版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年濟(jì)南幼兒師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.設(shè),是互相垂直的單位向量,向量=(m+1)-3,=-(m-1),(+)⊥(-)則實(shí)數(shù)m為()
A.-2
B.2
C.-
D.不存在答案:A2.條件語句的一般形式如圖所示,其中B表示的是()
A.條件
B.條件語句
C.滿足條件時(shí)執(zhí)行的內(nèi)容
D.不滿足條件時(shí)執(zhí)行的內(nèi)容
答案:C3.某公司為慶祝元旦舉辦了一個(gè)抽獎(jiǎng)活動(dòng),現(xiàn)場(chǎng)準(zhǔn)備的抽獎(jiǎng)箱里放置了分別標(biāo)有數(shù)字1000、800﹑600、0的四個(gè)球(球的大小相同).參與者隨機(jī)從抽獎(jiǎng)箱里摸取一球(取后即放回),公司即贈(zèng)送與此球上所標(biāo)數(shù)字等額的獎(jiǎng)金(元),并規(guī)定摸到標(biāo)有數(shù)字0的球時(shí)可以再摸一次﹐但是所得獎(jiǎng)金減半(若再摸到標(biāo)有數(shù)字0的球就沒有第三次摸球機(jī)會(huì)),求一個(gè)參與抽獎(jiǎng)活動(dòng)的人可得獎(jiǎng)金的期望值是多少元.答案:設(shè)ξ表示摸球后所得的獎(jiǎng)金數(shù),由于參與者摸取的球上標(biāo)有數(shù)字1000,800,600,0,當(dāng)摸到球上標(biāo)有數(shù)字0時(shí),可以再摸一次,但獎(jiǎng)金數(shù)減半,即分別為500,400,300,0.則ξ的所有可能取值為1000,800,600,500,400,300,0.依題意得P(ξ=1000)=P(ξ=800)=P(ξ=600)=14,P(ξ=500)=P(ξ=400)=P(ξ=300)=P(ξ=0)=116,則ξ的分布列為∴所求期望值為Eξ=14(1000+800+600)+116(500+400+300+0)=675元.4.設(shè)P點(diǎn)在x軸上,Q點(diǎn)在y軸上,PQ的中點(diǎn)是M(-1,2),則|PQ|等于______.答案:設(shè)P(a,0),Q(0,b),∵PQ的中點(diǎn)是M(-1,2),∴由中點(diǎn)坐標(biāo)公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故為:255.已知圓C的極坐標(biāo)方程是ρ=2sinθ,那么該圓的直角坐標(biāo)方程為
______,半徑長(zhǎng)是
______.答案:把極坐標(biāo)方程是ρ=2sinθ的兩邊同時(shí)乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)為圓心,半徑等于1的圓,故為:x2+(y-1)2=1;1.6.算法的有窮性是指()A.算法必須包含輸出B.算法中每個(gè)操作步驟都是可執(zhí)行的C.算法的步驟必須有限D(zhuǎn).以上說法均不正確答案:一個(gè)算法必須在有限步內(nèi)結(jié)束,簡(jiǎn)單的說就是沒有死循環(huán)即算法的步驟必須有限故選C.7.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若向量OB=a100OA+a101OC,且A、B、C三點(diǎn)共線(該直線不過點(diǎn)O),則S200等于______.答案:由題意可知:向量OB=a100OA+a101OC,又∵A、B、C三點(diǎn)共線,則a100+a101=1,等差數(shù)列前n項(xiàng)的和為Sn=(a1+an)?n
2,∴S200=(a1+a200)×200
2=(a100+
a101)×2002=100,故為100.8.直線(x+1)a+(y+1)b=0與圓x2+y2=2的位置關(guān)系是______.答案:直線(x+1)a+(y+1)b=0化為ax+by+(a+b)=0,所以圓心點(diǎn)到直線的距離d=|a+b|a2+b2=a2+b2+2aba2+b2≤2(a2+b2)a2+b2=2.所以直線(x+1)a+(y+1)b=0與圓x2+y2=2的位置關(guān)系是:相交或相切.故為:相交或相切.9.抽樣方法有()A.隨機(jī)抽樣、系統(tǒng)抽樣和分層抽樣B.隨機(jī)數(shù)法、抽簽法和分層抽樣法C.簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣D.系統(tǒng)抽樣、分層抽樣和隨機(jī)數(shù)法答案:我們常用的抽樣方法有:簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣,而抽簽法和隨機(jī)數(shù)法,只是簡(jiǎn)單隨機(jī)抽樣的兩種不同抽取方法故選C10.已知圓C:x2+y2-4y-6y+12=0,求:
(1)過點(diǎn)A(3,5)的圓的切線方程;
(2)在兩條坐標(biāo)軸上截距相等的圓的切線方程.答案:(l)設(shè)過點(diǎn)A(3,5)的直線?的方程為y-5=k(x-3).因?yàn)橹本€?與⊙C相切,而圓心為C(2,3),則|2k-3-3k+5|k2+1=1,解得k=34所以切線方程為y-5=34(x-3),即3x-4y+11=0.由于過圓外一點(diǎn)A與圓相切的直線有兩條,因此另一條切線方程為x=3.(2)因?yàn)樵c(diǎn)在圓外,所以設(shè)在兩坐標(biāo)軸上截距相等的直線方程x+y=a或y=kx.由直線與圓相切得,|2+3-a|2=1或|2k-3|k2+1=1,解得a=5士2,k=6±223故所求的切線方程為x+y=5士2或y=6±223x.11.已知向量a=(3,4),b=(8,6),c=(2,k),其中k為常數(shù),如果<a,c>=<b,c>,則k=______.答案:由題意可得cos<a,c>=cos<b,c>,∴a?c|a|?|c|=b?c|b|?|c|,∴6+4k54+k
2=16+6k104+k
2.解得k=2,故為2.12.設(shè)m∈R,向量=(1,m).若||=2,則m等于()
A.1
B.
