2023年石家莊鐵路職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年石家莊鐵路職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年石家莊鐵路職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年石家莊鐵路職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年石家莊鐵路職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年石家莊鐵路職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.用反證法證明:若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理數(shù)根,那么b、c中至少有一個偶數(shù)時,下列假設正確的是()

A.假設a、b、c都是偶數(shù)

B.假設a、b、c都不是偶數(shù)

C.假設a、b、c至多有一個偶數(shù)

D.假設a、b、c至多有兩個偶數(shù)答案:B2.已知隨機變量X的分布列是:(

)

X

4

a

9

10

P

0.3

0.1

b

0.2

且EX=7.5,則a的值為()

A.5

B.6

C.7

D.8答案:C3.把矩陣變?yōu)楹?,與對應的值是()

A.

B.

C.

D.答案:C4.設雙曲線的漸近線為:y=±32x,則雙曲線的離心率為______.答案:由題意ba=32或ab=32,∴e=ca=132或133,故為132,133.5.若向量a,b,c滿足a∥b且a⊥c,則c(a+2b)=______.答案:∵a∥b∴存在λ使b=λa∵a⊥c∴a?c=0∴c?(a+2b)=c?a+2c?b=2c?λa=0故為:0.6.如圖:一個力F作用于小車G,使小車G發(fā)生了40米的位移,F(xiàn)的大小為50牛,且與小車的位移方向的夾角為60°,則F在小車位移方向上的正射影的數(shù)量為______,力F做的功為______牛米.答案:如圖,∵|F|=50,且F與小車的位移方向的夾角為60°,∴F在小車位移方向上的正射影的數(shù)量為:|F|cos60°=50×12=25(牛).∵力F作用于小車G,使小車G發(fā)生了40米的位移,∴力F做的功w=25×40=1000(牛米).故為:25牛,1000.7.已知直線3x+4y-3=0與直線6x+my+14=0平行,則它們之間的距離是______.答案:直線3x+4y-3=0即6x+8y-6=0,它直線6x+my+14=0平行,∴m=8,則它們之間的距離是d=|c1-c2|a2+b2=|-6-14|62+82=2,故為:2.8.求圓Cx=3+4cosθy=-2+4sinθ(θ為參數(shù))的圓心坐標,和圓C關于直線x-y=0對稱的圓C′的普通方程.答案:圓Cx=3+4cosθy=-2+4sinθ(θ為參數(shù))

(x-3)2+(y+2)2=16,表示圓心坐標(3,-2),半徑等于4的圓.C(3,-2)關于直線x-y=0對稱的點C′(-2,3),半徑還是4,故圓C′的普通方程(x+2)2+(y-3)2=16.9.已知點P(x,y)在曲線x=2+cosθy=2sinθ(θ為參數(shù)),則ω=3x+2y的最大值為______.答案:由題意,ω=3x+2y=3cosθ+4sinθ+6=5sin(θ+?)+6∴當sin(θ+?)=1時,ω=3x+2y的最大值為

11故為11.10.如圖,一個空間幾何體的主視圖和左視圖都是邊長為1的正方形,俯視圖是一個圓,那么這個幾何體的側面積為()A.π4B.5π4C.πD.3π2答案:此幾何體是一個底面直徑為1,高為1的圓柱底面周長是2π×12=π故側面積為1×π=π故選C11.已知平行四邊形ABCD,下列正確的是()

A.

B.

C.

D.答案:B12.若O(0,0),A(1,2)且OA′=2OA.則A′點坐標為()A.(1,4)B.(2,2)C.(2,4)D.(4,2)答案:設A′(x,y),OA′=(x,y),OA=(1,2),∴(x,y)=2(1,2),故選C.13.用反證法證明命題“a,b∈N,如果ab可被5整除,那么a,b至少有1個能被5整除.”則假設的內(nèi)容是()

A.a(chǎn),b都能被5整除

B.a(chǎn),b都不能被5整除

C.a(chǎn),b不能被5整除

D.a(chǎn),b有1個不能被5整除答案:B14.方程組的解集是(

)答案:{(5,-4)}15.關于x的不等式(k2-2k+)x(k2-2k+)1-x的解集是()

A.x>

B.x<

C.x>2

D.x<2答案:B16.已知一個球與一個正三棱柱的三個側面和兩個底面相切,若這個球的體積是32π3,則這個三棱柱的體積是______.答案:由43πR3=32π3,得R=2.∴正三棱柱的高h=4.設其底面邊長為a,則13?32a=2.∴a=43.∴V=34(43)2?4=483.故為:48317.已知拋物線C的參數(shù)方程為x=8t2y=8t(t為參數(shù)),設拋物線C的焦點為F,準線為l,P為拋物線上一點,PA⊥l,A為垂足,如果直線AF的斜率為-3,那么|PF|=______.答案:把拋物線C的參數(shù)方程x=8t2y=8t(t為參數(shù)),消去參數(shù)化為普通方程為y2=8x.故焦點F(2,0),準線方程為x=-2,再由直線FA的斜率是-3,可得直線FA的傾斜角為120°,設準線和x軸的交點為M,則∠AFM=60°,且MF=p=4,∴∠PAF=180°-120°=60°.∴AM=MF?tan60°=43,故點A(0,43),把y=43代入拋物線求得x=6,∴點P(6,43),故|PF|=(6-2)2+(43-0)2=8,故為8.18.如圖,直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB,⊙O交直線OB于E、D,連接EC、CD.

