版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年潞安職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.若f(x)=x2,則對任意實數(shù)x1,x2,下列不等式總成立的是(
)
A.f()≤
B.f()<
C.f()≥
D.f()>答案:A2.設(shè)點P(t2+2t,1)(t>0),則|OP|(O為坐標(biāo)原點)的最小值是()A.3B.5C.3D.5答案:解析:由已知得|OP|=(t2+2t)
2+1≥(2t2×2t)2+1=5,當(dāng)t=2時取得等號.故選D.3.若A是圓x2+y2=16上的一個動點,過點A向y軸作垂線,垂足為B,則線段AB中點C的軌跡方程為()
A.x2+2y2=16
B.x2+4y2=16
C.2x2+y2=16
D.4x2+y2=16答案:D4.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=log2xB.f(x)=1xC.f(x)=|x|D.f(x)=2x答案:∵函數(shù)y=1x定義域為x>0,又函數(shù)f(x)=log2x定義域x>0,故選A.5.已知一個四棱錐的三視圖如圖所示,則該四棱錐的體積是______.答案:因為三視圖復(fù)原的幾何體是正四棱錐,底面邊長為2,高為1,所以四棱錐的體積為13×2×2×1=43.故為:43.6.設(shè)F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點,P是第一象限內(nèi)該橢圓上的一點,且P、F1、F2三點構(gòu)成一直角三角形,則點P的縱坐標(biāo)為______.答案:由題意,P是第一象限內(nèi)該橢圓上的一點,且P、F1、F2三點構(gòu)成一直角三角形,故可分為兩類:①當(dāng)∠P為直角時,設(shè)P的縱坐標(biāo)為y,則F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點∴|PF1|+|PF2|=4,|F1F2|=23∵∠P為直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②當(dāng)∠PF2F1為直角時,P的橫坐標(biāo)為3設(shè)P的縱坐標(biāo)為y(y>0),則(3)24+y2=1,∴y=12故為:33
或127.直線4x-3y+5=0與直線8x-6y+5=0的距離為______.答案:直線4x-3y+5=0即8x-6y+10=0,由兩平行線間的距離公式得:直線4x-3y+5=0(8x-6y+10=0)與直線8x-6y+5=0的距離是
|10-5|62+82=12,故為:12.8.復(fù)數(shù)z=sin1+icos2在復(fù)平面內(nèi)對應(yīng)的點位于第______象限.答案:z對應(yīng)的點為(sin1,cos2)∵1是第一象限的角,2是第二象限的角∵sin1>0,cos2<0所以(sin1,cos2)在第四象限故為:四9.點P(2,1)到直線
3x+4y+10=0的距離為()A.1B.2C.3D.4答案:由P(2,1),直線方程為3x+4y+10=0,則P到直線的距離d=|6+4+10|32+42=4.故選D10.由9個正數(shù)組成的矩陣
中,每行中的三個數(shù)成等差數(shù)列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比數(shù)列,給出下列判斷:①第2列a12,a22,a32必成等比數(shù)列;②第1列a11,a21,a31不一定成等比數(shù)列;③a12+a32≥a21+a23;④若9個數(shù)之和等于9,則a22≥1.其中正確的個數(shù)有()
A.1個
B.2個
C.3個
D.4個答案:B11.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C12.已知點O為△ABC外接圓的圓心,且有,則△ABC的內(nèi)角A等于()
A.30°
B.60°
C.90°
D.120°答案:A13.某項選拔共有四輪考核,每輪設(shè)有一個問題,能正確回答問題者進入下一輪考核,否則
即被淘汰.已知某選手能正確回答第一、二、三、四輪的問題的概率分別為、、、,且各輪問題能否正確回答互不影響.
(Ⅰ)求該選手進入第四輪才被淘汰的概率;
(Ⅱ)求該選手至多進入第三輪考核的概率.
(注:本小題結(jié)果可用分?jǐn)?shù)表示)答案:(1)該選手進入第四輪才被淘汰的概率.(Ⅱ)該選手至多進入第三輪考核的概率.解析:(Ⅰ)記“該選手能正確回答第輪的問題”的事件為,則,,,,該選手進入第四輪才被淘汰的概率.(Ⅱ)該選手至多進入第三輪考核的概率.14.某研究小組在一項實驗中獲得一組數(shù)據(jù),將其整理得到如圖所示的散點圖,下列函數(shù)中,最能近似刻畫y與t之間關(guān)系的是(
)
A.y=2t
B.y=2t2
C.y=t3
D.y=log2t
答案:D15.設(shè)隨機變量X~B(10,0.8),則D(2X+1)等于()
A.1.6
B.3.2
C.6.4
D.12.8答案:C16.質(zhì)地均勻的正四面體玩具的4個面上分別刻著數(shù)字1,2,3,4,將4個這樣的玩具同時拋擲于桌面上.
(1)求與桌面接觸的4個面上的4個數(shù)的乘積不能被4整除的概率;
(2)設(shè)ξ為與桌面接觸的4個面上數(shù)字中偶數(shù)的個數(shù),求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有兩種情形;①4個數(shù)均為奇數(shù),概率為P1=(12)4=116②4個數(shù)中有3個奇數(shù),另一個為2,概率為P2=C34(12)3?14=18這兩種情況是互斥的,故所求的概率為P=116+18=316(2)ξ為與桌面接觸的4個面上數(shù)字中偶數(shù)的個數(shù),由題意知ξ的可能取值是0,1,2,3,4,根據(jù)符合二項分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列為∵ξ服從二項分布B(4,12),∴Eξ=4×12=2.17.若三角形的內(nèi)切圓半徑為r,三邊的長分別為a,b,c,則三角形的面積S=12r(a+b+c),根據(jù)類比思想,若四面體的內(nèi)切球半徑為R,四個面的面積分別為S1、S2、S3、S4,則此四面體的體積V=______.答案:設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個面的距離都是R,所以四面體的體積等于以O(shè)為頂點,分別以四個面為底面的4個三棱錐體積的和.故為:13R(S1+S2+S3+S4).18.將正方形ABCD沿對角線BD折起,使平面ABD⊥平面CBD,E是CD中點,則∠AED的大小為()
A.45°
B.30°
C.60°
D.90°答案:D19.______稱為向量的長度(或稱為模),記作
______,______稱為零向量,記作
______,______稱為單位向量.答案:向量AB所在線段AB的長度,即向量AB的大小,稱為向量AB的長度(或成為模),記作|AB|;長度為零的向量稱為零向量,記作0;長度等于1個單位的向量稱為單位向量.故為:向量AB所在線段AB的長度,即向量AB的大小,|AB|;長度為零的向量,0;長度等于1個單位的向量.20.在平行四邊形ABCD中,AC與BD交于點O,E是線段CD的中點,若AC=a,BD=b,則AE=______.(用a、b表示)答案:∵平行四邊形ABCD中,AC與BD交于點O,E是線段CD的中點,若AC=a,BD=b,∴AE=AO+OE=12a+OD+OC2=12a+a+b4=3a4+14b.故為:34a+14b.21.如圖,四條直線互相平行,且相鄰兩條平行線的距離均為h,一直正方形的4個頂點分別在四條直線上,則正方形的面積為()
A.4h2
B.5h2
C.4h2
D.5h2
答案:B22.直線ax+2y+3=0和直線2x+ay-1=0具有相同的方向向量,則a=______.答案:∵直線ax+2y+3=0和直線2x+ay-1=0具有相同的方向向量∴兩條直線互相平行,可得a2=2a≠3-1,解之得a=±2故為:±223.下列哪組中的兩個函數(shù)是同一函數(shù)()A.y=(x)2與y=xB.y=(3x)3與y=xC.y=x2與y=(x)2D.y=3x3與y=x2x答案:A、y=x與y=x2的定義域不同,故不是同一函數(shù).B、y=(3x)3=x與y=x的對應(yīng)關(guān)系相同,定義域為R,故是同一函數(shù).C、fy=x2與y=(x)2的定義域不同,故不是同一函數(shù).D、y=3x3與y=x2x
具的定義域不同,故不是同一函數(shù).故選B.24.若向量n與直線l垂直,則稱向量n為直線l的法向量.直線x+2y+3=0的一個法向量為()
A.(2,-1)
B.(1,-2)
C.(2,1)
D.(1,2)答案:D25.已知兩點P1(2,-1)、P2(0,5),點P在P1P2延長線上,且滿足P1P2=-2PP2,則P點的坐標(biāo)為______.答案:設(shè)分點P(x,y),P1(2,-1)、P2(0,5),∴P1P2=(-2,6),PP2=(-x,5-y),∵P1P2=-2PP2,∴(-2,6)=-2(-x,5-y)-2=-2x,6=2y-10,∴x=-1,y=8∴P(-1,8).26.設(shè)f(n)=nn+1,g(n)=(n+1)n,n∈N*.