C.±1
D.±答案:D13.已知向量=(1,1,-2),=(2,1,),若≥0,則實(shí)數(shù)x的取值范圍為()
A.(0,)
B.(0,]
C.(-∞,0)∪[,+∞)
D.(-∞,0]∪[,+∞)答案:C14.設(shè)計(jì)一個(gè)計(jì)算1×3×5×7×9×11×13的算法.圖中給出了程序的一部分,則在橫線①上不能填入的數(shù)是()
A.13
B.13.5
C.14
D.14.5答案:A15.如圖所示,正方體的棱長(zhǎng)為1,點(diǎn)A是其一棱的中點(diǎn),則點(diǎn)A在空間直角坐標(biāo)系中的坐標(biāo)是()
A.(,,1)
B.(1,1,)
C.(,1,)
D.(1,,1)
答案:B16.直線l1:a1x+b1y+1=0直線l2:a2x+b2y+1=0交于一點(diǎn)(2,3),則經(jīng)過A(a1,b1),B(a2,b2)兩點(diǎn)的直線方程為______.答案:∵直線l1:a1x+b1y+1=0直線l2:a2x+b2y+1=0交于一點(diǎn)(2,3),∴2a1+3b1+1=0,2a2+3b2+2=0.∴A(a1,b1),B(a2,b2)兩點(diǎn)都在直線2x+3y+1=0上,由于兩點(diǎn)確定一條直線,因此經(jīng)過A(a1,b1),B(a2,b2)兩點(diǎn)的直線方程即為2x+3y+1=0.故為:2x+3y+1=0.17.已知a,b,c∈R,a+2b+3c=6,則a2+4b2+9c2的最小值為______.答案:∵a+2b+3c=6,∴根據(jù)柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]化簡(jiǎn)得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2)∴a2+4b2+9c2≥12,當(dāng)且僅當(dāng)a:2b:3c=1:1:1時(shí),即a=2,b=1,c=23時(shí)等號(hào)成立由此可得:當(dāng)且僅當(dāng)a=2,b=1,c=23時(shí),a2+4b2+9c2的最小值為12故為:1218.已知點(diǎn)G是△ABC的重心,O是空間任一點(diǎn),若OA+OB+OC=λOG,則實(shí)數(shù)λ=______.答案:由于G是三角形ABC的重心,則有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故為:319.底面直徑和高都是4cm的圓柱的側(cè)面積為______cm2.答案:∵圓柱的底面直徑和高都是4cm,∴圓柱的底面圓的周長(zhǎng)是2π×2=4π∴圓柱的側(cè)面積是4π×4=16π,故為:16π.20.如圖⊙0的直徑AD=2,四邊形ABCD內(nèi)接于⊙0,直線MN切⊙0于點(diǎn)B,∠MBA=30°,則AB的長(zhǎng)為______.答案:連BD,則∠MBA=∠ADB=30°,在直角三角形ABD中sin30°=ABAD,∴AB=12×2=1故為:121.圓的極坐標(biāo)方程為ρ=2cos(θ+π3),則該圓的圓心的極坐標(biāo)是______.答案:∵ρ=2cos(θ+π3),展開得ρ=cosθ-3sinθ,∴ρ2=ρcosθ-3ρsinθ,∴x2+y2=x-3y,∴(x-12)2+(y+32)2=1.∴圓心(12,-32).∴ρ=(12)2+(-32)2=1,tanθ=-3212=-3,∴θ=-π3.故圓心的極坐標(biāo)是(1,-π3).故為(1,-π3).22.如圖的矩形,長(zhǎng)為5,寬為2,在矩形內(nèi)隨機(jī)地撒300顆黃豆,數(shù)得落在陰影部分的黃豆數(shù)為138顆,則我們可以估計(jì)出陰影部分的面積為
______.答案:根據(jù)題意:黃豆落在陰影部分的概率是138300矩形的面積為10,設(shè)陰影部分的面積為s則有s10=138300∴s=235故為:23523.圓C1x2+y2-4y-5=0與圓C2x2+y2-2x-2y+1=0位置關(guān)系是()
A.內(nèi)含
B.內(nèi)切
C.相交
D.外切答案:A24.若點(diǎn)A(1,2,3),B(-3,2,7),且AC+BC=0,則點(diǎn)C的坐標(biāo)為______.答案:設(shè)C(x,y,z),則AC+BC=(2x+2,2y-4,2z-10)=0,∴x=-1,y=2,z=5.故為(-1,2,5)25.求圓Cx=3+4cosθy=-2+4sinθ(θ為參數(shù))的圓心坐標(biāo),和圓C關(guān)于直線x-y=0對(duì)稱的圓C′的普通方程.答案:圓Cx=3+4cosθy=-2+4sinθ(θ為參數(shù))
即
(x-3)2+(y+2)2=16,表示圓心坐標(biāo)(3,-2),半徑等于4的圓.C(3,-2)關(guān)于直線x-y=0對(duì)稱的點(diǎn)C′(-2,3),半徑還是4,故圓C′的普通方程(x+2)2+(y-3)2=16.26.過點(diǎn)(2,4)作直線與拋物線y2=8x只有一個(gè)公共點(diǎn),這樣的直線有()
A.1條
B.2條
C.3條
D.4條答案:B27.判斷下列結(jié)出的輸入語句、輸出語句和賦值語句是否正確?為什么?
(1)輸出語句INPUT
a;b;c
(2)輸入語句INPUT
x=3
(3)輸出語句PRINT
A=4
(4)輸出語句PRINT
20.3*2
(5)賦值語句3=B
(6)賦值語句
x+y=0
(7)賦值語句A=B=2
(8)賦值語句
T=T*T.答案:(1)輸入語句
INPUT
a;b;c中,變量名之間應(yīng)該用“,”分隔,而不能用“;”分隔,故(1)錯(cuò)誤;(2)輸入語句INPUT
x=3中,命令動(dòng)詞INPUT后面應(yīng)寫成“x=“,3,故(2)錯(cuò)誤;(3)輸出語句PRINT
A=4中,命令動(dòng)詞PRINT后面應(yīng)寫成“A=“,4,故(3)錯(cuò)誤;(4)輸出語句PRINT
20.3*2符合規(guī)則,正確;(5)賦值語句
3=B中,賦值號(hào)左邊必須為變量名,故(5)錯(cuò)誤;(6)賦值語句
x+y=0中,賦值號(hào)左邊不能是表達(dá)式,故(6)錯(cuò)誤;(7)賦值語句
A=B=2中.賦值語句不能連續(xù)賦值,故(7)錯(cuò)誤;(8)賦值語句
T=T*T是,符合規(guī)則,正確;故正確的有(4)、(8)錯(cuò)誤的是(1)、(2)、(3)、(5)、(6)、(7).28.某研究小組在一項(xiàng)實(shí)驗(yàn)中獲得一組數(shù)據(jù),將其整理得到如圖所示的散點(diǎn)圖,下列函數(shù)中,最能近似刻畫y與t之間關(guān)系的是()
A.y=2t
B.y=2t2
C.y=t3
D.y=log2t
答案:D29.從一批羽毛球產(chǎn)品中任取一個(gè),質(zhì)量小于4.8
g的概率是0.3,質(zhì)量不小于4.85
g的概率是0.32,那么質(zhì)量在[4.8,4.85)g范圍內(nèi)的概率是()
A.0.62
B.0.38
C.0.7
D.0.68答案:B30.(選做題)已知x+2y=1,則x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上點(diǎn)的距離的平方∴x2+y2的最小值是(0,0)到x+2y=1的距離d的平方據(jù)點(diǎn)到直線的距離公式得d=11+4=15∴x2+y2的最小值是15故為1531.若k∈R,則“k>3”是“方程表示雙曲線”的()
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件答案:A32.拋物線y=x2的焦點(diǎn)坐標(biāo)是()
A.(,0)
B.(0,)
C.(0,1)