(1)求證:直線AB是⊙O的切線;

(2)若tan∠CED=12,⊙O的半徑為3,求OA的長.答案:(1)如圖,連接OC,∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切線;(2)∵BC是圓O切線,且BE是圓O割線,∴BC2=BD?BE,∵tan∠CED=12,∴CDEC=12.∵△BCD∽△BEC,∴BDBC=CDEC=12,設BD=x,BC=2x.又BC2=BD?BE,∴(2x)2=x?(x+6),解得x1=0,x2=2,∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=3+2=5.(10分).19.函數(shù)f(x)=ex(e為自然對數(shù)的底數(shù))對任意實數(shù)x、y,都有()

A.f(x+y)=f(x)f(y)

B.f(x+y)=f(x)+f(y)

C.f(xy)=f(x)f(y)

D.f(xy)=f(x)+f(y)答案:A20.用數(shù)學歸納法證明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)時,第一步驗證n=1時,左邊應取的項是______答案:在等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)中,當n=1時,n+3=4,而等式左邊起始為1的連續(xù)的正整數(shù)的和,故n=1時,等式左邊的項為:1+2+3+4故為:1+2+3+421.已知|log12x+4i|≥5,則實數(shù)x

的取值范圍是______.答案:由題意,得(log12x)2+42≥5?|log12x|≥3?0<x≤18或x≥8.∴則實數(shù)x

的取值范圍是0<x≤18或x≥8.故為:0<x≤18或x≥8.22.要使直線y=kx+1(k∈R)與焦點在x軸上的橢圓x27+y2a=1總有公共點,實數(shù)a的取值范圍是______.答案:要使方程x27+y2a=1表示焦點在x軸上的橢圓,需a<7,由直線y=kx+1(k∈R)恒過定點(0,1),所以要使直線y=kx+1(k∈R)與橢圓x27+y2a=1總有公共點,則(0,1)應在橢圓上或其內(nèi)部,即a>1,所以實數(shù)a的取值范圍是[1,7).故為[1,7).23.函數(shù)y=2|x|的定義域為[a,b],值域為[1,16],當a變動時,函數(shù)b=g(a)的圖象可以是()A.

B.

C.

D.

答案:根據(jù)選項可知a≤0a變動時,函數(shù)y=2|x|的定義域為[a,b],值域為[1,16],∴2|b|=16,b=4故選B.24.3i(1+i)2的虛部等于______.答案:3i(1+i)2=2,所以其虛部等于0,故為025.兩封信隨機投入A、B、C三個空郵箱,則A郵箱的信件數(shù)ξ的數(shù)學期望Eξ=______;答案:由題意知ξ的取值有0,1,2,當ξ=0時,即A郵箱的信件數(shù)為0,由分步計數(shù)原理知兩封信隨機投入A、B、C三個空郵箱,共有3×3種結果,而滿足條件的A郵箱的信件數(shù)為0的結果數(shù)是2×2,由古典概型公式得到ξ=0時的概率,同理可得ξ=1時,ξ=2時,ξ=3時的概率p(ξ=0)=2×29=49,p(ξ=1)=C12C129=49,p(ξ=2)=19,∴Eξ=0×49+1×49+2×19=23故為:23.26.2008年9月25日下午4點30分,“神舟七號”載人飛船發(fā)射升空,其運行的軌道是以地球的中心F為一個焦點的橢圓,若這個橢圓的長軸長為2a,離心率為e,則“神舟七號”飛船到地球中心的最大距離為______.答案:如圖,根據(jù)橢圓的幾何性質(zhì)可知,頂點B到橢圓的焦點F的距離最大.最大為a+c=a+ae.故為:a+ae.27.(幾何證明選講)如圖,點A、B、C都在⊙O上,過點C的切線交AB的延長線于點D,若AB=5,BC=3,CD=6,則線段AC的長為______.答案:∵過點C的切線交AB的延長線于點D,∴DC是圓的切線,DBA是圓的割線,根據(jù)切割線定理得到DC2=DB?DA,∵AB=5,CD=6,∴36=DB(DB+5)∴DB=4,由題意知∠D=∠D,∠BCD=∠A∴△DBC∽△DCA,∴DCDA=BCCA∴AC=3×96=4.5,故為:4.528.P是以F1,F(xiàn)2為焦點的橢圓上一點,過焦點F2作∠F1PF2外角平分線的垂線,垂足為M,則點M的軌跡是()

A.橢圓

B.圓

C.雙曲線

D.雙曲線的一支答案:B29.設函數(shù)f(x)=(2a-1)x+b是R上的減函數(shù),則a的范圍為______.答案:∵f(x)=(2a-1)x+b是R上的減函數(shù),∴2a-1<0,解得a<12.故為:a<12.30.若向量a⊥b,且向量a=(2,m),b=(3,1)則m=______.答案:因為向量a=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故為-6.31.|a|=2,|b|=3,|a+b|=4,則a與b的夾角是______.答案:∵|a+b|=4,∴a2+2a?b+b2=16∴a?b=32∴cos<a,b>=a?b|.a|×|.b|=322×3=14∵<a,b>∈[0°,180°]∴.a與.b的夾角為arccos14故為arccos1432.將(x+y+z)5展開合并同類項后共有______項,其中x3yz項的系數(shù)是______.答案:將(x+y+z)5展開合并同類項后,每一項都是m?xa?yb?zc

的形式,且a+b+c=5,其中,m是實數(shù),a、b、c∈N,構造8個完全一樣的小球模型,分成3組,每組至少一個,共有分法C27種,每一組中都去掉一個小球的數(shù)目分別作為(x+y+z)5的展開式中每一項中x,y,z各字母的次數(shù),小球分組模型與各項的次數(shù)是一一對應的.故將(x+y+z)5展開合并同類項后共有C27=21項.把(x+y+z)5的展開式看成5個因式(x+y+z)的乘積形式.從中任意選3個因式,這3個因式都取x,另外的2個因式分別取y、z,相乘即得含x3yz項,故含x3yz項的系數(shù)為C35=20,故為21;20.33.在極坐標系中與圓ρ=4sinθ相切的一條直線的方程為()

A.ρcosθ=2

B.ρsinθ=2

C.ρ=4sin(θ+)

D.ρ=4sin(θ-)答案:A34.若90°<θ<180°,曲線x2+y2sinθ=1表示()

A.焦點在x軸上的雙曲線

B.焦點在y軸上的雙曲線

C.焦點在x軸上的橢圓

D.焦點在y軸上的橢圓答案:D35.直線y=x-1的傾斜角是()

A.30°

B.120°

C.60°

D.150°答案:A36.定義平面向量之間的一種運算“⊙”如下:對任意的=(m,n),=(p,q)

,令⊙=mq-np,下面說法錯誤的序號是()

①若若a與共線,則⊙=0

②⊙=⊙a

③對任意的λ∈R,有(λ)⊙=λ(⊙)

④(⊙)2+(a)2=||2||2

A.②

B.①②

C.②④

D.③④答案:A37.若直線

3x+y+a=0過圓x2+y2+2x-4y=0的圓心,則a的值為()

