數(shù),在(0,1)上單調遞減,不合題意綜上知,C選項是正確選項故選C4.設雙曲線的兩條漸近線為y=±x,則該雙曲線的離心率e為()
A.5
B.或
C.或
D.答案:C5.下列集合中,不同于另外三個集合的是()A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}答案:解析:A是列舉法,C是描述法,對于B要注意集合的代表元素是y,故與A,C相同,而D表示該集合含有一個元素,即方程“x=0”.故選D.6.等于()
A.
B.
C.
D.答案:B7.已知函數(shù)f(x)=2x,x≥01,
x<0,若f(1-a2)>f(2a),則實數(shù)a的取值范圍是______.答案:函數(shù)f(x)=2x,x≥01,
x<0,x<0時是常函數(shù),x≥0時是增函數(shù),由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故為:-1<a<2-1.8.如果橢圓x225+y216=1上一點P到焦點F1的距離為6,則點P到另一個焦點F2的距離為()A.5B.4C.8D.6答案:由橢圓的定義知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故選B.9.設四邊形ABCD中,有且,則這個四邊形是()
A.平行四邊形
B.矩形
C.等腰梯形
D.菱形答案:C10.圓柱的底面積為S,側面展開圖為正方形,那么這個圓柱的側面積為()A.πSB.2πSC.3πSD.4πS答案:設圓柱的底面半徑是R,母線長是l,∵圓柱的底面積為S,側面展開圖為正方形,∴πR2=S,且l=2πR,∴圓柱的側面積為2πRl=4πS.故選D.11.在四面體O-ABC中,OA=a,OB=b,OC=c,D為BC的中點,E為AD的中點,則OE可表示為(用a,b、c表示).
()A.12a+14b+14cB.12a+13b-12cC.13a+14b+14cD.13a-14b+14c答案:OE=OA+12AD=OA+12×12(AB+AC)=OA+14×(OB-OA+OC-OA)PD.CD+BC.AD+CA.BD=12OA+14OB+14OC=12a+14b+14c.故選A.12.設a∈(0,1)∪(1,+∞),對任意的x∈(0,12],總有4x≤logax恒成立,則實數(shù)a的取值范圍是______.答案:∵a∈(0,1)∪(1,+∞),當0<x≤12時,函數(shù)y=4x的圖象如下圖所示:∵對任意的x∈(0,12],總有4x≤logax恒成立,若不等式4x<logax恒成立,則y=logax的圖象恒在y=4x的圖象的上方(如圖中虛線所示)∵y=logax的圖象與y=4x的圖象交于(12,2)點時,a=22,故虛線所示的y=logax的圖象對應的底數(shù)a應滿足22<a<1.故為:(22,1).13.已知=1-ni,其中m,n是實數(shù),i是虛數(shù)單位,則m+ni=(
)
A.1+2i
B.1-2i
C.2+i
D.2-i答案:C14.
以下四組向量中,互相平行的有()組.
A.一
B.二
C.三
D.四答案:D15.(不等式選講選做題)
已知實數(shù)a、b、x、y滿足a2+b2=1,x2+y2=3,則ax+by的最大值為______.答案:因為a2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且僅當ay=bx時取等號,所以ax+by的最大值為3.故為:3.16.編程序,求和s=1!+2!+3!+…+20!答案:s=0n=1t=1WHILE
n<=20s=s+tn=n+1t=t*nWENDPRINT
sEND17.(幾何證明選講選做題)如圖,已知四邊形ABCD內(nèi)接于⊙O,且AB為⊙O的直徑,直線MN切