D.(1,0)答案:C33.如果消息M發(fā)生的概率為P(M),那么消息M所含的信息量為I(M)=log2[P(M)+],若小明在一個(gè)有4排8列座位的小型報(bào)告廳里聽報(bào)告,則發(fā)布的以下4條消費(fèi)中,信息量最大的是()
A.小明在第4排
B.小明在第5列
C.小明在第4排第5列
D.小明在某一排答案:C34.拋擲3顆質(zhì)地均勻的骰子,求點(diǎn)數(shù)和為8的概率______.答案:由題意總的基本事件數(shù)為6×6×6=216種點(diǎn)數(shù)和為8的事件包含了向上的點(diǎn)的情況有(1,1,6),(1,2,5),(2,2,4),(2,3,3)有四種情況向上點(diǎn)數(shù)分別為(1,1,6)的事件包含的基本事件數(shù)有3向上點(diǎn)數(shù)分別為(1,2,5)的事件包含的基本事件數(shù)有6向上點(diǎn)數(shù)分別為(2,2,4)的事件包含的基本事件數(shù)有3向上點(diǎn)數(shù)分別為(2,3,3)的事件包含的基本事件數(shù)有3所以點(diǎn)數(shù)和為8的事件包含基本事件數(shù)是3+6+3+3=15種點(diǎn)數(shù)和為8的事件的概率是15216=572故為:572.35.用數(shù)學(xué)歸納法證明:
對(duì)于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=n(n+1)(n+2)3.答案:證明:(1)當(dāng)n=1時(shí),左邊=12+1=2,右邊=1×2×33=2,所以當(dāng)n=1時(shí),命題成立;
…(2分)(2)設(shè)n=k時(shí),命題成立,即有(12+1)+(22+2)+…+(k2+k)=k(k+1)(k+2)3…(4分)則當(dāng)n=k+1時(shí),左邊=(12+1)+(22+2)+…+(k2+k)+[(k+1)2+(k+1)]…(5分)=k(k+1)(k+2)3+[(k+1)2+(k+1)]=(k+1)[k(k+2)+3(k+1)+3]3…(8分)=(k+1)(k2+5k+6)3=(k+1)(k+2)(k+3)3=(k+1)[(k+1)+1][(k+1)+2]3…(10分)所以當(dāng)n=k+1時(shí),命題成立.綜合(1)(2)得:對(duì)于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=n(n+1)(n+2)3…(12分)36.已知A(1,2),B(-3,b)兩點(diǎn)的距離等于42,則b=______.答案:∵A(1,2),B(-3,b)∴|AB|=(-3-1)2+(b-2)2=42,解之得b=6或-2故為:6或-237.設(shè)b是a的相反向量,則下列說法錯(cuò)誤的是()
A.a(chǎn)與b的長(zhǎng)度必相等
B.a(chǎn)與b的模一定相等
C.a(chǎn)與b一定不相等
D.a(chǎn)是b的相反向量答案:C38.如圖,AB是⊙O的直徑,AD是⊙O的切線,點(diǎn)C在⊙O上,BC∥OD,AB=2,OD=3,則BC的長(zhǎng)為______.答案:∵OD∥BC,∴∠AOD=∠B;∵AD是⊙O的切線,∴BA⊥AD,即∠OAD=∠ACB=90°,∴Rt△AOD∽R(shí)t△CBA,∴BCOA=ABOD,即BC1=23,故BC=23.39.用一枚質(zhì)地均勻的硬幣,甲、乙兩人做拋擲硬幣游戲,甲拋擲4次,記正面向上的次數(shù)為ξ;乙拋擲3次,記正面向上的次數(shù)為η.
(Ⅰ)分別求ξ和η的期望;
(Ⅱ)規(guī)定:若ξ>η,則甲獲勝;否則,乙獲勝.求甲獲勝的概率.答案:(Ⅰ)由題意,ξ~B(4,0.5),η~B(3,0.5),所以Eξ=4×0.5=2,Eη=3×0.5=1.5…(4分)(Ⅱ)P(ξ=1)=C14(12)4=14,P(ξ=2)=C24(12)4=38,P(ξ=3)=C34(12)4=14,P(ξ=4)=C44(12)4=116P(η=0)=C03(12)3=18,P(η=1)=C13(12)3=38,P(η=2)=C23(12)3=38,P(η=3)=C33(12)3=18…(8分)甲獲勝有以下情形:ξ=1,η=0;ξ=2,η=0,1;ξ=3,η=0,1,2;ξ=4,η=0,1,2,3則甲獲勝的概率為P=14×18+38(18+38)+14(18+38+38)+116×1=12.…(13分)40.(參數(shù)方程與極坐標(biāo))已知F是曲線x=2cosθy=1+cos2θ(θ∈R)的焦點(diǎn),M(12,0),則|MF|的值是
______.答案:y=1+cos2θ=2cos2θ=2?(x2)2化簡(jiǎn)得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故為:2241.9、從4臺(tái)甲型和5臺(tái)乙型電視機(jī)中任意取出3臺(tái),其中至少要有甲型與乙型電視機(jī)各1臺(tái),則不同的取法共有()
A.140種
B.84種
C.70種
D.35種答案:C42.已知向量a表示“向東航行1km”,向量b表示“向北航行3km”,則向量a+b表示()A.向東北方向航行2kmB.向北偏東30°方向航行2kmC.向北偏東60°方向航行2kmD.向東北方向航行(1+3)km答案:如圖,作OA=a,OB=b.則OC=a+b,所以|OC|=3+1=2,且sin∠BOC=12,所以∠BOC=30°.因此
a+b表示向北偏東30°方向航行2km.故選B.43.若2x1+3y1=4,2x2+3y2=4,則過點(diǎn)A(x1,y1),B(x2,y2)的直線方程是______.答案:∵2x1+3y1=4,2x2+3y2=4,∴點(diǎn)A(x1,y1),B(x2,y2)在直線2x+3y=4上,又因?yàn)檫^兩點(diǎn)確定一條直線,故所求直線方程為2x+3y=4故為:2x+3y=444.“a=18”是“對(duì)任意的正數(shù)x,2x+ax≥1的”()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當(dāng)“a=18”時(shí),由基本不等式可得:“對(duì)任意的正數(shù)x,2x+ax≥1”一定成立,即“a=18”?“對(duì)任意的正數(shù)x,2x+ax≥1”為真命題;而“對(duì)任意的正數(shù)x,2x+ax≥1的”時(shí),可得“a≥18”即“對(duì)任意的正數(shù)x,2x+ax≥1”?“a=18”為假命題;故“a=18”是“對(duì)任意的正數(shù)x,2x+ax≥1的”充分不必要條件故選A45.如圖,點(diǎn)O是正六邊形ABCDEF的中心,則以圖中點(diǎn)A、B、C、D、E、F、O中的任意一點(diǎn)為始點(diǎn),與始點(diǎn)不同的另一點(diǎn)為終點(diǎn)的所有向量中,除向量外,與向量共線的向量共有()
A.2個(gè)
B.3個(gè)
C.6個(gè)
D.9個(gè)
答案:D46.用行列式討論關(guān)于x,y
的二元一次方程組mx+y=m+1x+my=2m解的情況并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)當(dāng)m≠-1,m≠1時(shí),D≠0,方程組有唯一解,解為(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)當(dāng)m=-1時(shí),D=0,Dx≠0,方程組無解;…(2分)(3)當(dāng)m=1時(shí),D=Dx=Dy=0,方程組有無窮多組解,此時(shí)方程組化為x+y=2x+y=2,令x=t(t∈R),原方程組的解為x=ty=2-t(t∈R).…((2分),沒寫出解扣1分)47.已知向量=(1,2),=(2,x),且=-1,則x的值等于()
A.
B.
C.