A.-1

B.1

C.3

D.-3答案:B38.函數(shù)f(x)的定義域為R+,若f(x+y)=f(x)+f(y),f(8)=3,則f(2)=()A.54B.34C.12D.14答案:∵f(x+y)=f(x)+f(y),f(8)=3,∴令x=y=4,則f(8)=2f(4)=3,∴f(4)=32,令x=y=2,f(4)=2f(2)=32,∴f(2)=34.故選B.39.下列四個命題中,正確的有

①;

②;

③,使;

④,使為29的約數(shù).答案:兩解析::①∵(-3)2-4×2×40,∴①正確;②∵2×(-1)+1=-1x,∴③不正確;④x=1是29的約數(shù),∴④正確;∴正確的有兩個點評:本題考查全稱命題、特稱命題,容易題40.某公司一年購買某種貨物400噸,每次都購買x噸,運費為4萬元/次,一年的總存儲費用為4x萬元,要使一年的總運費與總存儲費用之和最小,則x=______噸.答案:某公司一年購買某種貨物400噸,每次都購買x噸,則需要購買400x次,運費為4萬元/次,一年的總存儲費用為4x萬元,一年的總運費與總存儲費用之和為400x?4+4x萬元,400x?4+4x≥2(400x×4)×4x=160,當且僅當1600x=4x即x=20噸時,等號成立即每次購買20噸時,一年的總運費與總存儲費用之和最?。蕿椋?0.41.已知圓的方程是(x-2)2+(y-3)2=4,則點P(3,2)滿足()

A.是圓心

B.在圓上

C.在圓內(nèi)

D.在圓外答案:C42.下列有關相關指數(shù)R2的說法正確的有()

A.R2的值越大,說明殘差平方和越小

B.R2越接近1,表示回歸效果越差

C.R2的值越小,說明殘差平方和越小

D.如果某數(shù)據(jù)可能采取幾種不同回歸方程進行回歸分析,一般選擇R2小的模型作為這組數(shù)據(jù)的模型答案:A43.俊、杰兄弟倆分別在P、Q兩籃球隊效力,P隊、Q隊分別有14和15名球員,且每個隊員在各自隊中被安排首發(fā)上場的機會是均等的,則P、Q兩隊交戰(zhàn)時,俊、杰兄弟倆同為首發(fā)上場交戰(zhàn)的概率是(首發(fā)上場各隊五名隊員)(

)A.B.C.D.答案:B解析:解:P(俊首發(fā))=

P(杰首發(fā))==P(俊、杰同首發(fā))=

選B評析:考察考生等可能事件的概率與相互獨立事件的概率問題。44.已知點D是△ABC的邊BC的中點,若記AB=a,AC=b,則用a,b表示AD為______.答案:以AB,AC為臨邊作平行四邊形ACEB,連接其對角線AE、BC交與點D,易知D是△ABC的邊BC的中點,且D是AE的中點,如圖:由向量的平行四邊形法則可得AB+AC=a+b=AE=2AD,解得AD=12(a+b),故為:AD=12(a+b)45.與原數(shù)據(jù)單位不一樣的是()

A.眾數(shù)

B.平均數(shù)

C.標準差

D.方差答案:D46.在某項測量中,測量結果ξ服從正態(tài)分布N(1,σ2)(σ>0),若ξ在(0,2)內(nèi)取值的概率為0.6,則ξ在(0,1)內(nèi)取值的概率為()

A.0.1

B.0.2

C.0.3

D.0.4答案:C47.(選做題)某制藥企業(yè)為了對某種藥用液體進行生物測定,需要優(yōu)選培養(yǎng)溫度,實驗范圍定為29℃~63℃,精確度要求±1℃,用分數(shù)法進行優(yōu)選時,能保證找到最佳培養(yǎng)溫度需要最少實驗次數(shù)為(

)。答案:748.已知向量a=(2,4),b=(1,1),若向量b⊥(a+λb),則實數(shù)λ的值是

______.答案:a+λb=(2,4)+λ(1,1)=(2+λ,4+λ).∵b⊥(a+λb),∴b?(a+λb)=0,即(1,1)?(2+λ,4+λ)=2+λ+4+λ=6+2λ=0,∴λ=-3.故:-349.若矩陣A=

72

69

67

65

62

59

81

74

68

64

59

52

85

79

76

72

69

64

228

219

211

204

195

183

是表示我校2011屆學生高二上學期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數(shù)學成績,i=3表示英語成績,i=4表示語數(shù)外三門總分成績j=k,k∈N*表示第50k名分數(shù).若經(jīng)過一定量的努力,各科能前進的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分數(shù),那么他應把努力方向主要放在哪一門學科上()

A.語文

B.數(shù)學

C.外語

D.都一樣答案:B50.已知實數(shù)x、y、z滿足x+2y+3z=1,則x2+y2+z2的最小值為______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2+)(12+22+32)故x2+y2+z2≥114,當且僅當x1=y2=z3,即:x2+y2+z2的最小值為114.故為:114第2卷一.綜合題(共50題)1.已知P(x,y)是橢圓x24+y2=1上的點,求M=x+2y的取值范圍.答案:∵x24+y2=1的參數(shù)方程是x=2cosθy=sinθ(θ是參數(shù))∴設P(2cosθ,sinθ)(4分)∴M=x+2y=2cosθ+2sinθ=22sin(θ+π4)

(7分)∴M=x+2y的取值范圍是[-22,22].(10分)2.已知指數(shù)函數(shù)f(x)的圖象過點(3,8),求f(6)的值.答案:設指數(shù)函數(shù)為:f(x)=ax,因為指數(shù)函數(shù)f(x)的圖象過點(3,8),所以8=a3,∴a=2,所求指數(shù)函數(shù)為f(x)=2x;所以f(6)=26=64所以f(6)的值為64.3.(本題10分)設函數(shù)的定義域為A,的定義域為B.(1)求A;

(2)若,求實數(shù)a的取值范圍答案:(1);(2)。解析:略4.橢圓的中心在坐標原點,焦點在坐標軸上,兩頂點分別是(3,0),(0,2),則此橢圓的方程是______.答案:依題意,此橢圓方程為標準方程,且焦點在x軸上,設為x2a2+y2b2=1∵橢圓的兩頂點分別是(3,0),(0,2),∴a=3,b=2∵∴此橢圓的標準方程為:x29+y22=1.故為:x29+y22=1.5.設O是正△ABC的中心,則向量AO,BO.CO是()

A.相等向量

B.模相等的向量

C.共線向量

D.共起點的向量答案:B6.過點P(3,0)作一直線,它夾在兩條直線l1:2x-y-3=0,l2:x+y+3=0之間的線段恰被點P平分,該直線的方程是()

A.4x-y-6=0

B.3x+2y-7=0

C.5x-y-15=0

D.5x+y-15=0答案:C7.“cosα=12”是“α=π3”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件答案:∵“coa=12”?“a=π3+2kπ,k∈Z,或a=53π+2kπ,k∈Z”,“a=π3”?“coa=12”.故選D.8.下列命題中,錯誤的是()

A.平行于同一條直線的兩個平面平行

B.平行于同一個平面的兩個平面平行

C.一個平面與兩個平行平面相交,交線平行

D.一條直線與兩個平行平面中的一個相交,則必與另一個相交答案:A9.