(1)當(dāng)n=1,2,3,4時,比較f(n)與g(n)的大?。?/p>
(2)根據(jù)(1)的結(jié)果猜測一個一般性結(jié)論,并加以證明.答案:(1)當(dāng)n=1時,nn+1=1,(n+1)n=2,此時,nn+1<(n+1)n,當(dāng)n=2時,nn+1=8,(n+1)n=9,此時,nn+1<(n+1)n,當(dāng)n=3時,nn+1=81,(n+1)n=64,此時,nn+1>(n+1)n,當(dāng)n=4時,nn+1=1024,(n+1)n=625,此時,nn+1>(n+1)n,(2)根據(jù)上述結(jié)論,我們猜想:當(dāng)n≥3時,nn+1>(n+1)n(n∈N*)恒成立.①當(dāng)n=3時,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設(shè)當(dāng)n=k時,kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當(dāng)n=k+1時,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當(dāng)n=k+1時也成立,∴當(dāng)n≥3時,nn+1>(n+1)n(n∈N*)恒成立.27.已知集合A到B的映射f:x→y=2x+1,那么集合A中元素2在B中的象是()A.2B.5C.6D.8答案:∵x=2,∴y=2x+1則y=2×2+1=5,那么集合A中元素2在B中的象是5故選B.28.如圖,圓心角∠AOB=120°,P是AB上任一點(不與A,B重合),點C在AP的延長線上,則∠BPC等于______.
答案:解:設(shè)點E是優(yōu)弧AB(不與A、B重合)上的一點,∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故為60°.29.如圖,設(shè)P、Q為△ABC內(nèi)的兩點,且AP=25AB+15AC,AQ=23AB+14AC,則△ABP的面積與△ABQ的面積之比為()A.15B.45C.14D.13答案:設(shè)AM=25AB,AN=15AC則AP=AM+AN由平行四邊形法則知NP∥AB
所以△ABP的面積△ABC的面積=|AN||AC|=15同理△ABQ的面積△ABC的面積=14故△ABP的面積△ABQ的面積=45為:45故選B.30.在如圖所示的莖葉圖中,甲、乙兩組數(shù)據(jù)的中位數(shù)分別是______.答案:由莖葉圖可得甲組共有9個數(shù)據(jù)中位數(shù)為45乙組共9個數(shù)據(jù)中位數(shù)為46故為45、4631.(選做題)
曲線(θ為參數(shù))與直線y=a有兩個公共點,則實數(shù)a的取值范圍是(
).答案:0<a≤132.柱坐標(biāo)(2,,5)對應(yīng)的點的直角坐標(biāo)是
。答案:()解析:∵柱坐標(biāo)(2,,5),且,2,∴對應(yīng)直角坐標(biāo)是()33.已知二元一次方程組a1x+b1y=c1a2x+b2y=c2的增廣矩陣是1-11113,則此方程組的解是______.答案:由題意,方程組
x-
y=1x+y=3解之得x=2y=1故為x=2y=134.意大利數(shù)學(xué)家菲波拉契,在1202年出版的一書里提出了這樣的一個問題:一對兔子飼養(yǎng)到第二個月進入成年,第三個月生一對小兔,以后每個月生一對小兔,所生小兔能全部存活并且也是第二個月成年,第三個月生一對小兔,以后每月生一對小兔.問這樣下去到年底應(yīng)有多少對兔子?試畫出解決此問題的程序框圖,并編寫相應(yīng)的程序.答案:見解析解析:解:根據(jù)題意可知,第一個月有對小兔,第二個月有對成年兔子,第三個月有兩對兔子,從第三個月開始,每個月的兔子對數(shù)是前面兩個月兔子對數(shù)的和,設(shè)第個月有對兔子,第個月有對兔子,第個月有對兔子,則有,一個月后,即第個月時,式中變量的新值應(yīng)變第個月兔子的對數(shù)(的舊值),變量的新值應(yīng)變?yōu)榈趥€月兔子的對數(shù)(的舊值),這樣,用求出變量的新值就是個月兔子的數(shù),依此類推,可以得到一個數(shù)序列,數(shù)序列的第項就是年底應(yīng)有兔子對數(shù),我們可以先確定前兩個月的兔子對數(shù)均為,以此為基準(zhǔn),構(gòu)造一個循環(huán)程序,讓表示“第×個月的從逐次增加,一直變化到,最后一次循環(huán)得到的就是所求結(jié)果.流程圖和程序如下:S=1Q=1I=3WHILE
I<=12F=S+QQ=SS=FI=I+1WENDPRINT
FEND35.設(shè)隨機事件A、B,P(A)=35,P(B|A)=12,則P(AB)=______.答案:由條件概率的計算公式,可得P(AB)=P(A)×P(B|A)=35×12=310;故為310.36.用反證法證明命題“若a、b∈N,ab能被2整除,則a,b中至少有一個能被2整除”,那么反設(shè)的內(nèi)容是______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的步驟,應(yīng)先假設(shè)要證命題的否定成立,而要證命題的否定為:“a,b都不能被2整除”,故為:a、b都不能被2整除.37.2005年10月,我國載人航天飛船“神六”飛行獲得圓滿成功.已知“神六”飛船變軌前的運行軌道是一個以地心為焦點的橢圓,飛船近地點、遠(yuǎn)地點離地面的距離分別為200公里、250公里.設(shè)地球半徑為R公里,則此時飛船軌道的離心率為______.(結(jié)果用R的式子表示)答案:(I)設(shè)橢圓的方程為x2a2+y2b2=1由題設(shè)條件得:a-c=|OA|-|OF2|=|F2A|=R+200,a+c=|OB|+|OF2|=|F2B|=R+250,解得a=225+R,c=25則此時飛船軌道的離心率為25225+R故為:25225+R.38.(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.