D.答案:D48.Rt△ABC中,AB=3,BC=4,AC=5,將三角形繞直角邊AB旋轉(zhuǎn)一周形成一個(gè)新的幾何體,想象幾何體的結(jié)構(gòu),畫出它的三視圖,求出它的表面積和體積.答案:以繞AB邊旋轉(zhuǎn)為例,其直觀圖、正(側(cè))視圖、俯視圖依次分別為:其表面是扇形的表面,所以其表面積為S=πRL=36π,V=13×π×BC2×AB=16π.49.用數(shù)學(xué)歸納法證明1+2+3+…+n2=,則當(dāng)n=k+1時(shí)左端應(yīng)在n=k的基礎(chǔ)上加上()
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2答案:D50.若點(diǎn)P(-1,3)在圓x2+y2=m2上,則實(shí)數(shù)m=______.答案:∵點(diǎn)P(-1,3)在圓x2+y2=m2上,∴點(diǎn)P坐標(biāo)代入,得(-1)2+(3)2=m2,即m2=4,解之得m=±2.故為:±2第2卷一.綜合題(共50題)1.已知F1、F2為橢圓x225+y29=1的兩個(gè)焦點(diǎn),過F1的直線交橢圓于A、B兩點(diǎn).若|F2A|+|F2B|=12,則|AB|=______.答案:由橢圓的定義得|AF1|+|AF2|=10|BF1|+|BF2|=10兩式相加得|AB|+|AF2|+|BF2|=20,即|AB|+12=20,∴|AB|=8.故:82.|a|=4,a與b的夾角為30°,則a在b方向上的投影為______.答案:a在b方向上的投影為|a|cos30°=4×32=23故為:233.在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(-1,1),若取原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,則在下列選項(xiàng)中,不是點(diǎn)P極坐標(biāo)的是()
A.()
B.()
C.()
D.()答案:D4.設(shè),是互相垂直的單位向量,向量=(m+1)-3,=-(m-1),(+)⊥(-)則實(shí)數(shù)m為()
A.-2
B.2
C.-
D.不存在答案:A5.函數(shù)f(x)=-2x+1(x∈[-2,2])的最小、最大值分別為()A.3,5B.-3,5C.1,5D.5,-3答案:因?yàn)閒(x)=-2x+1(x∈[-2,2])是單調(diào)遞減函數(shù),所以當(dāng)x=2時(shí),函數(shù)的最小值為-3.當(dāng)x=-2時(shí),函數(shù)的最大值為5.故選B.6.若向量a=(2,-3,1),b=(2,0,3),c=(0,2,2),則a?(b+c)=33.答案:∵b+c=(2,0,3)+(0,2,2)=(2,2,5),∴a?(b+c)=(2,-3,1)?(2,2,5)=4-6+5=3.故為:3.7.在空間直角坐標(biāo)系中,已知點(diǎn)A(1,0,2),B(1,-3,1),點(diǎn)M在y軸上,且M到A與到B的距離相等,則M的坐標(biāo)是______.答案:設(shè)M(0,y,0)由12+y2+4=1+(y+3)2+1可得y=-1故M(0,-1,0)故為:(0,-1,0).8.某校現(xiàn)有高一學(xué)生210人,高二學(xué)生270人,高三學(xué)生300人,學(xué)校學(xué)生會(huì)用分層抽樣的方法從這三個(gè)年級(jí)的學(xué)生中隨機(jī)抽取n名學(xué)生進(jìn)行問卷調(diào)查,如果已知從高一學(xué)生中抽取的人數(shù)為7,那么從高三學(xué)生中抽取的人數(shù)應(yīng)為()
A.10
B.9
C.8
D.7答案:A9.某海域內(nèi)有一孤島,島四周的海平面(視為平面)上有一淺水區(qū)(含邊界),其邊界是長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b的橢圓,已知島上甲、乙導(dǎo)航燈的海拔高度分別為h1、h2,且兩個(gè)導(dǎo)航燈在海平面上的投影恰好落在橢圓的兩個(gè)焦點(diǎn)上,現(xiàn)有船只經(jīng)過該海域(船只的大小忽略不計(jì)),在船上測(cè)得甲、乙導(dǎo)航燈的仰角分別為θ1、θ2,那么船只已進(jìn)入該淺水區(qū)的判別條件是______.答案:依題意,|MF1|+|MF2|≤2a?h1?cotθ1+h2?cotθ2≤2a;故為:h1?cotθ1+h2?cotθ2≤2a10.已知a>0,b>0,直線l與x軸、y軸分別交于A(a,0),B(0,b),且過點(diǎn)(1,2),O為原點(diǎn).求△OAB面積的最小值.答案:∵a>0,b>0,直線l與x軸、y軸分別交于A(a,0),B(0,b),∴直線l的方程為xa+yb=1,又直線l過點(diǎn)(1,2),∴1a+2b=1,由基本不等式得1≥22ab,∴ab≥8,△OAB面積為:12ab≥12×8=4,當(dāng)且僅當(dāng)1a=2b=12,即a=2且b=4時(shí),等號(hào)成立.故△OAB面積的最小值是4.11.已知向量表示“向東航行1km”,向量表示“向南航行1km”,則向量表示()
A向東南航行km
B.向東南航行2km
C.向東北航行km
D.向東北航行2km答案:A12.已知x,y的取值如下表所示:
x0134y2.24.34.86.7從散點(diǎn)圖分析,y與x線性相關(guān),且y^=0.95x+a,以此預(yù)測(cè)當(dāng)x=2時(shí),y=______.答案:∵從所給的數(shù)據(jù)可以得到.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5∴這組數(shù)據(jù)的樣本中心點(diǎn)是(2,4.5)∴4.5=0.95×2+a,∴a=2.6∴線性回歸方程是y=0.95x+2.6,∴預(yù)測(cè)當(dāng)x=2時(shí),y=0.95×2+2.6=4.5故為:4.513.已知|a|=3,|b|=2,a與b的夾角為300,則|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a與b的夾角為300,∴a?b=|a||b|cos30°=2×3×32=3則|a+b|=a2+2a?b+b2=13故選A14.把兩條直線的位置關(guān)系填入結(jié)構(gòu)圖中的M、N、E、F中,順序較為恰當(dāng)?shù)氖牵ǎ?/p>
①平行
②垂直
③相交
④斜交.
A.①②③④
B.①④②③
C.①③②④
D.②①③④
答案:C15.若矩陣A=是表示我校2011屆學(xué)生高二上學(xué)期的期中成績(jī)矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績(jī),i=2表示數(shù)學(xué)成績(jī),i=3表示英語成績(jī),i=4表示語數(shù)外三門總分成績(jī)j=k,k∈N*表示第50k名分?jǐn)?shù).若經(jīng)過一定量的努力,各科能前進(jìn)的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分?jǐn)?shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上()
A.語文
B.?dāng)?shù)學(xué)
C.外語
D.都一樣答案:B16.若直線x=1的傾斜角為α,則α等于
______.答案:因?yàn)橹本€x=1與y軸平行,所以直線x=1的傾斜角為90°.故為:90°17.直線2x-y=7與直線3x+2y-7=0的交點(diǎn)是()
A.(3,-1)
B.(-1,3)
C.(-3,-1)
D.(3,1)答案:A18.已知點(diǎn)A(1,0,0),B(0,2,0),C(0,0,3)則平面ABC與平面xOy所成銳二面角的余弦值為______.答案:AB=(-1,2,0),AC=(-1,0,3).設(shè)平面ABC的法向量為n=(x,y,z),則n?AB=-x+2y=0n?AC=-x+3z=0,令x=2,則y=1,z=23.∴n=(2,1,23).取平面xoy的法向量m=(0,0,1).則cos<m,n>=m?n|m|
|n|=231×22+1+(23)2=27.故為27.19.將3封信投入5個(gè)郵筒,不同的投法共有()
A.15
種
B.35
種
C.6
種
D.53種答案:D20.點(diǎn)P(,)與圓x2+y2=1的位置關(guān)系是()
A.在圓內(nèi)
B.在圓外
C.在圓上
D.與t有關(guān)答案:C21.如圖,小圓圈表示網(wǎng)絡(luò)的結(jié)點(diǎn),結(jié)點(diǎn)之間的連線表示它們有網(wǎng)線相聯(lián),連線標(biāo)注的數(shù)字表示該段網(wǎng)線單位時(shí)間內(nèi)可以通過的最大信息量,現(xiàn)從結(jié)點(diǎn)B向結(jié)點(diǎn)A傳遞信息,信息可以分開沿不同的路線同時(shí)傳遞,則單位時(shí)間內(nèi)傳遞的最大信息量為()
A.26
B.24
C.20
D.19
答案:D22.已知a=4,b=1,焦點(diǎn)在x軸上的橢圓方程是(
)
A.