已知橢圓(θ為參數(shù))上的點P到它的兩個焦點F1、F2的距離之比,

且∠PF1F2=α(0<α<),則α的最大值為()

A.

B.

C.

D.答案:A10.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點P.若PB=1,PD=3,則BCAD的值為______.答案:因為A,B,C,D四點共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因為∠P為公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故為:13.11.下列對一組數(shù)據(jù)的分析,不正確的說法是()

A.數(shù)據(jù)極差越小,樣本數(shù)據(jù)分布越集中、穩(wěn)定

B.數(shù)據(jù)平均數(shù)越小,樣本數(shù)據(jù)分布越集中、穩(wěn)定

C.數(shù)據(jù)標準差越小,樣本數(shù)據(jù)分布越集中、穩(wěn)定

D.數(shù)據(jù)方差越小,樣本數(shù)據(jù)分布越集中、穩(wěn)定答案:B12.下列各組向量中,可以作為基底的是()A.e1=(0,0),e2=(-2,1)B.e1=(4,6),e2=(6,9)C.e1=(2,-5),e2=(-6,4)D.e1=(2,-3),e2=(12,-34)答案:A、中的2個向量的坐標對應成比例,0-2=01,所以,這2個向量是共線向量,故不能作為基底.B、中的2個向量的坐標對應成比例,46=69,所以,這2個向量是共線向量,故不能作為基底.C中的2個向量的坐標對應不成比例,2-6≠-54,所以,這2個向量不是共線向量,故可以作為基底.D、中的2個向量的坐標對應成比例,212=-3-34,這2個向量是共線向量,故不能作為基底.故選C.13.“因為指數(shù)函數(shù)y=ax是增函數(shù)(大前提),而y=()x是指數(shù)函數(shù)(小前提),所以y=()x是增函數(shù)(結論)”,上面推理的錯誤是()

A.大前提錯導致結論錯

B.小前提錯導致結論錯

C.推理形式錯導致結論錯

D.大前提和小前提錯都導致結論錯答案:A14.已知a=3i+2j-k,b=i-j+2k,則5a與3b的數(shù)量積等于______.答案:a=3i+2j-k=(3,2,-1),5a=(15,10,-5)b=i-j+2k=(1,-1,2),3b=(3,-3,6)5a?3b=15×3+10×(-3)+(-5)×6=-15故為:-1515.如果命題“曲線C上的點的坐標都是方程f(x,y)=0的解”是正確的,則下列命題中正確的是()

A.曲線C是方程f(x,y)=0的曲線

B.方程f(x,y)=0的每一組解對應的點都在曲線C上

C.不滿足方程f(x,y)=0的點(x,y)不在曲線C上

D.方程f(x,y)=0是曲線C的方程答案:C16.設隨機事件A、B,P(A)=35,P(B|A)=12,則P(AB)=______.答案:由條件概率的計算公式,可得P(AB)=P(A)×P(B|A)=35×12=310;故為310.17.設a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,則實數(shù)m,n的值分別為______.答案:因為a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,根據(jù)空間向量平行的坐標表示公式,

所以24=2m-32m+124=n+23n-2,解得:m=12,n=6.故為:m=12,n=6.18.設F1,F(xiàn)2為定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=6,則動點M的軌跡是()A.橢圓B.直線C.圓D.線段答案:對于在平面內(nèi),若動點M到F1、F2兩點的距離之和等于6,而6正好等于兩定點F1、F2的距離,則動點M的軌跡是以F1,F(xiàn)2為端點的線段.故選D.19.設等比數(shù)列{an}的首項為a1,公比為q,則“a1<0且0<q<1”是“對于任意n∈N*都有an+1>an”的

()

A.充分不必要條件

B.必要不充分條件

C.充分必要條件

D.既不充分又不必要條件答案:A20.參數(shù)方程x=2cosαy=3sinα(a為參數(shù))化成普通方程為______.答案:∵x=2cosαy=3sinα,∴cosα=x2sinα=y3∴(x2)2+(y3)2=cos2α+sin2α=1.即:參數(shù)方程x=2cosαy=3sinα化成普通方程為:x24+y29=1.故為:x24+y29=1.21.(幾何證明選講選做題)已知AD是△ABC的外角∠EAC的平分線,交BC的延長線于點D,延長DA交△ABC的外接圓于點F,連接FB,F(xiàn)C.

(1)求證:FB=FC;

(2)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=33,求AD的長.答案:(1)證明:∵AD平分∠EAC,∴∠EAD=∠DAC;∵四邊形AFBC內(nèi)接于圓,∴∠DAC=∠FBC;

…2′∵∠EAD=∠FAB=∠FCB∴∠FBC=∠FCB∴FB=FC.…5(2)∵AB是圓的直徑,∴∠ACD=90°∵∠EAC=120°,∴∠DAC=60°,∴∠D=30°…7′在Rt△ACB中,∵BC=33,∠BAC=60°,∴AC=3又在Rt△ACD中,∠D=30°,AC=3,∴AD=6

…10′22.如圖,從圓O外一點P引圓O的切線PA和割線PBC,已知PA=22,PC=4,圓心O到BC的距離為3,則圓O的半徑為______.答案:∵PA為圓的切線,PBC為圓的割線,由線割線定理得:PA2=PB?PC又∵PA=22,PC=4,∴PB=2,BC=2又∵圓心O到BC的距離為3,∴R=2故為:223.已知A(4,1,3)、B(2,-5,1),C為線段AB上一點,且則C的坐標為()

A.