B.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=-2sinθ的圓心的極坐標(biāo)是______.
C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線段CE的長為______.答案:A.∵|x-5|+|x+3|≥10,∴當(dāng)x≥5時,x-5+x+3≥10,∴x≥6;當(dāng)x≤-3時,有5-x+(-x-3)≥10,∴x≤-4;當(dāng)-4<x<5時,有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴該圓的圓心的直角坐標(biāo)為(-1,0),∴其極坐標(biāo)是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依題意,由相交線定理得:AF?FB=DF?FC,∴AF×2=22×22,∴AF=4;又∵CE與圓相切,∴|CE|2=|EB|?|EA|=1×(1+2+4)=7,∴|CE|=7.故為:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.39.小李在一旅游景區(qū)附近租下一個小店面賣紀(jì)念品和T恤,由于經(jīng)營條件限制,他最多進50件T恤和30件紀(jì)念品,他至少需要T恤和紀(jì)念品40件才能維持經(jīng)營,已知進貨價為T恤每件36元,紀(jì)念品每件50元,現(xiàn)在他有2400元可進貨,假設(shè)每件T恤的利潤是18元,每件紀(jì)念品的利潤是20元,問怎樣進貨才能使他的利潤最大,最大利潤為多少?答案:設(shè)進T恤x件,紀(jì)念品y件,可得利潤為z元,由題意得x、y滿足的約束條件為:
0≤x≤50
0≤y≤30
x+y≥4036x+48y≤2400,且x、y∈N*目標(biāo)函數(shù)z=18x+20y約束條件的可行域如圖所示:五邊形ABCDE的各個頂點坐標(biāo)分別為:A(40,0),B(50,0),C(50,252),D(803,30),E(10,30),當(dāng)直線l:z=18x+20y經(jīng)過C(50,252)時取最大值,∵x,y必為整數(shù),∴當(dāng)x=50,y=12時,z取最大值即進50件T恤,12件紀(jì)念品時,可獲最大利潤,最大利潤為1140元.40.把10個相同的小正方體,按如圖所示的位置堆放,它的外表含有若干小正方形。如果將圖中標(biāo)有A的一個小正方體搬去,這時外表含有的小正方形個數(shù)與搬去前相比(
)答案:A41.(選做題)已知x+2y=1,則x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上點的距離的平方∴x2+y2的最小值是(0,0)到x+2y=1的距離d的平方據(jù)點到直線的距離公式得d=11+4=15∴x2+y2的最小值是15故為1542.若一個圓錐的軸截面是邊長為4cm的等邊三角形,則這個圓錐的側(cè)面積為______cm2.答案:如圖所示:∵軸截面是邊長為4等邊三角形,∴OB=2,PB=4.圓錐的側(cè)面積S=π×2×4=8πcm2.故為8π.43.將圖形F按=(,)(其中)平移,就是將圖形F()A.向x軸正方向平移個單位,同時向y軸正方向平移個單位.B.向x軸負(fù)方向平移個單位,同時向y軸正方向平移個單位.C.向x軸負(fù)方向平移個單位,同時向y軸負(fù)方向平移個單位.D.向x軸正方向平移個單位,同時向y軸負(fù)方向平移個單位.答案:A解析:根據(jù)圖形容易得出結(jié)論.44.某種細(xì)菌在培養(yǎng)過程中,每15分鐘分裂一次(由一個分裂成兩個),這種細(xì)菌由1個繁殖成4096個需經(jīng)過()A.12小時B.4小時C.3小時D.2小時答案:設(shè)共分裂了x次,則有2x=4
096,∴2x=212,又∵每次為15分鐘,∴共15×12=180(分鐘),即3個小時.故為C45.一個路口的紅綠燈,紅燈的時間為30秒,黃燈的時間為5秒,綠燈的時間為40秒,一學(xué)生到達(dá)該路口時,見到紅燈的概率是()A.25B.58C.115D.35答案:由題意知本題是一個那可能事件的概率,試驗發(fā)生包含的事件是總的時間長度為30+5+40=75秒,設(shè)紅燈為事件A,滿足條件的事件是紅燈的時間為30秒,根據(jù)等可能事件的概率得到出現(xiàn)紅燈的概率P(A)=構(gòu)成事件A的時間長度總的時間長度=3075=25.故選A.46.(上海卷理3文8)動點P到點F(2,0)的距離與它到直線x+2=0的距離相等,則P的軌跡方程為______.答案:由拋物線的定義知點P的軌跡是以F為焦點的拋物線,其開口方向向右,且p2=2,解得p=4,所以其方程為y2=8x.故為y2=8x47.方程4x-3×2x+2=0的根的個數(shù)是(
)
A.0
B.1
C.2
D.3答案:C48.已知F1、F2為橢圓x225+y29=1的兩個焦點,過F1的直線交橢圓于A、B兩點.若|F2A|+|F2B|=12,則|AB|=______.答案:由橢圓的定義得|AF1|+|AF2|=10|BF1|+|BF2|=10兩式相加得|AB|+|AF2|+|BF2|=20,即|AB|+12=20,∴|AB|=8.故:849.設(shè)函數(shù)g(x)=ex
x≤0lnx,x>0,則g(g(12))=______.答案:g(g(12))
=g(ln12)
=eln12=12故為:12.50.下列4個命題
㏒1/2x>㏒1/3x
其中的真命題是()
、A.(B.C.D.答案:D解析:取x=,則=1,=<1,p2正確當(dāng)x∈(0,)時,()x<1,而>1.p4正確第2卷一.綜合題(共50題)1.如圖,已知C點在圓O直徑BE的延長線上,CA切圓O于A點,∠ACB的平分線分別交AE、AB于點F、D.