⊙O于D,∠MDA=45°,則∠DCB=______.答案:連接BD,∵AB為⊙O的直徑,直線MN切⊙O于D,∠MDA=45°,∴∠ABD=45°,∠ADB=90°,∴∠DCB=∠ABD+∠ADB=45°+90°=135°.故為:135°.18.集合{0,1}的子集有()個.A.1個B.2個C.3個D.4個答案:根據(jù)題意,集合{0,1}的子集有{0}、{1}、{0,1}、?,共4個,故選D.19.命題“12既是4的倍數(shù),又是3的倍數(shù)”的形式是()A.p∨qB.p∧qC.¬pD.簡單命題答案:命題“12既是4的倍數(shù),又是3的倍數(shù)”可轉化成“12是4的倍數(shù)且12是3的倍數(shù)”故是p且q的形式;故選B.20.(2的c的?湛江一模)已知⊙O的方程為x2+y2=c,則⊙O上的點到直線x=2+45ty=c-35t(t為參數(shù))的距離的最大值為______.答案:∵直線x=2+45t一=1-35t(t為參數(shù))∴3x+4一=10,∵⊙e的方程為x2+一2=1,圓心為(0,0),設直線3x+4一=k與圓相切,∴|k|5=1,∴k=±5,∴直線3x+4一=k與3x+4一=10,之間的距離就是⊙e上的點到直線的距離的最大值,∴d=|10±5|5,∴d的最大值是155=3,故為:3.21.行駛中的汽車,在剎車時由于慣性作用,要繼續(xù)往前滑行一段距離才能停下,這段距離叫做剎車距離.在某種路面上,某種型號汽車的剎車距離s(m)與汽車的車速v(km/h)滿足下列關系:s=(n為常數(shù),且n∈N),做了兩次剎車試驗,有關試驗數(shù)據(jù)如圖所示,其中,
(1)求n的值;
(2)要使剎車距離不超過12.6m,則行駛的最大速度是多少?答案:解:(1)依題意得,解得,又n∈N,所以n=6;(2)s=,因為v≥0,所以0≤v≤60,即行駛的最大速度為60km/h。22.mx+ny=1(mn≠0)與兩坐標軸圍成的三角形面積為______.答案:由mx+ny=1(mn≠0),得x1m+y1n=1,所以mx+ny=1(mn≠0)在兩坐標軸上的截距分別為1m,1n.則mx+ny=1(mn≠0)與兩坐標軸圍成的三角形面積為12|mn|.故為12|mn|.23.一牧場有10頭牛,因誤食含有病毒的飼料而被感染,已知該病的發(fā)病率為0.02.設發(fā)病的牛的頭數(shù)為ξ,則Dξ=______;.答案:∵由題意知該病的發(fā)病率為0.02,且每次實驗結果都是相互獨立的,∴ξ~B(10,0.02),∴由二項分布的方差公式得到Dξ=10×0.02×0.98=0.196.故為:0.19624.若x~B(3,13),則P(x=1)=______.答案:∵x~B(3,13),∴P(x=1)=C13(13)(1-13)2=49.故為:49.25.已知點E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0),則點E一定落在()A.BC邊的垂直平分線上B.BC邊的中線所在的直線上C.BC邊的高線所在的直線上D.BC邊所在的直線上答案:因為點E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0)所以,根據(jù)平行四邊形法則,E一定落在這個平行四邊形的起點為A的對角線上,又平行四邊形對角線互相平分,所以E一定落在BC邊的中線所在的直線上,故選B.26.棱長為2的正方體ABCD-A1B1C1D1中,=(
)
A.
B.4
C.
D.-4答案:D27.某校有老師200人,男學生1200人,女學生1000人.現(xiàn)用分層抽樣的方法從所有師生中抽取一個容量為n的樣本;已知從女學生中抽取的人數(shù)為80人,則n=______.答案:∵某校有老師200人,男學生1
200人,女學生1
000人.∴學校共有200+1200+1000人由題意知801000=n200+1200+1000,∴n=192.故為:19228.若點(a,9)在函數(shù)y=3x的圖象上,則tanaπ6=______.答案:將(a,9)代入到y(tǒng)=3x中,得3a=9,解得a=2.∴tanaπ6=tanπ3=3故為:329.已知直線l1:(k-3)x+(4-k)y+1=0,與l2:2(k-3)x-2y+3=0,平行,則k的值是______.答案:當k=3時兩條直線平行,當k≠3時有2=-24-k≠3
所以