B.

C.

D.答案:C24.某初級中學領導采用系統(tǒng)抽樣方法,從該校預備年級全體800名學生中抽50名學生做牙齒健康檢查.現(xiàn)將800名學生從1到800進行編號,求得間隔數(shù)k==16,即每16人抽取一個人.在1~16中隨機抽取一個數(shù),如果抽到的是7,則從33~48這16個數(shù)中應取的數(shù)是(

A.40

B.39

C.38

D.37答案:B25.若點(2,-2)在圓(x-a)2+(y-a)2=16的內(nèi)部,則實數(shù)a的取值范圍是()

A.-2<a<2

B.0<a<2

C.a(chǎn)<-2或a>2

D.a(chǎn)=±2答案:A26.若直線x+y=m與圓x=mcosφy=msinφ(φ為參數(shù),m>0)相切,則m為

______.答案:圓x=mcosφy=msinφ的圓心為(0,0),半徑為m∵直線x+y=m與圓相切,∴d=r即|m|2=m,解得m=2故為:227.如圖是一個空間幾何體的三視圖,試用斜二測畫法畫出它的直觀圖.(尺寸不作嚴格要求,但是凡是未用鉛筆作圖不得分,隨手畫圖也不得分)答案:由題可知題目所述幾何體是正六棱臺,畫法如下:畫法:(1)、畫軸畫x軸、y軸、z軸,使∠x′O′y′=45°,∠x′O′z′=90°

(圖1)(2)、畫底面以O′為中心,在XOY坐標系內(nèi)畫正六棱臺下底面正方形的直觀圖ABCDEF.在z′軸上取線段O′O1等于正六棱臺的高;過O1

畫O1M、O1N分別平行O’x′、O′y′,再以O1為中心,畫正六棱臺上底面正方形的直觀圖A′B′C′E′F′(3)、成圖連接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱臺的直觀圖

(如圖2).28.當圓x=4cosθy=4sinθ上一點P的旋轉角為θ=23π時,點P的坐標為______.答案:根據(jù)圓的參數(shù)方程的意義,當圓x=4cosθy=4sinθ上一點P的旋轉角為θ=23π時,點P的坐標為(4cos2π3,4sin2π3),即(-2,23).故為:(-2,23).29.集合{x∈N*|

12

x

∈Z}中含有的元素個數(shù)為()

A.4

B.6

C.8

D.12答案:B30.已知一次函數(shù)y=(2k-4)x-1在R上是減函數(shù),則k的取值范圍是()A.k>2B.k≥2C.k<2D.k≤2答案:因為函數(shù)y=(2k-4)x-1為R上是減函數(shù)?該一次函數(shù)的一次項的系數(shù)為負?2k-4<0?k<2.故為:C31.Rt△ABC的直角邊AB在平面α內(nèi),頂點C在平面α外,則直角邊BC、斜邊AC在平面α上的射影與直角邊AB組成的圖形是()

A.線段或銳角三角形

B.線段與直角三角形

C.線段或鈍角三角形

D.線段、銳角三角形、直角三角形或鈍角三角形答案:B32.若命題p的否命題是q,命題q的逆命題是r,則r是p的逆命題的()A.原命題B.逆命題C.否命題D.逆否命題答案:設命題p為“若k,則s”;則其否命題q是“若¬k,則¬s”;∴命題q的逆命題r是“若¬s,則¬k”,而p的逆命題為“若s,則k”,故r是p的逆命題的否命題.故選C.33.已知雙曲線的漸近線方程為2x±3y=0,F(xiàn)(0,-5)為雙曲線的一個焦點,則雙曲線的方程為()

A.

B.

C.

D.答案:B34.用冒泡法對43,34,22,23,54從小到大排序,需要(

)趟排序。

A.2

B.3

C.4

D.5答案:A35.有五條線段長度分別為1、3、5、7、9,從這5條線段中任取3條,則所取3條線段能構成一個三角形的概率為()A.110B.310C.12D.710答案:由題意知本題是一個古典概型,∵試驗發(fā)生包含的所有事件是從五條線段中取三條共有C53種結果,而滿足條件的事件是3、5、7;3、7、9;5、7、9,三種結果,∴由古典概型公式得到P=3C35=310,故選B.36.一牧場有10頭牛,因誤食含有病毒的飼料而被感染,已知該病的發(fā)病率為0.02.設發(fā)病的牛的頭數(shù)為ξ,則Dξ=______;.答案:∵由題意知該病的發(fā)病率為0.02,且每次實驗結果都是相互獨立的,∴ξ~B(10,0.02),∴由二項分布的方差公式得到Dξ=10×0.02×0.98=0.196.故為:0.19637.如圖1,一個“半圓錐”的主視圖是邊長為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,這個幾何體的體積為()A.33πB.36πC.23πD.3π答案:由已知中“半圓錐”的主視圖是邊長為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,我們可以判斷出底面的半徑為1,母線長為2,則半圓錐的高為3故V=13×12×π×3=36π故選B38.將一枚均勻硬幣

隨機擲20次,則恰好出現(xiàn)10次正面向上的概率為()

A.

B.

C.

D.答案:D39.3i(1+i)2的虛部等于______.答案:3i(1+i)2=2,所以其虛部等于0,故為040.已知點E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0),則點E一定落在()A.BC邊的垂直平分線上B.BC邊的中線所在的直線上C.BC邊的高線所在的直線上D.BC邊所在的直線上答案:因為點E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0)所以,根據(jù)平行四邊形法則,E一定落在這個平行四邊形的起點為A的對角線上,又平行四邊形對角線互相平分,所以E一定落在BC邊的中線所在的直線上,故選B.41.“a、b、c等比”是“b2=ac”的()A.充分不必要條件B.充要條件C.必要不充分條件D.既不充分也不必要條件答案:由“a,G,b成等比”可得ba=cb,故有“b2=ac”成立,故充分性成立.但由“b2=ac”,不能推出“a、b、c成等比數(shù)列”,如a=b=0,c=1時,盡管有“b2=ac”,但0,0,1不能構成等比數(shù)列,故必要性不成立.故“b2=ac成等比”是“b2=ac”的充分不必要條件,故選B.42.如果直線l1,l2的斜率分別為二次方程x2-4x+1=0的兩個根,那么l1與l2的夾角為()

A.

B.

C.