(Ⅰ)求∠ADF的度數(shù);
(Ⅱ)若AB=AC,求ACBC的值.答案:解
(1)∵AC為圓O的切線,∴∠B=∠EAC,又CD是∠ACB的平分線,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.又∵BE為圓O的直徑,∴∠BAE=90°,∴∠ADF=12(180°-∠BAE)=45°(2)∵∠B=∠EAC,∠ACE=∠BCA,∴△ACE∽△BCA又∵AB=AC,∴∠B=∠ACB,∴∠B=∠ACB=∠EAC,由∠BAE=90°及三角形內(nèi)角和知,∠B=30°,∴在Rt△ABE中,ACBC=AEBA=tan∠B=tan30°=332.某廠生產(chǎn)電子元件,其產(chǎn)品的次品率為5%.現(xiàn)從一批產(chǎn)品中任意的連續(xù)取出2件,寫出其中次品數(shù)ξ的概率分布.答案:依題意,隨機變量ξ~B(2,5%).所以,P(ξ=0)=C20(95%)2=0.9025,P(ξ=1)=C21(5%)(95%)=0.095P(ξ=2)=C22(5%)2=0.0025因此,次品數(shù)ξ的概率分布是:3.在平面直角坐標(biāo)系xOy中,設(shè)P(x,y)是橢圓上的一個動點,則S=x+y的最大值是()
A.1
B.2
C.3
D.4答案:B4.用冒泡法對43,34,22,23,54從小到大排序,需要(
)趟排序。
A.2
B.3
C.4
D.5答案:A5.設(shè)函數(shù)f(x)=ax(a>0,a≠1),如果f(x1+x2+…+x2009)=8,那么f(2x1)×f(2x2)×…×f(2x2009)的值等于()A.32B.64C.16D.8答案:f(x1+x2+…+x2009)=8可得ax1+x2+…+x2009=8f(2x1)×f(2x2)×…×f(2x2009)=a2(x1+x2+…+x2009)=82=64故選B.6.若集合A={x|x2-4x-5<0,x∈Z},B={x|y=log0.5x>-3,x∈Z},記x0為拋擲一枚骰子出現(xiàn)的點數(shù),則x0∈A∩B的概率等于______.答案:由x2-4x-5<0,x∈Z,解得:-1<x<5,x∈Z,∴x=0,1,2,3,4.即A={0,1,2,3,4},B={x|y=log0.5x>-3,x∈Z}={1,2,3,4,5,6,7},∴A∩B={1,2,3,4},而x0為拋擲一枚骰子出現(xiàn)的點數(shù)可能有6種,∴P=46=23,故為:23.7.系數(shù)矩陣為.2132.,解為xy=12的一個線性方程組是______.答案:可設(shè)線性方程組為2132xy=mn,由于方程組的解是xy=12,∴mn=47,∴所求方程組為2x+y=43x+2y=7,故為:2x+y=43x+2y=7.8.若將推理“四邊形的內(nèi)角和為360°,所以平行四邊形的內(nèi)角和為360°”改為三段論的形式,則它的小前提是______.答案:將推理“四邊形的內(nèi)角和為360°,所以平行四邊形的內(nèi)角和為360°”改為三段論的形式,因為四邊形的內(nèi)角和為360°,平行四邊形是四邊形,所以平行四邊形的內(nèi)角和為360°大前提:四邊形的內(nèi)角和為360°;小前提:平行四邊形是四邊形;結(jié)論:平行四邊形的內(nèi)角和為360°.故為:平行四邊形是四邊形.9.已知兩點A(2,1),B(3,3),則直線AB的斜率為()
A.2
B.
C.
D.-2答案:A10.用數(shù)學(xué)歸納法證明不等式:1n+1n+1+1n+2+…+1n2>1(n∈N*且n.1).答案:證明:(1)當(dāng)n=2時,左邊=12+13+14=1312>1,∴n=2時成立(2分)(2)假設(shè)當(dāng)n=k(k≥2)時成立,即1k+1k+1+1k+2+…+1k2>1那么當(dāng)n=k+1時,左邊=1k+1+1k+2+1k+3+…+1(k+1)2=1k+1k+1+1k+2+1k+3+…+1k2+2k+1(k+1)2-1k>1+1k2+1+1k2+2+…+1(k+1)2-1k>1+(2k+1)?1(k+1)2-1k>1+k2-k-1k2+2k+1>1∴n=k+1時也成立(7分)根據(jù)(1)(2)可得不等式對所有的n>1都成立(8分)11.(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.
B.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=-2sinθ的圓心的極坐標(biāo)是______.
C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線段CE的長為______.答案:A.∵|x-5|+|x+3|≥10,∴當(dāng)x≥5時,x-5+x+3≥10,∴x≥6;當(dāng)x≤-3時,有5-x+(-x-3)≥10,∴x≤-4;當(dāng)-4<x<5時,有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴該圓的圓心的直角坐標(biāo)為(-1,0),∴其極坐標(biāo)是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依題意,由相交線定理得:AF?FB=DF?FC,∴AF×2=22×22,∴AF=4;又∵CE與圓相切,∴|CE|2=|EB|?|EA|=1×(1+2+4)=7,∴|CE|=7.故為:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.12.如圖所示,PD⊥平面ABCD,且四邊形ABCD為正方形,AB=2,E是PB的中點,
cos〈,〉=.
(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫出點E的坐標(biāo);
(2)在平面PAD內(nèi)求一點F,使EF⊥平面PCB.答案:(1)點E的坐標(biāo)是(1,1,1)(2)F是AD的中點時滿足EF⊥平面PCB解析:(1)如圖所示,以DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0)、B(2,2,0)、C(0,2,0),設(shè)P(0,0,2m),則E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴點E的坐標(biāo)是(1,1,1).(2)∵F∈平面PAD,∴可設(shè)F(x,0,z).則=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F點的坐標(biāo)為(1,0,0)即點F是AD的中點時滿足EF⊥平面PCB.13.(2的c的?湛江一模)已知⊙O的方程為x2+y2=c,則⊙O上的點到直線x=2+45ty=c-35t(t為參數(shù))的距離的最大值為______.答案:∵直線x=2+45t一=1-35t(t為參數(shù))∴3x+4一=10,∵⊙e的方程為x2+一2=1,圓心為(0,0),設(shè)直線3x+4一=k與圓相切,∴|k|5=1,∴k=±5,∴直線3x+4一=k與3x+4一=10,之間的距離就是⊙e上的點到直線的距離的最大值,∴d=|10±5|5,∴d的最大值是155=3,故為:3.14.命題“所有能被2整除的數(shù)都是偶數(shù)”的否定
是()
A.所有不能被2整除的整數(shù)都是偶數(shù)
B.所有能被2整除的整數(shù)都不是偶數(shù)
C.存在一個不能被2整除的整數(shù)是偶數(shù)
D.存在一個能被2整除的整數(shù)不是偶數(shù)答案:D15.(文)對于任意的平面向量a=(x1,y1),b=(x2,y2),定義新運算⊕:a⊕b=(x1+x2,y1y2).若a,b,c為平面向量,k∈R,則下列運算性質(zhì)一定成立的所有序號是______.