k=5故為:3或5.30.已知x∈R,a=x2+12,b=2-x,c=x2-x+1,試證明a,b,c至少有一個不小于1.答案:證明:假設a,b,c均小于1,即a<1,b<1,c<1,則有a+b+c<3而a+b+c=2x2-2x+12+3=2(x-12)2+3≥3,兩者矛盾;故a,b,c至少有一個不小于1.31.設O是平行四邊形ABCD的兩條對角線AC與BD的交點,對于下列向量組:①AD與AB;②DA與BC;③CA與DC;④OD與OB.其中能作為一組基底的是______(只填寫序號).答案:解析:由于①AD與AB不共線,③CA與DC不共線,所以都可以作為基底.②DA與BC共線,④OD與OB共線,不能作為基底.故為:①③.32.直線y=kx+1與圓x2+y2=4的位置關系是()
A.相交
B.相切
C.相離
D.與k的取值有關答案:A33.(選做題)
設集合A={x|x2﹣5x+4>0},B={x|x2﹣2ax+(a+2)=0},若A∩B≠,求實數(shù)a的取值范圍.答案:解:A={x|x2﹣5x+4>0}={x|x<1或x>4}.∵A∩B≠,∴方程x2﹣2ax+(a+2)=0有解,且至少有一解在區(qū)間(﹣∞,1)∪(4,+∞)內(nèi)直接求解情況比較多,考慮補集設全集U={a|△≥0}=(﹣∞,﹣1]∪[2,+∞),P={a|方程x2﹣2ax+(a+2)=0的兩根都在[1,4]內(nèi)}記f(x)=x2﹣2ax+(a+2),且f(x)=0的兩根都在[1,4]內(nèi)∴,∴,∴,∴∴實數(shù)a的取值范圍為.34.假設兩圓互相外切,求證:用連心線做直徑的圓,必與前兩圓的外公切線相切.答案:證明:設⊙O1及⊙O2為互相外切的兩個圓,其一外公切線為A1A2,切點為A1及A2令點O為連心線O1O2的中點,過O作OA⊥A1A2,由直角梯形的中位線性質得:OA=12(O1A1+O2A2)=12O1O2,∴以O1O2為直徑,即以O為圓心,OA為半徑的圓必與直線A1A2相切,同理可證,此圓必切于⊙O1及⊙O2的另一條外公切線.35.已知正方形ABCD的邊長為a,則|AC+AD|等于______.答案:∵正方形ABCD的邊長為a,∴AC=2a,AC與AD的夾角為45°|AC+AD|2=|AC
|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故為:5a36.不等式﹣2x+1>0的解集是(
).答案:{x|x<}37.一位運動員投擲鉛球的成績是14m,當鉛球運行的水平距離是6m時,達到最大高度4m.若鉛球運行的路線是拋物線,則鉛球出手時距地面的高度是()
A.2.25m
B.2.15m
C.1.85m
D.1.75m
答案:D38.在四邊形ABCD中有AC=AB+AD,則它的形狀一定是______.答案:由向量加法的平行四邊形法則及AC=AB+AD,知四邊形ABCD為平行四邊形,故為:平行四邊形.39.以下四組向量中,互相平行的是.()
(1)=(1,2,1),=(1,-2,3);
(2)=(8,4,-6),=(4,2,-3);
(3)=(0,1,-1),=(0,-3,3);
(4)=(-3,2,0),=(4,-3,3).
A.(1)(2)
B.(2)(3)
C.(2)(4)
D.(1)(3)答案:B40.設平面α的法向量為(1,2,-2),平面β的法向量為(-2,-4,k),若α∥β,則k=______.答案:∵α∥β∴平面α、β的法向量互相平行,由此可得a=(1,2,-2),b=(-2,-4,k),a∥b∴1-2=2-4=-2k,解之得k=4.故為:441.若一個底面為正三角形、側棱與底面垂直的棱柱的三視圖如下圖所示,則這個棱柱的體積為()A.123B.363C.273D.6答案:此幾何體為一個三棱柱,棱柱的高是4,底面正三角形的高是33,設底面邊長為a,則32a=33,∴a=6,故三棱柱體積V=12?62?32?4=363.故選B42.兩平行直線x+3y-5=0與x+3y-10=0的距離是______.答案:根據(jù)題意,得兩平行直線x+3y-5=0與x+3y-10=0的距離為d=|-5+10|12+32=102故為:10243.已知直線的斜率為3,則此直線的傾斜角為()A.30°B.60°C.45°D.120°答案:∵直線的斜率為3,∴直線傾斜角α滿足tanα=3結合α∈[0°,180°),可得α=60°故選:B44.點O是△ABC內(nèi)一點,若+=-,則是S△AOB:S△AOC=()
A.1
B.
C.