B.
C.
D.答案:C23.點(diǎn)M的直角坐標(biāo)為(,1,-2),則它的柱坐標(biāo)為()
A.(2,,2)
B.(2,,2)
C.(2,,-2)
D.(2,-,-2)答案:C24.如圖,△ABC是圓的內(nèi)接三角形,PA切圓于點(diǎn)A,PB交圓于點(diǎn)D.若∠ABC=60°,PD=1,BD=8,則∠PAC=______°,PA=______.答案:∵PD=1,BD=8,∴PB=PD+BD=9由切割線定理得PA2=PD?PB=9∴PA=3又∵PE=PA∴PE=3又∠PAC=∠ABC=60°故:60,325.已知函數(shù)f(x),如果對(duì)任意一個(gè)三角形,只要它的三邊長(zhǎng)a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長(zhǎng),則稱f(x)為“保三角形函數(shù)”.在函數(shù)①f1(x)=x,②f2(x)=x,③f3(x)=x2中,其中______是“保三角形函數(shù)”.(填上正確的函數(shù)序號(hào))答案:f1(x),f2(x)是“保三角形函數(shù)”,f3(x)不是“保三角形函數(shù)”.任給三角形,設(shè)它的三邊長(zhǎng)分別為a,b,c,則a+b>c,不妨假設(shè)a≤c,b≤c,由于a+b>a+b>c>0,所以f1(x),f2(x)是“保三角形函數(shù)”.對(duì)于f3(x),3,3,5可作為一個(gè)三角形的三邊長(zhǎng),但32+32<52,所以不存在三角形以32,32,52為三邊長(zhǎng),故f3(x)不是“保三角形函數(shù)”.故為:①②.26.設(shè)α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個(gè)實(shí)根,當(dāng)m為何值時(shí),α2+β2有最小值?并求出這個(gè)最小值.答案:若α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個(gè)實(shí)根則△=16m2-16(m+2)≥0,即m≤-1,或m≥2則α+β=m,α×β=m+24,則α2+β2=(α+β)2-2αβ=m2-2×m+24=m2-12m-1=(m-14)2-1716∴當(dāng)m=-1時(shí),α2+β2有最小值,最小值是12.27.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=lnxB.f(x)=1xC.f(x)=x3D.f(x)=ex答案:∵函數(shù)y=1x,∴x>0,A、∵f(x)=lnx,∴x>0,故A正確;B、∵f(x)=1x,∴x≠0,故B錯(cuò)誤;C、f(x)=x3,其定義域?yàn)镽,故C錯(cuò)誤;D、f(x)=ex,其定義域?yàn)镽,故D錯(cuò)誤;故選A.28.設(shè)a=0.7,b=0.8,c=log30.7,則()
A.c<b<a
B.c<a<b
C.a(chǎn)<b<c
D.b<a<c答案:B29.用反證法證明命題“三角形中最多只有一個(gè)內(nèi)角是鈍角”時(shí),則假設(shè)的內(nèi)容是()
A.三角形中有兩個(gè)內(nèi)角是鈍角
B.三角形中有三個(gè)內(nèi)角是鈍角
C.三角形中至少有兩個(gè)內(nèi)角是鈍角
D.三角形中沒有一個(gè)內(nèi)角是鈍角答案:C30.圓的極坐標(biāo)方程是ρ=2cosθ+2sinθ,則其圓心的極坐標(biāo)是()
A.(2,)
B.(2,)
C.(1,)
D.(1,)答案:A31.已知z=1+i,則|z|=______.答案:由z=1+i,所以|z|=12+12=2.故為2.32.下列敘述中:
①變量間關(guān)系有函數(shù)關(guān)系,還有相關(guān)關(guān)系;②回歸函數(shù)即用函數(shù)關(guān)系近似地描述相關(guān)關(guān)系;③=x1+x2+…+xn;④線性回歸方程一定可以近似地表示所有相關(guān)關(guān)系.其中正確的有()
A.①②③
B.①②④
C.①③
D.③④答案:A33.下圖是由哪個(gè)平面圖形旋轉(zhuǎn)得到的(
)答案:A34.某市為研究市區(qū)居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)繪制了樣本的頻率分布直方圖(如圖).
(Ⅰ)求月收入在[3000,3500)內(nèi)的被調(diào)查人數(shù);
(Ⅱ)估計(jì)被調(diào)查者月收入的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
答案:(I)10000×0.0003×500=1500(人)∴月收入在[3000,3500)內(nèi)的被調(diào)查人數(shù)1500人(II).x=1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400∴估計(jì)被調(diào)查者月收入的平均數(shù)為240035.
若平面向量,,兩兩所成的角相等,||=||=1,||=3,則|++|=()
A.2
B.4
C.2或5
D.4或5答案:C36.已知,求證:.答案:證明略解析:因?yàn)槭禽啌Q對(duì)稱不等式,可考慮由局部證整體.,相加整理得.當(dāng)且僅當(dāng)時(shí)等號(hào)成立.【名師指引】綜合法證明不等式常用兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這一結(jié)論,運(yùn)用時(shí)要結(jié)合題目條件,有時(shí)要適當(dāng)變形.37.拋擲甲、乙兩骰子,記事件A:“甲骰子的點(diǎn)數(shù)為奇數(shù)”;事件B:“乙骰子的點(diǎn)數(shù)為偶數(shù)”,則P(B|A)的值等于()
A.
B.
C.
D.答案:B38.關(guān)于生活中的圓錐曲線,有下面幾個(gè)結(jié)論:
(1)標(biāo)準(zhǔn)田徑運(yùn)動(dòng)場(chǎng)的內(nèi)道是一個(gè)橢圓;
(2)接受衛(wèi)星轉(zhuǎn)播的電視信號(hào)的天線設(shè)備,其軸截面與天線設(shè)備的交線是拋物線;
(3)大型熱電廠的冷卻通風(fēng)塔,其軸截面與通風(fēng)塔的交線是雙曲線;
(4)地球圍繞太陽運(yùn)行的軌跡可以近似地看成一個(gè)橢圓.