①a⊕b=b⊕a;
②(ka)⊕b=a⊕(kb);
③a⊕(b⊕c)=(a⊕b)⊕c;
④a⊕(b+c)=a⊕b+a⊕c.答案:①a⊕b=(x1+x2,y1y2)=(x2+x1,y2y1)=b⊕a,故正確;②∵(ka)⊕b=(kx1+x2,ky1y2),a⊕(kb)=(x1+kx2,y1ky2),∴(ka)⊕b≠a⊕(kb),故不正確;③設(shè)c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),(a⊕b)⊕c=(x1+x2,y1y2)⊕c=(x1+x2+x3,y1y2y3),∴a⊕(b⊕c)=(a⊕b)⊕c,故正確;④設(shè)c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),a⊕b+a⊕c=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),∴a⊕(b⊕c)≠a⊕b+a⊕c,故不正確.綜上可知:只有①③正確.故為①③.16.拋物線y2=4x,O為坐標(biāo)原點,A,B為拋物線上兩個動點,且OA⊥OB,當(dāng)直線AB的傾斜角為45°時,△AOB的面積為______.答案:設(shè)直線AB的方程為y=x-m,代入拋物線聯(lián)立得x2-(2m+4)x+m2=0,則x1+x2=2m+4,x1x2=m2,∴|x1-x2|=16m+16∵三角形的面積為S△AOB=|12my1-12my2|=12m(|x1-x2|)=12m16m+16;又因為OA⊥OB,設(shè)A(x1,2x1),B(x2,-2x2)所以2x1x1?-2x2x2=-1,求的m=4,代入上式可得S△AOB=12m16m+16=12×4×64+16=85故為:8517.設(shè)a,b,c∈R,則復(fù)數(shù)(a+bi)(c+di)為實數(shù)的充要條件是()
A.a(chǎn)d-bc=0
B.a(chǎn)c-bd=0
C.a(chǎn)c+bd=0
D.a(chǎn)d+bc=0答案:D18.根據(jù)一組數(shù)據(jù)判斷是否線性相關(guān)時,應(yīng)選用(
)
A.散點圖
B.莖葉圖
C.頻率分布直方圖
D.頻率分布折線圖答案:A19.一個盒子中裝有4張卡片,上面分別寫著四個函數(shù):f1(x)=x3,f2(x)=x4,f3(x)=2|x|,f4(x)=x+1x,現(xiàn)從盒子中任取2張卡片,將卡片上的函數(shù)相乘得到一個新函數(shù),所得函數(shù)為奇函數(shù)的概率是______.答案:要使所得函數(shù)為奇函數(shù),取出的兩個函數(shù)必須是一個奇函數(shù)、一個偶函數(shù).而所給的4個函數(shù)中,有2個奇函數(shù)、2個偶函數(shù).所有的取法種數(shù)為C24=6,滿足條件的取法有2×2=4種,故所得函數(shù)為奇函數(shù)的概率是46=23,故為23.20.乘積(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)的展開式中,一共有多少項?答案:因為:從第一個括號中選一個字母有3種方法,從第二個括號中選一個字母有4種方法,從第三個括號中選一個字母有5種方法.故根據(jù)乘法計數(shù)原理可知共有N=3×4×5=60(項).21.如圖,AC是⊙O的直徑,∠ACB=60°,連接AB,過A、B兩點分別作⊙O的切線,兩切線交于點P.若已知⊙O的半徑為1,則△PAB的周長為______.答案:∵AC是⊙O的直徑,∴∠ABC=90°,∠BAC=30°,CB=1,AB=3,∵AP為切線,∴∠CAP=90°,∠PAB=60°,又∵AP=BP,∴△PAB為正三角形,∴周長=33.故填:33.22.(1+3x)n(其中n∈N且n≥6)的展開式中x5與x6的系數(shù)相等,則n=()A.6B.7C.8D.9答案:二項式展開式的通項為Tr+1=3rCnrxr∴展開式中x5與x6的系數(shù)分別是35Cn5,36Cn6∴35Cn5=36Cn6解得n=7故選B23.如圖所示,已知點P在正方體ABCD—A′B′C′D′的對角線
BD′上,∠PDA=60°.
(1)求DP與CC′所成角的大小;
(2)求DP與平面AA′D′D所成角的大小.答案:(1)DP與CC′所成的角為45°(2)DP與平面AA′D′D所成的角為30°解析:如圖所示,以D為原點,DA為單位長度建立空間直角坐標(biāo)系D—xyz.則=(1,0,0),=(0,0,1).連接BD,B′D′.在平面BB′D′D中,延長DP交B′D′于H.設(shè)="(m,m,1)"(m>0),由已知〈,〉=60°,由·=||||cos〈,〉,可得2m=.解得m=,所以=(,,1).(1)因為cos〈,〉==,所以〈,〉=45°,即DP與CC′所成的角為45°.(2)平面AA′D′D的一個法向量是=(0,1,0).因為cos〈,〉==,所以〈,〉=60°,可得DP與平面AA′D′D所成的角為30°.24.已知向量,,則“,λ∈R”成立的必要不充分條件是()
A.
B與方向相同
C.
D.答案:D25.為了考察兩個變量x和y之間的線性相關(guān)性,甲、乙兩位同學(xué)各自獨立地做10次和15次試驗,并且利用線性回歸方法,求得回歸直線分別為l1和l2,已知兩個人在試驗中發(fā)現(xiàn)對變量x的觀測數(shù)據(jù)的平均值都是s,對變量y的觀測數(shù)據(jù)的平均值都是t,那么下列說法正確的是()
A.l1和l2必定平行
B.l1與l2必定重合
C.l1和l2有交點(s,t)
D.l1與l2相交,但交點不一定是(s,t)答案:C26.對于實數(shù)x、y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值為5,故為5.27.執(zhí)行如圖所示的程序框圖,輸出的S值為()
A.2
B.4
C.8
D.16
答案:C28.①某尋呼臺一小時內(nèi)收到的尋呼次數(shù)X;
②長江上某水文站觀察到一天中的水位X;
③某超市一天中的顧客量X.
其中的X是連續(xù)型隨機變量的是()
A.①
B.②
C.③
D.①②③答案:B29.從一批產(chǎn)品中取出三件,設(shè)A=“三件產(chǎn)品全不是次品”,B=“三件產(chǎn)品全是次品”,C=“三件產(chǎn)品不全是次品”,則下列結(jié)論正確的是()
A.A與C互斥
B.B與C互斥
C.任兩個均互斥
D.任兩個均不互斥答案:B30.拋物線y2=4x的焦點坐標(biāo)是()
A.(4,0)
B.(2,0)
C.(1,0)
D.答案:C31.已知200輛汽車通過某一段公路時的時速的頻率分布直方圖如圖所示,則時速在[60,70]的汽車大約有()輛.A.90B.80C.70D.60答案:由已知可得樣本容量為200,又∵數(shù)據(jù)落在區(qū)間[60,70]的頻率為0.04×10=0.4∴時速在[60,70]的汽車大約有200×0.4=80故選B.32.用反證法證明命題“a,b∈N,如果ab可被5整除,那么a,b至少有1個能被5整除.”則假設(shè)的內(nèi)容是()
A.a(chǎn),b都能被5整除
B.a(chǎn),b都不能被5整除
C.a(chǎn),b不能被5整除
D.a(chǎn),b有1個不能被5整除答案:B33.在Rt△ABC中,若∠C=90°,AC=b,BC=a,則△ABC外接圓半徑r=a2+b22.運用類比方法,若三棱錐的三條側(cè)棱兩兩互相垂直且長度分別為a,b,c,則其外接球的半徑R=______.答案:直角三角形外接圓半徑為斜邊長的一半,由類比推理可知若三棱錐的三條側(cè)棱兩兩互相垂直且長度分別為a,b,c,將三棱錐補成一個長方體,其外接球的半徑R為長方體對角線長的一半.故為a2+b2+c22故為:a2+b2+c2234.
已知拋物線y2=2px(p>0)的焦點為F,過F的直線交y軸正半軸于點P,交拋物線于A,B兩點,其中點A在第一象限,若,,,則μ的取值范圍是()
A.[1,]
B.[,2]
C.[2,3]
D.[3,4]答案:B35.已知二元一次方程組a1x+b1y=c1a2x+b2y=c2的增廣矩陣是1-11113,則此方程組的解是______.答案:由題意,方程組
x-
y=1x+y=3解之得x=2y=1故為x=2y=136.不等式:>0的解集為A.(-2,1)B.(2,+∞)C.(-2,1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)答案:C解析:不等式:>0,∴,原不等式的解集為(-2,1)∪(2,+∞),選C。37.已知大于1的正數(shù)x,y,z滿足x+y+z=33.