D.答案:A45.在數(shù)列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想數(shù)列{an}的通項公式(不必證明);(Ⅱ)證明:當λ≠0時,數(shù)列{an}不是等比數(shù)列;(Ⅲ)當λ=1時,試比較an與n2+1的大小,證明你的結論.答案:(Ⅰ)∵a1=2,∴a2=λa1+λ2+2(2-λ)=λ2+4,同理可得,a3=2λ3+8,a4=3λ4+16,猜想an=(n-1)λn+2n.(Ⅱ)假設數(shù)列{an}是等比數(shù)列,則a1,a2,a3也成等比數(shù)列,∴a22=a1?a3?(λ2+4)2=2(2λ3+8)?λ4-4λ3+8λ2=0,∵λ≠0,∴λ2-4λ+8=0,即(λ-2)2+4=0,但(λ-2)2+4>0,矛盾,∴數(shù)列{an}不是等比數(shù)列.(Ⅲ)∵λ=1,∴an=(n+1)+2n,∴an-(n2+1)=2n-(n2-n+2),∵當n=1,2,3時,2n=n2-n+2,∴an=n2+1.當n≥4時,猜想2n>n2-n+2,證明如下:當n=4時,顯然2k>k2-4+2假設當n=k≥4時,猜想成立,即2k>k2-k+2,則當n=k+1時,2k+1=2?2k>2(k2-k+2),∵2(k2-k+2)-[(k+1)20-(k+1)+2]=(k-1)(k-2)>0∴2k+1>2(k2-k+2)>(k+1)2-(k+1)+2,∴當n≥4時,猜想2n>n2-n+2成立,∴當n≥4時,an>n2+1.46.設曲線C的參數(shù)方程為(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上到直線l距離為的點的個數(shù)為()
A.1
B.2
C.3
D.4答案:B47.表示隨機事件發(fā)生的可能性大小的數(shù)叫做該事件的______.答案:根據(jù)概率的定義:表示隨機事件發(fā)生的可能性大小的數(shù)叫做該事件的概率;一個隨機事件發(fā)生的可能性很大,那么P的值接近1又不等于1,故為:概率.48.以下命題:
①兩個共線向量是指在同一直線上的兩個向量;
②共線的兩個向量互相平行;
③共面的三個向量是指在同一平面內(nèi)的三個向量;
④共面的三個向量是指平行于同一平面的三個向量.
其中正確命題的序號是______.答案:解①根據(jù)共面與共線向量的定義可知①錯誤.②根據(jù)共線向量的定義可知②正確.③根據(jù)共面向量的定義可知③錯誤.④根據(jù)共面向量的定義可知④正確.故為:②④.49.若a>0,b>0,2a+3b=1,則ab的最大值為______.答案:∵a>0,b>0,2a+3b=1∴2a+3b=1≥26ab∴ab≤124故為12450.袋子A和袋子B均裝有紅球和白球,從A中摸出一個紅球的概率是13,從B中摸出一個紅球的概率是P.
(1)從A中有放回地摸球,每次摸出一個,共摸5次,求恰好有3次摸到紅球的概率;
(2)若A、B兩個袋子中的總球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個紅球的概率為25,求P的值.答案:(1)每次從A中摸一個紅球的概率是13,摸不到紅球的概率為23,根據(jù)獨立重復試驗的概率公式,故共摸5次,恰好有3次摸到紅球的概率為:P=C35(13)3(23)2=10×127×49=40243.(2)設A中有m個球,A、B兩個袋子中的球數(shù)之比為1:2,則B中有2m個球,∵將A、B中的球裝在一起后,從中摸出一個紅球的概率是25,∴13m+2mp3m=25,解得p=1330.第3卷一.綜合題(共50題)1.已知正四棱柱的對角線的長為6,且對角線與底面所成角的余弦值為33,則該正四棱柱的體積等于______.答案::如圖可知:∵AC1=6,cos∠AC1A1=33∴A1C1=2,AA1=2∴正四棱柱的體積等于A1B12?AA1=2故為:22.已知a>0,b>0,直線l與x軸、y軸分別交于A(a,0),B(0,b),且過點(1,2),O為原點.求△OAB面積的最小值.答案:∵a>0,b>0,直線l與x軸、y軸分別交于A(a,0),B(0,b),∴直線l的方程為xa+yb=1,又直線l過點(1,2),∴1a+2b=1,由基本不等式得1≥22ab,∴ab≥8,△OAB面積為:12ab≥12×8=4,當且僅當1a=2b=12,即a=2且b=4時,等號成立.故△OAB面積的最小值是4.3.已知a、b是不共線的向量,AB=λa+b,AC=a+μb(λ,μ∈R),則A、B、C三點共線的充要條件是______.答案:由于AB,AC有公共點A,∴若A、B、C三點共線則AB與AC共線即存在一個實數(shù)t,使AB=tAC即λ=at1=μt消去參數(shù)t得:λμ=1反之,當λμ=1時AB=1μa+b此時存在實數(shù)1μ使AB=1μAC故AB與AC共線又由AB,AC有公共點A,∴A、B、C三點共線故A、B、C三點共線的充要條件是λμ=14.雙曲線x2a2-y2b2=1,(a>0,b>0)的一條漸近線方程是y=3x,坐標原點到直線AB的距離為32,其中A(a,0),B(0,-b).