其中正確命題的序號(hào)是______(把你認(rèn)為正確命題的序號(hào)都填上).答案:(1)標(biāo)準(zhǔn)田徑運(yùn)動(dòng)場(chǎng)的內(nèi)道是有直道和彎道部分是半圓組成,不是橢圓.故錯(cuò)誤(2)接受衛(wèi)星轉(zhuǎn)播的電視信號(hào)的天線設(shè)備,其軸截面與天線設(shè)備的交線是拋物線.故正確.(3)大型熱電廠的冷卻通風(fēng)塔,其軸截面與通風(fēng)塔的交線是雙曲線.故正確.(4)地球圍繞太陽運(yùn)行的軌跡可以近似地看成一個(gè)橢圓.故正確.故為:(2)(3)(4)39.一張紙上畫有一個(gè)半徑為R的圓O和圓內(nèi)一個(gè)定點(diǎn)A,且OA=a,折疊紙片,使圓周上某一點(diǎn)A′剛好與點(diǎn)A重合.這樣的每一種折法,都留下一條折痕.當(dāng)A′取遍圓周上所有點(diǎn)時(shí),求所有折痕所在直線上點(diǎn)的集合.答案:對(duì)于⊙O上任意一點(diǎn)A′,連AA′,作AA′的垂直平分線MN,連OA′,交MN于點(diǎn)P,則OP+PA=OA′=R.由于點(diǎn)A在⊙O內(nèi),故OA=a<R.從而當(dāng)點(diǎn)A′取遍圓周上所有點(diǎn)時(shí),點(diǎn)P的軌跡是以O(shè)、A為焦點(diǎn),OA=a為焦距,R(R>a)為長(zhǎng)軸的橢圓C.而MN上任一異于P的點(diǎn)Q,都有OQ+QA=OQ+QA′>OA′,故點(diǎn)Q在橢圓C外,即折痕上所有的點(diǎn)都在橢圓C上及C外.反之,對(duì)于橢圓C上或外的一點(diǎn)S,以S為圓心,SA為半徑作圓,交⊙O于A′,則S在AA′的垂直平分線上,從而S在某條折痕上.最后證明所作⊙S與⊙O必相交.1°
當(dāng)S在⊙O外時(shí),由于A在⊙O內(nèi),故⊙S與⊙O必相交;2°
當(dāng)S在⊙O內(nèi)時(shí)(例如在⊙O內(nèi),但在橢圓C外或其上的點(diǎn)S′),取過S′的半徑OD,則由點(diǎn)S′在橢圓C外,故OS′+S′A≥R(橢圓的長(zhǎng)軸).即S′A≥S′D.于是D在⊙S′內(nèi)或上,即⊙S′與⊙O必有交點(diǎn).于是上述證明成立.綜上可知,折痕上的點(diǎn)的集合為橢圓C上及C外的所有點(diǎn)的集合.40.直線L1:x-y=0與直線L2:x+y-10=0的交點(diǎn)坐標(biāo)是()
A.(5,5)
B.(5,-5)
C.(-1,1)
D.(1,1)答案:A41.已知實(shí)數(shù)x、y滿足(x-2)2+y2+(x+2)2+y2=6,則2x+y的最大值等于______.答案:∵實(shí)數(shù)x、y滿足(x-2)2+y2+(x+2)2+y2=6,∴點(diǎn)(x,y)的軌跡是橢圓,其方程為x29+y25=1,所以可設(shè)x=3cosθ,y=5sinθ,則z=6cosθ+5sinθ=41sin(θ+
β)≤41,∴2x+y的最大值等于41.故為:4142.設(shè)隨機(jī)變量ξ服從正態(tài)分布N(u,9),若p(ξ>3)=p(ξ<1),則u=______.答案:∵隨機(jī)變量ξ服從正態(tài)分布N(u,9),p(ξ>3)=p(ξ<1),∴u=3+12=2故為243.如圖程序框圖表達(dá)式中N=______.答案:該程序按如下步驟運(yùn)行①N=1×2,此時(shí)i變成3,滿足i≤5,進(jìn)入下一步循環(huán);②N=1×2×3,此時(shí)i變成4,滿足i≤5,進(jìn)入下一步循環(huán);③N=1×2×3×4,此時(shí)i變成5,滿足i≤5,進(jìn)入下一步循環(huán);④N=1×2×3×4×5,此時(shí)i變成6,不滿足i≤5,結(jié)束循環(huán)體并輸出N的值因此,最終輸出的N等于1×2×3×4×5=120故為:12044.不等式|x-2|+|x+1|<5的解集為()
A.(-∞,-2)∪(3,+∞)
B.(-∞,-1)∪(2,+∞)
C.(-2,3)
D.(-∞,+∞)答案:C45.如圖,在直角坐標(biāo)系中,A,B,C三點(diǎn)在x軸上,原點(diǎn)O和點(diǎn)B分別是線段AB和AC的中點(diǎn),已知AO=m(m為常數(shù)),平面上的點(diǎn)P滿足PA+PB=6m.
(1)試求點(diǎn)P的軌跡C1的方程;
(2)若點(diǎn)(x,y)在曲線C1上,求證:點(diǎn)(x3,y22)一定在某圓C2上;
(3)過點(diǎn)C作直線l,與圓C2相交于M,N兩點(diǎn),若點(diǎn)N恰好是線段CM的中點(diǎn),試求直線l的方程.答案:(1)由題意可得點(diǎn)P的軌跡C1是以A,B為焦點(diǎn)的橢圓.…(2分)且半焦距長(zhǎng)c=m,長(zhǎng)半軸長(zhǎng)a=3m,則C1的方程為x29m2+y28m2=1.…(5分)(2)若點(diǎn)(x,y)在曲線C1上,則x29m2+y28m2=1.設(shè)x3=x0,y22=y0,則x=3x0,y=22y0.…(7分)代入x29m2+y28m2=1,得x02+y02=m2,所以點(diǎn)(x3,y22)一定在某一圓C2上.…(10分)(3)由題意C(3m,0).…(11分)設(shè)M(x1,y1),則x12+y12=m2.…①因?yàn)辄c(diǎn)N恰好是線段CM的中點(diǎn),所以N(x1+3m2,y12).代入C2的方程得(x1+3m2)2+(y12)2=m2.…②聯(lián)立①②,解得x1=-m,y1=0.…(15分)故直線l有且只有一條,方程為y=0.…(16分)(若只寫出直線方程,不說明理由,給1分)46.若x,y∈R,則“x=0”是“x+yi為純虛數(shù)”的()A.充分不必要條件B.必要不充分條件C.充要條件D.不充分也不必要條件答案:根據(jù)復(fù)數(shù)的分類,x+yi為純虛數(shù)的充要條件是x=0,y≠0.“若x=0則x+yi為純虛數(shù)”是假命題,反之為真.∴x,y∈R,則“x=0”是“x+yi為純虛數(shù)”的必要不充分條件故選B47.已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相切,則三條邊長(zhǎng)分別為|a|、|b|、|c|的三角形()
A.是銳角三角形
B.是直角三角形
C.是鈍角三角形
D.不存在答案:B48.點(diǎn)P(x,y)是橢圓2x2+3y2=12上的一個(gè)動(dòng)點(diǎn),則x+2y的最大值為______.答案:把橢圓2x2+3y2=12化為標(biāo)準(zhǔn)方程,得x26+y24=1,∴這個(gè)橢圓的參數(shù)方程為:x=6cosθy=2sinθ,(θ為參數(shù))∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故為:22.49.雙曲線x29-y216=1的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)P在雙曲線上,若PF1⊥PF2,則點(diǎn)P到x軸的距離為______.答案:設(shè)點(diǎn)P(x,y),∵F1(-5,0)、F2(5,0),PF1⊥PF2,∴y-0x+5?y-0x-5=-1,∴x2+y2=25
①,又x29-y216=1,∴25-y29-y216=1,∴y2=16225,∴|y|=165,∴P到x軸的距離是165.50.曲線(θ為參數(shù))上的點(diǎn)到原點(diǎn)的最大距離為()
A.1
B.