(1)求證:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.
(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴l(xiāng)og3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3當(dāng)且僅當(dāng)x=y=z=3時,等號成立.故所求的最小值是3.38.若x、y∈R+且x+2y≤ax+y恒成立,則a的最小值是()A.1B.2C.3D.1+22答案:由題意,根據(jù)柯西不等式得x+2y≤(1+2)(x+y)∴x+2y≤3(x+y)要使x+2y≤ax+y恒成立,∴a≥3∴a的最小值是3故選C.39.某校欲在一塊長、短半軸長分別為10米與8米的橢圓形土地中規(guī)劃一個矩形區(qū)域搞綠化,則在此橢圓形土地中可綠化的最大面積為()平方米.
A.80
B.160
C.320
D.160答案:B40.命題“正數(shù)的絕對值等于它本身”的逆命題是______.答案:將命題“正數(shù)的絕對值等于它本身”改寫為“若一個數(shù)是正數(shù),則其絕對值等于它本身”,所以逆命題是“若一個數(shù)的絕對值等于它本身,則這個數(shù)是正數(shù)”,即“絕對值等于它本身的數(shù)是正數(shù)”.故為:“絕對值等于它本身的數(shù)是正數(shù)”.41.i是虛數(shù)單位,a,b∈R,若ia+bi=1+i,則a+b=______.答案:∵ia+bi=1+i,a,b∈R,∴i(a-bi)(a+bi)(a-bi)=1+i,∴b+aia2+b2=1+i,化為b+ai=(a2+b2)+(a2+b2)i,根據(jù)復(fù)數(shù)相等的定義可得b=a2+b2a=a2+b2,a2+b2≠0解得a=b=12.∴a+b=1.故為1.42.將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.答案:y=-cos2x,
=(,0)解析:將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.43.如圖是一個正三棱柱體的三視圖,該柱體的體積等于()A.3B.23C.2D.33答案:根據(jù)長對正,寬相等,高平齊,可得底面正三角形高為3,三棱柱高為1所以正三角形邊長為3sin60°=2,所以V=12×2×3×1=3,故選A.44.下面程序運行后,輸出的值是()
A.42
B.43
C.44
D.45
答案:C45.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點,連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點共圓∴∠EFC=∠D=α∴∠DEB=α故為:α46.圓C1x2+y2-4y-5=0與圓C2x2+y2-2x-2y+1=0位置關(guān)系是()
A.內(nèi)含
B.內(nèi)切
C.相交
D.外切答案:A47.參數(shù)方程(t是參數(shù))表示的圖象是()
A.射線
B.直線
C.圓
D.雙曲線答案:A48.老師在班級50名學(xué)生中,依次抽取學(xué)號為5,10,15,20,25,30,35,40,45,50的學(xué)和進行作業(yè)檢查,這種抽樣方法是()
A.隨機抽樣
B.分層抽樣
C.系統(tǒng)抽樣
D.以上都是答案:C49.(選做題)那霉素發(fā)酵液生物測定,一般都規(guī)定培養(yǎng)溫度為(37±1)°C,培養(yǎng)時間在16小時以上,某制藥廠為了縮短時間,決定優(yōu)選培養(yǎng)溫度,試驗范圍固定在29~50°C,精確度要求±1°C,用分?jǐn)?shù)法安排實驗,令第一試點在t1處,第二試點在t2處,則t1+t2=(
).答案:7950.已知矩陣A=12-14,向量a=74.
(1)求矩陣A的特征值λ1、λ2和特征向量α1、α2;
(2)求A5α的值.答案:(1)矩陣A的特征多項式為f(λ)=.λ-1-21λ-4.=λ2-5λ+6,令f(λ)=0,得λ1=2,λ2=3,當(dāng)λ1=2時,得α1=21,當(dāng)λ2=3時,得α2=11.(7分)(2)由α=mα1+nα2得2m+n=7m+n=4,得m=3,n=1.∴A5α=A5(3α1+α2)=3(A5α1)+A5α2=3(λ51α1)+λ52α2=3×2521+3511=435339.(15分)第3卷一.綜合題(共50題)1.根據(jù)給出的程序語言,畫出程序框圖,并計算程序運行后的結(jié)果.
答案:程序框圖:模擬程序運行:當(dāng)j=1時,n=1,當(dāng)j=2時,n=1,當(dāng)j=3時,n=1,當(dāng)j=4時,n=2,…當(dāng)j=8時,n=2,…當(dāng)j=11時,n=2,當(dāng)j=12時,此時不滿足循環(huán)條件,退出循環(huán)程序運行后的結(jié)果是:2.2.給出一個程序框圖,輸出的結(jié)果為s=132,則判斷框中應(yīng)填()
A.i≥11
B.i≥10
C.i≤11
D.i≤12
答案:A3.若集合A={x|x2-4x-5<0,x∈Z},B={x|y=log0.5x>-3,x∈Z},記x0為拋擲一枚骰子出現(xiàn)的點數(shù),則x0∈A∩B的概率等于______.答案:由x2-4x-5<0,x∈Z,解得:-1<x<5,x∈Z,∴x=0,1,2,3,4.即A={0,1,2,3,4},B={x|y=log0.5x>-3,x∈Z}={1,2,3,4,5,6,7},∴A∩B={1,2,3,4},而x0為拋擲一枚骰子出現(xiàn)的點數(shù)可能有6種,∴P=46=23,故為:23.4.已知矩陣A=abcd,若矩陣A屬于特征值3的一個特征向量為α1=11,屬于特征值-1的一個特征向量為α2=1-1,則矩陣A=______.答案:由矩陣A屬于特征值3的一個特征向量為α1=11可得abcd11=311,即a+b=3c+d=3;(4分)由矩陣A屬于特征值2的一個特征向量為α2=1-1,可得abcd1-1=(-1)1-1,即a-b=-1c-d=1,(6分)解得a=1b=2c=2d=1,即矩陣A=1221.(10分)故為:1221.5.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點,過
B作BD⊥AC于D,BD交⊙O于E點,若AE平分∠BAD,則∠BAD=()
A.30°
B.45°
C.50°
D.60°
答案:D6.設(shè)橢圓=1和x軸正方向的交點為A,和y軸的正方向的交點為B,P為第一象限內(nèi)橢圓上的點,使四邊形OAPB面積最大(O為原點),那么四邊形OAPB面積最大值為()
A.a(chǎn)b
B.ab
C.a(chǎn)b
D.2ab答案:B7.函數(shù)y=ax2+1的圖象與直線y=x相切,則a=______.答案:設(shè)切點為(x0,y0),∵y′=2ax,∴k=2ax0=1,①又∵點(x0,y0)在曲線與直線上,即y0=ax20+1y0=x0,②由①②得a=14.故為14.8.函數(shù)數(shù)列{fn(x)}滿足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]
(1)求f2(x),f3(x);
(2)猜想fn(x)的表達(dá)式,并證明你的結(jié)論.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用數(shù)學(xué)歸納法證明:①當(dāng)n=1時,f1(x)=x1+x22,已知,顯然成立②假設(shè)當(dāng)n=K(K∈N*)4時,猜想成立,即fk(x)=x1+kx2則當(dāng)n=K+1時,fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即對n=K+1時,猜想也成立.結(jié)合①②可知:猜想fn(x)=x1+nx2對一切n∈N*都成立.9.AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長為______.答案:連接AC、BC,則∠ACD=∠ABC,又因為∠ADC=∠ACB=90°,所以△ACD~△ACB,所以ADAC=ACAB,解得AC=23.故填:23.10.賦值語句M=M+3表示的意義()
A.將M的值賦給M+3
B.將M的值加3后再賦給M
C.M和M+3的值相等
D.以上說法都不對答案:B11.已知矩陣A=12-14,向量a=74.