D.答案:A43.點B是點A(1,2,3)在坐標平面yOz內(nèi)的正投影,則|OB|等于()

A.

B.

C.

D.答案:B44.已知:正四棱柱ABCD—A1B1C1D1中,底面邊長為2,側棱長為4,E、F分別為棱AB、BC的中點.

(1)求證:平面B1EF⊥平面BDD1B1;

(2)求點D1到平面B1EF的距離.答案:(1)證明略(2)解析:(1)

建立如圖所示的空間直角坐標系,則D(0,0,0),B(2,2,0),E(2,,0),F(xiàn)(,2,0),D1(0,0,4),B1(2,2,4).=(-,,0),=(2,2,0),=(0,0,4),∴·=0,·=0.∴EF⊥DB,EF⊥DD1,DD1∩BD=D,∴EF⊥平面BDD1B1.又EF平面B1EF,∴平面B1EF⊥平面BDD1B1.(2)

由(1)知=(2,2,0),=(-,,0),=(0,-,-4).設平面B1EF的法向量為n,且n=(x,y,z)則n⊥,n⊥即n·=(x,y,z)·(-,,0)=-x+y=0,n·=(x,y,z)·(0,-,-4)=-y-4z=0,令x=1,則y=1,z=-,∴n="(1,1,-")∴D1到平面B1EF的距離d===.45.將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.答案:y=-cos2x,

=(,0)解析:將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.46.已知直線l經(jīng)過點A(2,4),且被平行直線l1:x-y+1=0與l2:x-y-1=0所截得的線段的中點M在直線x+y-3=0上.求直線l的方程.答案:∵點M在直線x+y-3=0上,∴設點M坐標為(t,3-t),則點M到l1、l2的距離相等,即|2t-2|2=|2t-4|2,解得t=32∴M(32,32)又l過點A(2,4),即5x-y-6=0,故直線l的方程為5x-y-6=0.47.若a>0,b<0,直線y=ax+b的圖象可能是()

A.

B.

C.

D.

答案:C48.在下列圖象中,二次函數(shù)y=ax2+bx+c與函數(shù)(的圖象可能是()

A.

B.

C.

D.

答案:A49.若lga,lgb是方程2x2-4x+1=0的兩個根,則的值等于

A.2

B.

C.4

D.答案:A50.已知F是拋物線C:y2=4x的焦點,過F且斜率為1的直線交C于A,B兩點.設|FA|>|FB|,則|FA|與|FB|的比值等于______.答案:設A(x1,y1)B(x2,y2)由y=x-1y2=4x?x2-6x+1=0?x1=3+22,x2=3-22,(x1>x2)∴由拋物線的定義知|FA||FB|=x1+1x2+1=4+224-22=2+22-2=3+22故為:3+22第3卷一.綜合題(共50題)1.若由一個2*2列聯(lián)表中的數(shù)據(jù)計算得k2=4.013,那么有()把握認為兩個變量有關系.

A.95%

B.97.5%

C.99%

D.99.9%答案:A2.某電廠冷卻塔的外形是如圖所示雙曲線的一部分繞其中軸(即雙曲線的虛軸)旋轉所成的曲面,其中A、A′是雙曲線的頂點,C、C′是冷卻塔上口直徑的兩個端點,B、B′是下底直徑的兩個端點,已知AA′=14m,CC′=18m,BB′=22m,塔高20m.

(Ⅰ)建立坐標系并寫出該雙曲線方程;

(Ⅱ)求冷卻塔的容積(精確到10m3,塔壁厚度不計,π取3.14).答案:(I)如圖建立直角坐標系xOy,AA′在x軸上,AA′的中點為坐標原點O,CC′與BB′平行于x軸.設雙曲線方程為x2a2-y2b2=1(a>0,b>0),則a=12AA′=7.又設B(11,y1),C(9,y2),因為點B、C在雙曲線上,所以有11272-y21b2=1,①9272-y22b2=1,②由題意知y2-y1=20.③由①、②、③得y1=-12,y2=8,b=72.故雙曲線方程為x249-y298=1;(II)由雙曲線方程得x2=12y2+49.設冷卻塔的容積為V(m3),則V=π∫y2y1x2dy=π∫8-12(12y2+49)dy=π(16y3+49y)|8-12,∴V≈4.25×103(m3).答:冷卻塔的容積為4.25×103(m3).3.一圓形紙片的圓心為O點,Q是圓內(nèi)異于O點的一定點,點A是圓周上一點,把紙片折疊使點A與點Q重合,然后抹平紙片,折痕CD與OA交于P點,當點A運動時點P的軌跡是______.

①圓

②雙曲線

③拋物線

④橢圓

⑤線段

⑥射線.答案:由題意可得,CD是線段AQ的中垂線,∴|PA|=|PQ|,∴|PQ|+|PO|=|PA|+|PO|=半徑R,即點P到兩個定點O、Q的距離之和等于定長R(R>|OQ|),由橢圓的定義可得,點P的軌跡為橢圓,故為④.4.如圖所示,設k1,k2,k3分別是直線l1,l2,l3的斜率,則()

A.k1<k2<k3

B.k3<k1<k2

C.k3<k2<k1

D.k1<k3<k2

答案:C5.用隨機數(shù)表法從100名學生(男生35人)中選20人作樣本,男生甲被抽到的可能性為()A.15B.2035C.35100D.713答案:由題意知,本題是一個等可能事件的概率,試驗發(fā)生包含的事件是用隨機數(shù)表法從100名學生選一個,共有100種結果,滿足條件的事件是抽取20個,∴根據(jù)等可能事件的概率公式得到P=20100=15,故選A.6.已知f(x+1)=x2+2x+3,則f(2)的值為______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故為:6.7.判斷下列各組中的兩個函數(shù)是同一函數(shù)的為()A.f(x)=x3x,g(x)=x2B.f(x)=x0(x≠0),g(x)=1(x≠0)C.f(x)=x2,g(x)=xD.f(x)=|x|,g(x)=(x)2答案:A、∵f(x)=x3x,g(x)=x2,f(x)的定義域:{x|x≠0},g(x)的定義域為R,故A錯誤;B、f(x)=x0=1,g(x)=1,定義域都為{x|x≠1},故B正確;C、∵f(x)=x2=|x|,g(x)=x,解析式不一樣,故C錯誤;D、∵f(x)=|x|,g(x)=x,f(x)的定義域為R,g(x)的定義域為:{x|x≥0},故D錯誤;故選B.8.袋子里有大小相同的3個紅球和4個黑球,今從袋子里隨機取球.