(1)求雙曲線的方程;
(2)若B1是雙曲線虛軸在y軸正半軸上的端點,過點B作直線交雙曲線于點M,N,求B1M⊥B1N時,直線MN的方程.答案:(1)∵A(a,0),B(0,-b),∴設直線AB:xa-yb=1∴ba=3aba2+b2=32,∴a=3b=3,∴雙曲線方程為:x23-y29=1.(2)∵雙曲線方程為:x23-y29=1,∴A1(-3,0),A2(3,0),設P(x0,y0),∴kPA1=y0x0+3,kPA2=y0x0-3,∴k1k2=y02x02-3=3x02-9x02-3=3.B(0,-3)B1(0,3),設M(x1,y1),N(x2,y2)∴設直線l:y=kx-3,∴y=kx-33x2-y2=9,∴3x2-(kx-3)2=9.(3-k2)x2+6kx-18=0,∴x1+x2=6kk2-3
y1+y2=k(x1+x2)-6=18k2-3x1x2=18k2-3
y1y2=k2(x1x2)-3k(x1+x2)+9∵B1M=(x1,y1-3)
B1N=(x2,y2-3)∵B1M?B1N=0∴x1x2+y1y2-3(y1+y2)+9=018k2-3+9-54k2-3+9=0k2=5,即k=±5代入(1)有解,∴l(xiāng)MN:y=±5x-3.5.
圓ρ=(cosθ+sinθ)的圓心的極坐標是()
A.(1,)
B.(,)
C.(,)
D.(2,)
答案:A6.證明:已知a與b均為有理數(shù),且a和b都是無理數(shù),證明a+b也是無理數(shù).答案:證明:假設a+b是有理數(shù),則(a+b)(a-b)=a-b由a>0,b>0則a+b>0即a+b≠0∴a-b=a-ba+b∵a,b?Q且a+b∈Q∴a-ba+b∈Q即(a-b)∈Q這樣(a+b)+(a-b)=2a∈Q從而a?Q(矛盾)∴a+b是無理數(shù)7.為了了解某地母親身高x與女兒身高Y的相關關系,隨機測得10對母女的身高如下表所示:
母親身x(cm)159160160163159154159158159157女兒身Y(cm)158159160161161155162157162156計算x與Y的相關系數(shù)r≈0.71,通過查表得r的臨界值r0.05=0.632,從而有______的把握認為x與Y之間具有線性相關關系,因而求回歸直線方程是有意義的.通過計算得到回歸直線方程為y═34.92+0.78x,因此,當母親的身高為161cm時,可以估計女兒的身高大致為______.答案:查對臨界值表,由臨界值r0.05=0.632,可得有95%的把握認為x與Y之間具有線性相關關系,回歸直線方程為y=34.92+0.78x,因此,當x=161cm時,y=34.92+0.78x=34.92+0.78×161=161cm故為:95%,161cm.8.一只袋中裝有2個白球、3個紅球,這些球除顏色外都相同.
(Ⅰ)從袋中任意摸出1個球,求摸到的球是白球的概率;
(Ⅱ)從袋中任意摸出2個球,求摸出的兩個球都是白球的概率;
(Ⅲ)從袋中任意摸出2個球,求摸出的兩個球顏色不同的概率.答案:(Ⅰ)從5個球中摸出1個球,共有5種結果,其中是白球的有2種,所以從袋中任意摸出1個球,摸到白球的概率為25.
…(4分)(Ⅱ)從袋中任意摸出2個球,共有C25=10種情況,其中全是白球的有1種,故從袋中任意摸出2個球,摸出的兩個球都是白球的概率為110.…(9分)(Ⅲ)由(Ⅱ)可知,摸出的兩個球顏色不同的情況共有2×3=6種,故從袋中任意摸出2個球,摸出的2個球顏色不同的概率為610=35.