(1)求矩陣A的特征值λ1、λ2和特征向量α1、α2;
(2)求A5α的值.答案:(1)矩陣A的特征多項式為f(λ)=.λ-1-21λ-4.=λ2-5λ+6,令f(λ)=0,得λ1=2,λ2=3,當(dāng)λ1=2時,得α1=21,當(dāng)λ2=3時,得α2=11.(7分)(2)由α=mα1+nα2得2m+n=7m+n=4,得m=3,n=1.∴A5α=A5(3α1+α2)=3(A5α1)+A5α2=3(λ51α1)+λ52α2=3×2521+3511=435339.(15分)12.已知0<a<1,loga(1-x)<logax則()
A.0<x<1
B.x<
C.0<x<
D.<x<1答案:C13.已知點P是長方體ABCD-A1B1C1D1底面ABCD內(nèi)一動點,其中AA1=AB=1,AD=2,若A1P與A1C所成的角為30°,那么點P在底面的軌跡為()A.圓弧B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:如圖,∵A1P與A1C所成的角為30°,∴P點在以A1C為軸,母線與軸的夾角為30度的圓錐面上,在直角三角形A1CC1中,A1C1=3,CC1=1,∴∠C1AC1=30°當(dāng)截面ABCD與圓錐的母線A1C1平行時,截得的圖形是拋物線,故點P在底面的軌跡為拋物線的一部分.故選D.14.已知函數(shù)f(x)=2x,x≤1log13x,x>1,若f(a)=2,則a=______.答案:當(dāng)a≤1時y=2x∴2a=2∴a=1當(dāng)a>1時y=log13x∴2=loga13∴a=19不成立所以a=1故為:115.設(shè)P、Q為兩個非空實數(shù)集合,定義集合P+Q={x|x=a+b,a∈P,b∈Q},若P={0,2,5},Q={1,2,6},則P+Q中元素的個數(shù)是______.答案:∵a∈P,b∈Q,∴a可以為0,2,5三個數(shù),b可以為1,2,6三個數(shù),∴x=0+1=1,x=0+2=2,x=0+6=6,x=2+1=3,x=2+2=4,x=2+6=8,x=5+1=6,x=5+2=7,x=5+6=11,∴P+Q={x|x=a+b,a∈P,b∈Q}={1,2,3,4,6,7,8,11},有8個元素.故為8.16.下面是一個算法的偽代碼.如果輸出的y的值是10,則輸入的x的值是______.答案:由題意的程序,若x≤5,y=10x,否則y=2.5x+5,由于輸出的y的值是10,當(dāng)x≤5時,y=10x=10,得x=1;當(dāng)x>5時,y=2.5x+5=10,得x=2,不合,舍去.則輸入的x的值是1.故為:1.17.一圓形紙片的圓心為O點,Q是圓內(nèi)異于O點的一定點,點A是圓周上一點,把紙片折疊使點A與點Q重合,然后抹平紙片,折痕CD與OA交于P點,當(dāng)點A運動時點P的軌跡是______.
①圓
②雙曲線
③拋物線
④橢圓
⑤線段
⑥射線.答案:由題意可得,CD是線段AQ的中垂線,∴|PA|=|PQ|,∴|PQ|+|PO|=|PA|+|PO|=半徑R,即點P到兩個定點O、Q的距離之和等于定長R(R>|OQ|),由橢圓的定義可得,點P的軌跡為橢圓,故為④.18.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,點M(ρ,θ)關(guān)于極點的對稱點的極坐標(biāo)是______.答案:由點的極坐標(biāo)的意義可得,點M(ρ,θ)關(guān)于極點的對稱點到極點的距離等于ρ,極角為π+θ,故點M(ρ,θ)關(guān)于極點的對稱點的極坐標(biāo)是(ρ,π+θ),故為(ρ,π+θ).19.一個公司共有240名員工,下設(shè)一些部門,要采用分層抽樣方法從全體員工中抽取一個容量為20的樣本.已知某部門有60名員工,那么從這一部門抽取的員工人數(shù)是______.答案:每個個體被抽到的概率是
20240=112,那么從甲部門抽取的員工人數(shù)是60×112=5,故為:5.20.利用斜二側(cè)畫法畫直觀圖時,①三角形的直觀圖還是三角形;②平行四邊形的直觀圖還是平行四邊形;③正方形的直觀圖還是正方形;④菱形的直觀圖還是菱形.其中正確的是
______.答案:由斜二側(cè)直觀圖的畫法法則可知:①三角形的直觀圖還是三角形;正確;②平行四邊形的直觀圖還是平行四邊形;正確.③正方形的直觀圖還是正方形;應(yīng)該是平行四邊形;所以不正確;④菱形的直觀圖還是菱形.也是平行四邊形,所以不正確.故為:①②21.梯形ABCD中,AB∥CD,AB=2CD,E、F分別是AD,BC的中點,M、N在EF上,且EM=MN=NF,若AB=a,BC=b,則AM=______(用a,b表示).答案:連結(jié)CN并延長交AB于G,因為AB∥CD,AB=2CD,M、N在EF上,且EM=MN=NF,所以G為AB的中點,所以AC=12a+b,又E、F分別是AD,BC的中點,M、N在EF上,且EM=MN=NF,所以M為AC的中點,所以AM=12AC,所以AM=14a+12b.故為:14a+12b.22.在用樣本頻率估計總體分布的過程中,下列說法正確的是()A.總體容量越大,估計越精確B.總體容量越小,估計越精確C.樣本容量越大,估計越精確D.樣本容量越小,估計越精確答案:∵用樣本頻率估計總體分布的過程中,估計的是否準(zhǔn)確與總體的數(shù)量無關(guān),只與樣本容量在總體中所占的比例有關(guān),∴樣本容量越大,估計的月準(zhǔn)確,故選C.23.已知P(B|A)=,P(A)=,則P(AB)等于()
A.
B.
C.