(Ⅰ)若有放回地取3次,每次取1個球,求取出1個紅球2個黑球的概率;

(Ⅱ)若無放回地取3次,每次取1個球,

①求在前2次都取出紅球的條件下,第3次取出黑球的概率;

②求取出的紅球數(shù)X

的分布列和數(shù)學期望.答案:(Ⅰ)記“取出1個紅球2個黑球”為事件A,根據(jù)題意有P(A)=C13(37)×(47)2=144343;

所以取出1個紅球2個黑球的概率是144343.(Ⅱ)①記“在前2次都取出紅球”為事件B,“第3次取出黑球”為事件C,則P(B)=3×27×6=17,P(BC)=3×2×47×6×5=435,所以P(C|B)=P(BC)P(B)=43517=45.所以在前2次都取出紅球的條件下,第3次取出黑球的概率是45.②隨機變量X

的所有取值為0,1,2,3.P(X=0)=C34?A33A37=435,P(X=1)=C24C13?A33A37=1835,P(X=2)=C14C23?A33A37=1235,P(X=3)=C33?A33A37=135.所以X的分布列為:所以EX=0×435+1×1835+2×1235+3×135=4535=97.9.已知函數(shù)f(x)=(12)x

x≥4

f(x+1)

x<4

則f(2+log23)的值為______.答案:∵2+log23∈(2,3),∴f(2+log23)=f(2+log23+1)=f(3+log23)=(12)3+log23=(12)3(12)log23=18×13=124故為12410.設A(1,-1,1),B(3,1,5),則線段AB的中點在空間直角坐標系中的位置是()

A.在y軸上

B.在xOy面內(nèi)

C.在xOz面內(nèi)

D.在yOz面內(nèi)答案:C11.若方程Ax2+By2=1表示焦點在y軸上的雙曲線,則A、B滿足的條件是()

A.A>0,且B>0

B.A>0,且B<0

C.A<0,且B>0

D.A<0,且B<0答案:C12.下列語句不屬于基本算法語句的是()

A.賦值語句

B.運算語句

C.條件語句

D.循環(huán)語句答案:B13.已知a=(3,3,2),b=(4,-3,7),c=(0,5,1),則(a+b)?c=______.答案:由于a=(3,3,2),b=(4,-3,7),則a+b=(7,0,9)又由c=(0,5,1),則(a+b)?c=(7,0,9)?(0,5,1)=9故為914.已知方程(1+k)x2-(1-k)y2=1表示焦點在x軸上的雙曲線,則k的取值范圍為(

A.-1<k<1

B.k>1

C.k<-1

D.k>1或k<-1答案:A15.棱長為1的正方體ABCD-A1B1C1D1的8個頂點都在球O的表面上,E,F(xiàn)分別是棱AA1,DD1的中點,則直線EF被球O截得的線段長為()

A.

B.1

C.1+

D.答案:D16.由直角△ABC勾上一點D作弦AB的垂線交弦于E,交股的延長線于F,交外接圓于G,求證:EG為EA和EB的比例中項,又為ED和EF的比例中項.

答案:證明:連接GA、GB,則△AGB也是一個直角三角形,因為EG為直角△AGB的斜邊AB上的高,所以,EG為EA和EB的比例中項,即EG2=EA?EB∵∠AFE=∠ABC,∴直角△AEF∽直角△DEB,EAEF=EDEB即EA?EB=ED?EF.又∵EG2=EA?EB,∴EG2=ED?EF(等量代換),故EG也是ED和EF的比例中項.17.雙曲線x29-y216=1的兩個焦點為F1、F2,點P在雙曲線上,若PF1⊥PF2,則點P到x軸的距離為______.答案:設點P(x,y),∵F1(-5,0)、F2(5,0),PF1⊥PF2,∴y-0x+5?y-0x-5=-1,∴x2+y2=25

①,又x29-y216=1,∴25-y29-y216=1,∴y2=16225,∴|y|=165,∴P到x軸的距離是165.18.已知圓x2+y2=r2在曲線|x|+|y|=4的內(nèi)部,則半徑r的范圍是()A.0<r<22B.0<r<2C.0<r<2D.0<r<4答案:根據(jù)題意畫出圖形,如圖所示:可得曲線|x|+|y|=4表示邊長為42的正方形,如圖ABCD為正方形,x2+y2=r2表示以原點為圓心的圓,過O作OE⊥AB,∵邊AB所在直線的方程為x+y=4,∴|OE|=42=22,則滿足題意的r的范圍是0<r<22.故選A19.兩平行直線5x+12y+3=0與10x+24y+5=0間的距離是

______.答案:∵兩平行直線

ax+by+m=0

ax+by+n=0間的距離是|m-n|a2+b2,5x+12y+3=0即10x+24y+6=0,∴兩平行直線5x+12y+3=0與10x+24y+5=0間的距離是|5-6|102+242=1576=126.故為126.20.已知平面向量=(1,-3),=(4,-2),λ+與垂直,則λ是()

A.1

B.2

C.-2

D.-1答案:D21.曲線x=sin2ty=sint(t為參數(shù))的普通方程為______.答案:因為曲線x=sin2ty=sint(t為參數(shù))∴sint=y,代入x=sin2t,可得x=y2,其中-1≤y≤1.故為:x=y2,(-1≤y≤1).22.意大利數(shù)學家菲波拉契,在1202年出版的一書里提出了這樣的一個問題:一對兔子飼養(yǎng)到第二個月進入成年,第三個月生一對小兔,以后每個月生一對小兔,所生小兔能全部存活并且也是第二個月成年,第三個月生一對小兔,以后每月生一對小兔.問這樣下去到年底應有多少對兔子?試畫出解決此問題的程序框圖,并編寫相應的程序.答案:見解析解析:解:根據(jù)題意可知,第一個月有對小兔,第二個月有對成年兔子,第三個月有兩對兔子,從第三個月開始,每個月的兔子對數(shù)是前面兩個月兔子對數(shù)的和,設第個月有對兔子,第個月有對兔子,第個月有對兔子,則有,一個月后,即第個月時,式中變量的新值應變第個月兔子的對數(shù)(的舊值),變量的新值應變?yōu)榈趥€月兔子的對數(shù)(的舊值),這樣,用求出變量的新值就是個月兔子的數(shù),依此類推,可以得到一個數(shù)序列,數(shù)序列的第項就是年底應有兔子對數(shù),我們可以先確定前兩個月的兔子對數(shù)均為,以此為基準,構造一個循環(huán)程序,讓表示“第×個月的從逐次增加,一直變化到,最后一次循環(huán)得到的就是所求結果.流程圖和程序如下:S=1Q=1I=3WHILE