…(14分)9.已知雙曲線的頂點到漸近線的距離為2,焦點到漸近線的距離為6,則該雙曲線的離心率為
______.答案:如圖,過雙曲線的頂點A、焦點F分別向其漸近線作垂線,垂足分別為B、C,則:|OF||OA|=|FC||AB|?ca=62=3.故為310.mx+ny=1(mn≠0)與兩坐標軸圍成的三角形面積為______.答案:由mx+ny=1(mn≠0),得x1m+y1n=1,所以mx+ny=1(mn≠0)在兩坐標軸上的截距分別為1m,1n.則mx+ny=1(mn≠0)與兩坐標軸圍成的三角形面積為12|mn|.故為12|mn|.11.已知,棱長都相等的正三棱錐內(nèi)接于一個球,某學生畫出四個過球心的平面截球與正三棱錐所得的圖形,如下圖所示,則
A、以上四個圖形都是正確的
B、只有(2)(4)是正確的
C、只有(4)是錯誤的
D、只有(1)(2)是正確的答案:C12.已知α1,α2,…αn∈(0,π),n是大于1的正整數(shù),求證:|sin(α1+α2+…+αn)|<sinα1+sinα2+…+sinαn.答案:證明:下面用數(shù)學歸納法證明(1)n=2時,|sin(α1+α2)|-|sinα1cosα2+cosα1sinα2|≤sinα1|cosα2|+|cosα1|?|sinα2|<sinα1+sinα2,所以n=2時成立.(2)假設n=k(k≥2)時成立,即|sin(α1+α2+Λ+αk)|<sinα1+sinα2+Λ+sinαk當n=k+1時,|sin(α1+α2+Λ+αk+1)|==|sinαk+1cos(α1+Λαk)+cosαk+1sin(α1+Λαk)|≤sinαk+1|cos(α1+Λ+αk)|+|cosαk+1|?|sin(α1+Λαk)|<sinαk+1+|sin(α1+Λαk)|<sinα1+sinα2+Λ+sinαk+1∴n=k+1時也成立.由(1)(2)得,原式成立.13.若有以下說法:
①相等向量的模相等;
②若a和b都是單位向量,則a=b;
③對于任意的a和b,|a+b|≤|a|+|b|恒成立;
④若a∥b,c∥b,則a∥c.
其中正確的說法序號是()A.①③B.①④C.②③D.③④答案:根據(jù)定義,大小相等且方向相同的兩個向量相等.因此相等向量的模相等,故①正確;因為單位向量的模等于1,而方向不確定.所以若a和b都是單位向量,則不一定有a=b成立,故②不正確;根據(jù)向量加法的三角形法則,可得對于任意的a和b,都有|a+b|≤|a|+|b|成立,當且僅當a和b方向相同時等號成立,故③正確;若b=0,則有a∥b且c∥b,但是a∥c不成立,故④不正確.綜上所述,正確的命題是①③故選:A14.函數(shù)y=f(x)對任意實數(shù)x,y都有f(x+y)=f(x)+f(y)+2xy.
(1)求f(0)的值;
(2)若f(1)=1,求f(2),f(3),f(4)的值,猜想f(n)的表達式并用數(shù)學歸納法證明你的結論;
(3)若f(1)≥1,求證:f(12n)>0(n∈N*).答案:(1)令x=y=0得f(0+0)=f(0)+f(0)+2×0×0?f(0)=0(2)f(1)=1,f(2)=f(1+1)=1+1+2=4f(3)=f(2+1)=4+1+2×2×1=9f(4)=f(3+1)=9+1+2×3×1=16猜想f(n)=n2,下用數(shù)學歸納法證明之.①當n=1時猜想成立.②假設n=k時猜想成立,即:f(k)=k2,那么f(k+1)=f(k)+f(1)+2k=k2+2k+1=(k+1)2.這就是說n=k+1時猜想也成立.對于一切n≥1,n∈N+猜想都成立.(3)f(1)≥1,則f(1)=2f(12)+2×12×12≥1?f(12)≥14>0假設n=k(k∈N*)時命題成立,即f(12k)≥122k>0,則f(12k)=2f(12k+1)+2×12k+1×12k+1≥122k?f(12k+1)≥122(k+1),由上知,則f(12n)>0(n∈N*).15.已知|a|=3,|b|=2,a與b的夾角為300,則|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a與b的夾角為300,∴a?b=|a||b|cos30°=2×3×32=3則|a+b|=a2+2a?b+b2=13故選A16.設向量=(0,2),=,則,的夾角等于(
)
A.