D.答案:C24.對于非零的自然數(shù)n,拋物線y=(n2+n)x2-(2n+1)x+1與x軸相交于An,Bn兩點,若以|AnBn|表示這兩點間的距離,則|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|的值
等于______.答案:令(n2+n)x2-(2n+1)x+1=0,得x1=1n,x2=1n+1所以An(1n,0),Bn(1n+1,0)所以|AnBn|=1n-1n+1,所以|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|=(11-12)+(12-13)+┉+(12009-12010)=1-12010=20092010.故為:20092010.25.方程x2-y2=0表示的圖形是()
A.兩條相交直線
B.兩條平行直線
C.兩條重合直線
D.一個點答案:A26.已知P為x24+y29=1,F(xiàn)1,F(xiàn)2為橢圓的左右焦點,則PF2+PF1=______.答案:∵x24+y29=1,F(xiàn)1,F(xiàn)2為橢圓的左右焦點,∴根據(jù)橢圓的定義,可得|PF2|+|PF1|=2×2=4故為:427.下列各圖象中,哪一個不可能是函數(shù)
y=f(x)的圖象()A.
B.
C.
D.
答案:函數(shù)表示每個輸入值對應(yīng)唯一輸出值的一種對應(yīng)關(guān)系.選項D,對于x=1時有兩個輸出值與之對應(yīng),故不是函數(shù)圖象故選D.28.若函數(shù)y=f(x)的定義域是[12,2],則函數(shù)y=f(log2x)的定義域為______.答案:由題意知12≤log2x≤2,即log22≤log2x≤log24,∴2≤x≤4.故為:[2,4].29.如圖,在正方體ABCD-A1B1C1D1中,E為AB的中點.
(1)求異面直線BD1與CE所成角的余弦值;
(2)求二面角A1-EC-A的余弦值.答案:以D為原點,DC為y軸,DA為x軸,DD1為Z軸建立空間直角坐標(biāo)系,…(1分)則A1(1,0,1),B(1,1,0),C(0,1,0),D1(0,0,1),E(1,12,0),…(2分)(1)BD1=(-1,-1,1),CE=(1,-12,0)…(1分)cos<BD1,CE>=-1515,…(1分)所以所求角的余弦值為1515…(1分)(2)D1D⊥平面AEC,所以D1D為平面AEC的法向量,D1D=(0,0,1)…(1分)設(shè)平面A1EC法向量為n=(x,y,z),又A1E=(0,12,-1),A1C=(-1,1,-1),n?A1E=0n?A1C=0即12y-z=0-x+y-z=0,取n=(1,2,1),…(3分)所以cos<DD1,n>=66…(2分)30.已知正方體ABCD-A1B1C1D1,點E,F(xiàn)分別是上底面A1C1和側(cè)面CD1的中心,求下列各式中的x,y的值:
(1)AC1=x(AB+BC+CC1),則x=______;
(2)AE=AA1+xAB+yAD,則x=______,y=______;
(3)AF=AD+xAB+yAA1,則x=______,y=______.答案:(1)根據(jù)向量加法的首尾相連法則,x=1;(2)由向量加法的三角形法則得,AE=AA1+A1E,由四邊形法則和向量相等得,A1E=12(A1B1+A1D1)=12(AB+AD);∴AE=AA1+12AB+12AD,∴x=y=12;(3)由向量加法的三角形法則得,AF=AD+DF,由四邊形法則和向量相等得,DF=12(DC+DD1)=12(AB+AA1);∴AF=AD+12AB+12AA1,∴x=y=12.31.方程|x|-1=2y-y2表示的曲線為()A.兩個半圓B.一個圓C.半個圓D.兩個圓答案:兩邊平方整理得:(|x|-1)2=2y-y2,化簡得(|x|-1)2+(y-1)2=1,由|x|-1≥0得x≥1或x≤-1,當(dāng)x≥1時,方程為(x-1)2+(y-1)2=1,表示圓心為(1,1)且半徑為1的圓的右半圓;當(dāng)x≤1時,方程為(x+1)2+(y-1)2=1,表示圓心為(-1,1)且半徑為1的圓的右半圓綜上所述,得方程|x|-1=2y-y2表示的曲線為為兩個半圓故選:A32.在平面直角坐標(biāo)系中,點A(4,-2)按向量a=(-1,3)平移,得點A′的坐標(biāo)是()A.(5,-5)B.(3,1)C.(5,1)D.(3,-5)答案:設(shè)A′的坐標(biāo)為(x′,y′),則x′=4-1=3y′=-2+3=1,∴A′(3,1).故選B.33.已知A(4,1,3)、B(2,-5,1),C為線段AB上一點,且則C的坐標(biāo)為()
A.
B.
C.
D.答案:C34.函數(shù)y=f(x)的圖象如圖所示,在區(qū)間[a,b]上可找到n(n≥2)個不同的數(shù)x1,x2,…xn,使得f(x1)x1=f(x2)x2=…=f(xn)xn,則n的取值范圍為()A.{2,3}B.{2,3,4}C.{3,4}D.{3,4,5}答案:令y=f(x),y=kx,作直線y=kx,可以得出2,3,4個交點,故k=f(x)x(x>0)可分別有2,3,4個解.故n的取值范圍為2,3,4.故選B.35.復(fù)數(shù)3+4i的模等于______.答案:|3+4i|=32+42=5,故為5.36.已知x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實數(shù))的一個根,則a+b=______.答案:∵x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實數(shù))的一個根,∴(-3-2i)2+a(-3-2i)+b=0,化為5-3a+b+(12-2a)i=0.根據(jù)復(fù)數(shù)相等即可得到5-3a+b=012-2a=0,解得a=6b=13.∴a+b=19.故為19.37.在空間直角坐標(biāo)系O-xyz中,已知=(1,2,3),=(2,1,2),=(1,1,2),點Q在直線OP上運動,則當(dāng)取得最小值時,點Q的坐標(biāo)為()
A.(,,)
B.(,,)
C.(,,)
D.(,,)答案:C38.復(fù)數(shù)i2000=______.答案:復(fù)數(shù)i2009=i4×500=i0=1故為:139.α為第一象限角是sinαcosα>0的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:若α為第一象限角,則sinα>0,cosα>0,所以sinαcosα>0,成立.若sinαcosα>0,則①sinα>0,cos
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 防火窗合同模板簡版
- 資金贈與合同模板
- 蔬菜長期買賣合同模板
- 清真食品采購合同模板
- 氣體公司收購合同模板
- 家電經(jīng)銷合同模板
- 按揭貸款抵押合同模板
- 安全月度例會匯報材料模板
- 簡易裝修合同合同模板
- 商場導(dǎo)購員勞務(wù)合同模板
- 粵教版科學(xué)四年級上冊全冊試卷(含答案)
- 上海大學(xué)計算機網(wǎng)絡(luò)實驗報告4
- 生產(chǎn)計劃達(dá)成率及分析報告
- 戲劇理論與表演技巧
- 二手車交易行業(yè)創(chuàng)業(yè)計劃書
- 2024年中國五礦集團招聘筆試參考題庫含答案解析
- 2024年中國郵政招聘筆試參考題庫含答案解析
- 浙江省溫州市普通高中2024屆高三上學(xué)期第一次適應(yīng)性考試數(shù)學(xué)試題(解析版)
- 汽油安全技術(shù)說明書(MSDS)
- 樂高大顆粒搭建課件:吉他
- 2023-2024學(xué)年常州溧陽市九年級上學(xué)期期中考試數(shù)學(xué)試卷(含解析)
評論
0/150
提交評論