C.2
D.答案:C第3卷一.綜合題(共50題)1.用反證法證明“如果a<b,那么“”,假設(shè)的內(nèi)容應(yīng)是()
A.
B.
C.且
D.或
答案:D2.l1,l2,l3是空間三條不同的直線,則下列命題正確的是[
]A.l1⊥l2,l2⊥l3l1∥l3
B.l1⊥l2,l2∥l3l1⊥l3
C.l1∥l2∥l3l1,l2,l3共面
D.l1,l2,l3共點(diǎn)l1,l2,l3共面答案:B3.已知O是空間任意一點(diǎn),A、B、C、D四點(diǎn)滿足任三點(diǎn)均不共線,但四點(diǎn)共面,且=2x+3y+4z,則2x+3y+4z=(
)答案:﹣14.若平面α,β的法向量分別為(-1,2,4),(x,-1,-2),并且α⊥β,則x的值為()A.10B.-10C.12D.-12答案:∵α⊥β,∴平面α,β的法向量互相垂直∴(-1,2,4)?(x,-1,-2)=0即-1×x+(-1)×2+4×(-2)=0解得x=-10故選B.5.若O(0,0),A(1,2)且OA′=2OA.則A′點(diǎn)坐標(biāo)為()A.(1,4)B.(2,2)C.(2,4)D.(4,2)答案:設(shè)A′(x,y),OA′=(x,y),OA=(1,2),∴(x,y)=2(1,2),故選C.6.用0.618法確定的試點(diǎn),則經(jīng)過(
)次試驗(yàn)后,存優(yōu)范圍縮小為原來的0.6184倍.答案:57.已知集合A={1,3,5,7,9},B={0,3,6,9,12},則A∩B=()A.{3,5}B.{3,6}C.{3,7}D.{3,9}答案:因?yàn)锳∩B={1,3,5,7,9}∩{0,3,6,9,12}={3,9}故選D8.已知x,y的取值如下表所示:
x0134y2.24.34.86.7從散點(diǎn)圖分析,y與x線性相關(guān),且y^=0.95x+a,以此預(yù)測(cè)當(dāng)x=2時(shí),y=______.答案:∵從所給的數(shù)據(jù)可以得到.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5∴這組數(shù)據(jù)的樣本中心點(diǎn)是(2,4.5)∴4.5=0.95×2+a,∴a=2.6∴線性回歸方程是y=0.95x+2.6,∴預(yù)測(cè)當(dāng)x=2時(shí),y=0.95×2+2.6=4.5故為:4.59.如圖是一個(gè)正三棱柱體的三視圖,該柱體的體積等于()A.3B.23C.2D.33答案:根據(jù)長(zhǎng)對(duì)正,寬相等,高平齊,可得底面正三角形高為3,三棱柱高為1所以正三角形邊長(zhǎng)為3sin60°=2,所以V=12×2×3×1=3,故選A.10.根據(jù)給出的程序語言,畫出程序框圖,并計(jì)算程序運(yùn)行后的結(jié)果.
答案:程序框圖:模擬程序運(yùn)行:當(dāng)j=1時(shí),n=1,當(dāng)j=2時(shí),n=1,當(dāng)j=3時(shí),n=1,當(dāng)j=4時(shí),n=2,…當(dāng)j=8時(shí),n=2,…當(dāng)j=11時(shí),n=2,當(dāng)j=12時(shí),此時(shí)不滿足循環(huán)條件,退出循環(huán)程序運(yùn)行后的結(jié)果是:2.11.命題“存在x0∈R,使x02+1<0”的否定是______.答案:∵命題“存在x0∈R,使x02+1<0”是一個(gè)特稱命題∴命題“存在x0∈R,使x02+1<0”的否定是“對(duì)任意x0∈R,使x02+1≥0”故為:對(duì)任意x0∈R,使x02+1≥012.已知直線l:kx-y+1+2k=0.
(1)證明l經(jīng)過定點(diǎn);
(2)若直線l交x軸負(fù)半軸于A,交y軸正半軸于B,△AOB的面積為S,求S的最小值并求此時(shí)直線l的方程;
(3)若直線不經(jīng)過第四象限,求k的取值范圍.答案:(1)由kx-y+1+2k=0,得y-1=k(x+2),所以,直線l經(jīng)過定點(diǎn)(-2,1).(2)由題意得A(2k+1-k,0),B(0,2k+1),且2k+1-k<01+2k>0,故k>0,△AOB的面積為S=12×2k+1k×(2k+1)=4k2+4k+12k=2k+2+12k≥4,當(dāng)且僅當(dāng)k=12時(shí)等號(hào)成立,此時(shí)面積取最小值4,k=12,直線的方程是:x-2y+4=0.(3)由直線過定點(diǎn)(-2,1),可得當(dāng)斜率k>0或k=0時(shí),直線不經(jīng)過第四象限.故k的取值范圍為[0,+∞).13.定義在R上的二次函數(shù)y=f(x)在(0,2)上單調(diào)遞減,其圖象關(guān)于直線x=2對(duì)稱,則下列式子可以成立的是()
A.
B.
C.
D.答案:D14.如圖,點(diǎn)O是正六邊形ABCDEF的中心,則以圖中點(diǎn)A、B、C、D、E、F、O中的任意一點(diǎn)為始點(diǎn),與始點(diǎn)不同的另一點(diǎn)為終點(diǎn)的所有向量中,除向量外,與向量共線的向量共有()
A.2個(gè)
B.3個(gè)
C.6個(gè)
D.9個(gè)
答案:D15.已知直線a、b、c,其中a、b是異面直線,c∥a,b與c不相交.用反證法證明b、c是異面直線.答案:證明:假設(shè)b、c不是異面直線,則b、c共面.∵b與c不相交,∴b∥c.又∵c∥a,∴根據(jù)公理4可知b∥a.這與已知a、b是異面直線相矛盾.故b、c是異面直線.16.若方程x2+ky2=2表示焦點(diǎn)在y軸上的橢圓,那么實(shí)數(shù)k的取值范圍是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)答案:∵方程x2+ky2=2,即x22+y22k=1表示焦點(diǎn)在y軸上的橢圓∴2k>2故0<k<1故選D.17.曲線xy=1的參數(shù)方程不可能是()
A.
B.
C.
D.答案:B18.已知圓錐的母線長(zhǎng)與底面半徑長(zhǎng)之比為3:1,一個(gè)正方體有四個(gè)頂點(diǎn)在圓錐的底面內(nèi),另外的四個(gè)頂點(diǎn)在圓錐的側(cè)面上(如圖),則圓錐與正方體的表面積之比為(
)
A.π:1
B.3π:1
C.3π:2
D.3π:4
答案:D19.在極坐標(biāo)中,由三條曲線θ=0,θ=,ρcosθ+ρsinθ=1圍成的圖形的面積是()
A.
B.
C.
D.答案:A20.設(shè)點(diǎn)P(+,1)(t>0),則||(O為坐標(biāo)原點(diǎn))的最小值是()
A.
B.