B.
C.
D.答案:A17.把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標等于_____答案:(2,-2)解析:把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標等于_____18.設與都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關于與的敘述正確的是()
A.=
B.與同向
C.∥
D.與有相同的位置向量答案:C19.若關于x的方程x2+ax+a2-1=0有一正根和一負根,則a的取值范圍為______.答案:令f(x)=x2+ax+a2-1,∴二次函數(shù)開口向上,若方程有一正一負根,則只需f(0)<0,即a2-1<0,∴-1<a<1.故為:-1<a<1.20.已知a=5-12,則不等式logax>loga5的解集是______.答案:∵0<a<1,∴f(x)=logax在(0,+∞)上單調遞減∵logax>loga5∴0<x<5故為:(0,5)21.如圖,從圓O外一點P作圓O的割線PAB、PCD,AB是圓O的直徑,若PA=4,PC=5,CD=3,則∠CBD=______.答案:由割線長定理得:PA?PB=PC?PD即4×PB=5×(5+3)∴PB=10∴AB=6∴R=3,所以△OCD為正三角形,∠CBD=12∠COD=30°.22.|a|=4,a與b的夾角為30°,則a在b方向上的投影為______.答案:a在b方向上的投影為|a|cos30°=4×32=23故為:2323.若直線的參數(shù)方程為,則直線的斜率為(
)A.B.C.D.答案:D24.某研究小組在一項實驗中獲得一組數(shù)據(jù),將其整理得到如圖所示的散點圖,下列函數(shù)中,最能近似刻畫y與t之間關系的是()
A.y=2t
B.y=2t2
C.y=t3
D.y=log2t
答案:D25.教學大樓共有五層,每層均有兩個樓梯,由一層到五層的走法有()
A.10種
B.25種
C.52種
D.24種答案:D26.選修4-4:坐標系與參數(shù)方程
已知直線l:x=m+tcosαy=tsinα(t為參數(shù))經(jīng)過橢圓C:x=2cosφy=3sinφ(φ為參數(shù))的左焦點F.
(Ⅰ)求m的值;
(Ⅱ)設直線l與橢圓C交于A、B兩點,求|FA|?|FB|的最大值和最小值.答案:(Ⅰ)將橢圓C的參數(shù)方程化為普通方程,得x24+y23=1.a(chǎn)=2,b=3,c=1,則點F坐標為(-1,0).l是經(jīng)過點(m,0)的直線,故m=-1.…(4分)(Ⅱ)將l的參數(shù)方程代入橢圓C的普通方程,并整理,得(3cos2α+4sin2α)t2-6tcosα-9=0.設點A,B在直線參數(shù)方程中對應的參數(shù)分別為t1,t2,則|FA|?|FB|=|t1t2|=93cos2α+4sin2α=93+sin2α.當sinα=0時,|FA|?|FB|取最大值3;當sinα=±1時,|FA|?|FB|取最小值94.…(10分)27.把下列直角坐標方程或極坐標方程進行互化:
(1)ρ(2cos?-3sin?)+1=0
(2)x2+y2-4x=0.答案:(1)將原極坐標方程ρ(2cosθ-3sinθ)+1=0展開后化為:2ρcosθ-3ρsinθ+1=0,化成直角坐標方程為:2x-3y+1=0,(2)把公式x=ρcosθ、y=ρsinθ代入曲線的直角坐標方程為x2+y2-4x=0,可得極坐標方程ρ2-4ρcosθ=0,即ρ=4cosθ.28.大熊貓活到十歲的概率是0.8,活到十五歲的概率是0.6,若現(xiàn)有一只大熊貓已經(jīng)十歲了,則他活到十五歲的概率是()
A.0.8
B.0.75
C.0.6
D.0.48答案:B29.______稱為向量的長度(或稱為模),記作
______,______稱為零向量,記作
______,______稱為單位向量.答案:向量AB所在線段AB的長度,即向量AB的大小,稱為向量AB的長度(或成為模),記作|AB|;長度為零的向量稱為零向量,記作0;長度等于1個單位的向量稱為單位向量.故為:向量AB所在線段AB的長度,即向量AB的大小,|AB|;長度為零的向量,0;長度等于1個單位的向量.30.已知有如下兩段程序:
問:程序1運行的結果為______.程序2運行的結果為______.