I<=12F=S+QQ=SS=FI=I+1WENDPRINT

FEND23.已知a>0,b>0且a+b>2,求證:1+ba,1+ab中至少有一個小于2.答案:證明:假設1+ba,1+ab都不小于2,則1+ba≥2,1+ab≥2(6分)因為a>0,b>0,所以1+b≥2a,1+a≥2b,1+1+a+b≥2(a+b)即2≥a+b,這與已知a+b>2相矛盾,故假設不成立(12分)綜上1+ba,1+ab中至少有一個小于2.(14分)24.(不等式選講選做題)已知x+2y+3z=1,求x2+y2+z2的最小值______.答案:解法一:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+33),∴x2+y2+z2≥114,當且僅當x1=y2=z3,x+2y+3z=1,即x=114,y=17,z=314時取等號.即x2+y2+z2的最小值為114.解法二:設向量a=(1,2,3),b=(x,y,z),∵|a?b|≤|a|

|b|,∴1=x+2y+3z≤12+22+32x2+y2+z2,∴x2+y2+z2≥114,當且僅當a與b共線時取等號,即x1=y2=z3,x+2y+3z=1,解得x=114,y=17,z=314時取等號.故為114.25.集合A={一條邊長為2,一個角為30°的等腰三角形},其中的元素個數(shù)為()A.2B.3C.4D.無數(shù)個答案:由題意,兩腰為2,底角為30°;兩腰為2,頂角為30°;底邊為2,底角為30°;底邊為2,頂角為30°.∴共4個元素,故選C.26.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(

)。答案:圓,雙曲線27.從裝有5只紅球和5只白球的袋中任意取出3只球,有如下幾對事件:

①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”;

②“取出兩只紅球和一只白球”與“取出3只紅球”;

③“取出3只紅球”與“取出的3只球中至少有一只白球”;

④“取出3只紅球”與“取出3只白球”.

其中是對立事件的有______(只填序號).答案:對于①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”,由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.對于②“取出兩只紅球和一只白球”與“取出3只紅球”,由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.對于③“取出3只紅球”與“取出的3只球中至少有一只白球”,它們不可能同時發(fā)生,而且它們的并事件是必然事件,故它們是對立事件.④“取出3只紅球”與“取出3只白球”.由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.故為③.28.如圖,四邊形ABCD內(nèi)接于圓O,且AC、BD交于點E,則此圖形中一定相似的三角形有()對.

A.0

B.3

C.2

D.1

答案:C29.如圖,已知OA、OB是⊙O的半徑,且OA⊥OB,P是線段OA上一點,直線BP交⊙O于點Q,過Q作⊙O的切線交直線OA于點E,求證:∠OBP+∠AQE=45°.答案:證明:連接AB,則∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°30.如圖,在平行四邊形OABC中,點C(1,3).

(1)求OC所在直線的斜率;

(2)過點C做CD⊥AB于點D,求CD所在直線的方程.答案:(1)∵點O(0,0),點C(1,3),∴OC所在直線的斜率為kOC=3-01-0=3.(2)在平行四邊形OABC中,AB∥OC,∵CD⊥AB,∴CD⊥OC.∴CD所在直線的斜率為kCD=-13.∴CD所在直線方程為y-3=-13(x-1),即x+3y-10=0.31.若A(0,2,198),B(1,-1,58),C(-2,1,58)是平面α內(nèi)的三點,設平面α的法向量a=(x,y,z),則x:y:z=______.答案:AB=(1,-3,-74),AC=(-2,-1,-74),α?AB=0,α?AC=0,∴x=23yz=-43y,x:y:z=23y:y:(-43y)=2:3:(-4).故為2:3:-4.32.已知AB和CD是曲線(t為參數(shù))的兩條相交于點P(2,2)的弦,若AB⊥CD,且|PA|·|PB|=|PC|·

|PD|,

(Ⅰ)將曲線(t為參數(shù))化為普通方程,并說明它表示什么曲線;

(Ⅱ)試求直線AB的方程。答案:解:(Ⅰ)由y=4t得y2=16t2,而x=4t2,∴y2=4x,它表示拋物線;(Ⅱ)設直線AB和CD的傾斜角分別為α,β,則直線AB和CD的參數(shù)方程分別為,把①代入y2=4x中,得t2sin2α+(4sinα-4cosα)t-4=0,③依題意知sinα≠0且方程③的判別式Δ=16(sinα-cosα)2+16sin2α>0,∴方程③有兩個不相等的實數(shù)解t1,t2,則由t的幾何意義知|PA|=|t1|,|PB|=|t2|,∴|PA|·|PB|=|t1t2|=,同理|PC|·|PD|=,由|PA|·|PB|=|PC|·|PD|知,即sin2α=sin2β,∵0≤α,β<π,∴α=π-β,∵AB⊥CD,∴β=α+90°或α=β+90°,∴直線AB的傾斜角∴kAB=1或kAB=-1,故直線AB的方程為y=x或x+y-4=0。33.點M的直角坐標是,則點M的極坐標為()

A.(2,)

B.(2,-)

C.(2,)

D.(2,2kπ+)(k∈Z)答案:C34.設甲、乙兩名射手各打了10發(fā)子彈,每發(fā)子彈擊中環(huán)數(shù)如下:甲:10,7,7,10,8,9,9,10,5,10;

乙:8,7,9,10,9,8,8,9,8,9則甲、乙兩名射手的射擊技術評定情況是()

A.甲比乙好

B.乙比甲好

C.甲、乙一樣好

D.難以確定答案:B35.設向量與的夾角為θ,,,則cosθ等于()

A.

B.

C.

D.答案:D36.某工廠生產(chǎn)產(chǎn)品,用傳送帶將產(chǎn)品送到下一道工序,質(zhì)檢人員每隔十分鐘在傳送帶的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論