C.5
D.3答案:A21.某校高一年級(jí)8個(gè)班參加合唱比賽的得分如莖葉圖所示,則這組數(shù)據(jù)的中位數(shù)是______.答案:由莖葉圖可知樣本數(shù)據(jù)共有8個(gè),按照從小到大的順序?yàn)椋?7,89,90,91,92,93,94,96.出現(xiàn)在中間兩位的數(shù)據(jù)是91,92.所以樣本的中位數(shù)是(91+92)÷2=91.5,故為:91.522.設(shè)拋物線y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PA⊥l,A為垂足.如果直線AF的斜率為-3,那么|PF|=()A.43B.8C.83D.16答案:拋物線的焦點(diǎn)F(2,0),準(zhǔn)線方程為x=-2,直線AF的方程為y=-3(x-2),所以點(diǎn)A(-2,43)、P(6,43),從而|PF|=6+2=8故選B.23.設(shè)a=0.7,b=0.8,c=log30.7,則()
A.c<b<a
B.c<a<b
C.a(chǎn)<b<c
D.b<a<c答案:B24.若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,證明:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)?(b1+b2+…+bnn).當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時(shí)等號(hào)成立.答案:證明不妨設(shè)a1≤a2≤…≤an,b1≥b2≥…≥bn.則由排序原理得:a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbna1b1+a2b2+…+anbn≤a1b2+a2b3+…+anb1a1b1+a2b2+…+anbn≤a1b3+a2b4+…+an-1b1+anb2…a1b1+a2b2+…+anbn≤a1bn+a2b1+…+anbn-1.將上述n個(gè)式子相加,得:n(a1b1+a2b2+…+anbn)≤(a1+a2+…+an)(b1+b2+…+bn)上式兩邊除以n2,得:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)(b1+b2+…+bnn)等號(hào)當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時(shí)成立.25.設(shè)是定義在正整數(shù)集上的函數(shù),且滿足:“當(dāng)成立時(shí),總可推出成立”.那么,下列命題總成立的是A.若成立,則當(dāng)時(shí),均有成立B.若成立,則當(dāng)時(shí),均有成立C.若成立,則當(dāng)時(shí),均有成立D.若成立,則當(dāng)時(shí),均有成立答案:D解析:若成立,依題意則應(yīng)有當(dāng)時(shí),均有成立,故A不成立,若成立,依題意則應(yīng)有當(dāng)時(shí),均有成立,故B不成立,因命題“當(dāng)成立時(shí),總可推出成立”.“當(dāng)成立時(shí),總可推出成立”.因而若成立,則當(dāng)時(shí),均有成立,故C也不成立。對(duì)于D,事實(shí)上,依題意知當(dāng)時(shí),均有成立,故D成立。26.設(shè)兩圓C1、C2都和兩坐標(biāo)軸相切,且都過點(diǎn)(4,1),則兩圓心的距離|C1C2|=______.答案:∵兩圓C1、C2都和兩坐標(biāo)軸相切,且都過點(diǎn)(4,1),故兩圓圓心在第一象限的角平分線上,設(shè)圓心的坐標(biāo)為(a,a),則有|a|=(a-4)2-(a-1)2,∴a=5+22,或a=5-22,故圓心為(5+22,5+22
)
和(5-22,5-22
),故兩圓心的距離|C1C2|=2[(5+22)-(5-22)]=8,故為:827.某學(xué)校為了解高一男生的百米成績(jī),隨機(jī)抽取了50人進(jìn)行調(diào)查,如圖是這50名學(xué)生百米成績(jī)的頻率分布直方圖.根據(jù)該圖可以估計(jì)出全校高一男生中百米成績(jī)?cè)赱13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生______人.
答案:第三和第四個(gè)小矩形面積之和為(0.72+0.68)×0.5=0.7,即百米成績(jī)?cè)赱13,14]內(nèi)的頻率為:0.7,因?yàn)楦鶕?jù)該圖可以估計(jì)出全校高一男生中百米成績(jī)?cè)赱13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生1400.7=200人.故為:200.28.如圖,正六邊形ABCDEF中,=()
A.
B.
C.
D.
答案:D29.若直線的參數(shù)方程為(t為參數(shù)),則該直線的斜率為()
A.
B.2
C.1
D.-1答案:D30.一組數(shù)據(jù)12,15,24,25,31,31,36,36,37,39,44,49,50的中位數(shù)是()
A.31
B.36
C.35
D.34答案:B31.設(shè)直線l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()
A.
B.
C.
D.答案:C32.與原數(shù)據(jù)單位不一樣的是()
A.眾數(shù)
B.平均數(shù)
C.標(biāo)準(zhǔn)差
D.方差答案:D33.函數(shù)f(x)=x+1x的定義域是______.答案:要使原函數(shù)有意義,則x≥0x≠0,所以x>0.所以原函數(shù)的定義域?yàn)椋?,+∞).故為(0,+∞).34.已知正方形ABCD的邊長(zhǎng)為a,則|AC+AD|等于______.答案:∵正方形ABCD的邊長(zhǎng)為a,∴AC=2a,AC與AD的夾角為45°|AC+AD|2=|AC
|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故為:5a35.如圖,AB為⊙O的直徑,弦AC、BD交于點(diǎn)P,若AP=5,PC=3,DP=5,則AB=______.
答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB為直徑,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故為:1036.下列程序表示的算法是輾轉(zhuǎn)相除法,請(qǐng)?jiān)诳瞻滋幪钌舷鄳?yīng)語句:
(1)處填______;
(2)處填______.答案:∵程序表示的算法是輾轉(zhuǎn)相除法,根據(jù)輾轉(zhuǎn)相除法,先求出m除以n的余數(shù),然后利用輾轉(zhuǎn)相除法,將n的值賦給m,將余數(shù)賦給n,一直算到余數(shù)為零時(shí)m的值即可,∴(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024全新裝飾設(shè)計(jì)項(xiàng)目合同的驗(yàn)收合格條件
- 2024年快遞大客戶優(yōu)惠價(jià)協(xié)議
- 2024年快餐連鎖雞肉采購(gòu)合同
- 2024年共享單車使用合同
- 2024年度北京市廣告發(fā)布合同
- 2024企業(yè)勞動(dòng)合作與共同發(fā)展合同
- 2024年式樣汽車4S店售后服務(wù)租賃協(xié)議模板
- 2024年工業(yè)級(jí)傳感器批量采購(gòu)合同
- DB41T 1082-2015 強(qiáng)筋小麥生產(chǎn)技術(shù)規(guī)程
- 2024年工程項(xiàng)目混凝土采購(gòu)與服務(wù)定制合同
- 2024年11月紹興市2025屆高三選考科目診斷性考試(一模) 化學(xué)試卷(含答案)
- 青藍(lán)工程師傅工作計(jì)劃(7篇)
- 2024年福建省漳州市臺(tái)商投資區(qū)招聘77人歷年高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 2022年公務(wù)員國(guó)考《申論》真題(副省級(jí))及參考答案
- 中藥融資方案
- 六年級(jí)計(jì)算題 分?jǐn)?shù)混合運(yùn)算專項(xiàng)練習(xí)430題
- 2024年第四季度中國(guó)酒店市場(chǎng)景氣調(diào)查報(bào)告-浩華
- 2024年二級(jí)建造師繼續(xù)教育考核題及答案
- 安徽省鼎尖教育聯(lián)考2024-2025學(xué)年高二上學(xué)期開學(xué)考試物理
- 2021-2022學(xué)年統(tǒng)編版道德與法治五年級(jí)上冊(cè)全冊(cè)單元測(cè)試題及答案(每單元1套共6套)
- 2024年財(cái)務(wù)條線人員考試題庫(kù)(含答案)
評(píng)論
0/150
提交評(píng)論