答案:程序1是計數(shù)變量i=21開始,不滿足i≤20,終止循環(huán),累加變量sum=0,這個程序計算的結果:sum=0;程序2計數(shù)變量i=21,開始進入循環(huán),sum=0+21=22,其值大于20,循環(huán)終止,累加變量sum從0開始,這個程序計算的是sum=21.故為:0;21.31.在直角坐標系中,x=-1+3cosθy=2+3sinθ,θ∈[0,2π],所表示曲線的解析式是:______.答案:由題意并根據(jù)cos2θ+sin2θ=1
可得,(x+13)2+(y-23)2=1,即(x+1)2+(y-2)2=9,故為(x+1)2+(y-2)2=9.解析:在直角坐標系中,32.已知|a|=1,|b|=2,<a,b>=60°,則|2a+b|=______.答案:∵|a|=1,|b|=2,<a,b>=60°,∴a?b=|a|×|b|cos60°=1由此可得(2a+b)2=4a2+4a?b+b2=4×12+4×1+22=12∴|2a+b|=(2a+b)2=23故為:2333.從裝有2個紅球和2個黒球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()
A.至少有一個黒球與都是紅球
B.至少有一個黒球與都是黒球
C.至少有一個黒球與至少有1個紅球
D.恰有1個黒球與恰有2個黒球答案:D34.拋擲兩個骰子,若至少有一個1點或一個6點出現(xiàn),就說這次試驗失敗.那么,在3次試驗中成功2次的概率為()
A.
B.
C.
D.答案:D35.已知△ABC的頂點B、C在橢圓+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是()
A.2
B.6
C.4
D.12答案:C36.已知a=log132,b=(13)12,c=(23)12,則a,b,c大小關系為______.答案:∵a=log132<log131=0,又∵函數(shù)y=x12在(0,+∞)是增函數(shù),∴(23)12>(13)12>0.所以,c>b>a.故為c>b>a.37.若復數(shù)(1+bi)?(2-i)是純虛數(shù)(i是虛數(shù)單位,b是實數(shù)),則b=()A.-2B.-12C.12D.2答案:由(1+bi)?(2-i)=2+b+(2b-1)i是純虛數(shù),則2+b=02b-1≠0,解得b=-2.故選A.38.在程序語言中,下列符號分別表示什么運算*;\;∧;SQR;ABS?答案:“*”表示乘法運算;“\”表示除法運算;“∧”表示乘方運算;“SQR()”表示求算術平方根運算;“ABS()”表示求絕對值運算.39.鐵路托運行李,從甲地到乙地,按規(guī)定每張客票托運行李不超過50kg時,每千克0.2元,超過50kg時,超過部分按每千克0.25元計算,畫出計算行李價格的算法框圖.答案:程序框圖:40.要從10名女生與5名男生中選出6名學生組成課外活動小組,則符合按性別比例分層抽樣的概率為()
A.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《離婚法律程序執(zhí)行細則協(xié)議》版
- 二零二五版保險及期貨居間業(yè)務委托管理合同3篇
- 二零二五年度智慧社區(qū)商業(yè)配套租賃協(xié)議3篇
- 二零二五年度集成墻板原材料期貨交易與風險管理合同2篇
- 二零二五年度高端人才引進與培養(yǎng)合同5篇
- 臨時建筑建設合同樣本2024年版版B版
- 2025年度智能廚房設備研發(fā)、安裝與培訓服務合同3篇
- 二零二五版公共工程合同擔保制度及操作細則3篇
- 二零二五年電子設備采購與技術服務合同2篇
- 2024年簡化版資金借用協(xié)議范本版B版
- DB-T29-74-2018天津市城市道路工程施工及驗收標準
- 小學一年級20以內(nèi)加減法混合運算3000題(已排版)
- 智慧工廠數(shù)字孿生解決方案
- 病機-基本病機 邪正盛衰講解
- 品管圈知識 課件
- 非誠不找小品臺詞
- 2024年3月江蘇省考公務員面試題(B類)及參考答案
- 患者信息保密法律法規(guī)解讀
- 老年人護理風險防控PPT
- 充電樁采購安裝投標方案(技術方案)
- 醫(yī)院科室考勤表
評論
0/150
提交評論