版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年重慶電信職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.已知平面內(nèi)的向量a,b,c兩兩所成的角相等,且|a|=2,|b|=3,|c|=5,則|a+b+c|的值的集合為_(kāi)_____.答案:設(shè)平面內(nèi)的向量a,b,c兩兩所成的角為α,|a+b+c|2=4+9+25+12cosα+20cosα+30cosα=38+62cosα,當(dāng)α=0°時(shí),|a+b+c|2=100,|a+b+c|=10,當(dāng)α=120°時(shí),|a+b+c|2=7,|a+b+c|=7.所以,|a+b+c|的值的集合為{7,10}.故為:{7,10}.2.今天為星期六,則今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日答案:∵22010=8670=(7+1)670=C6700×7670×10+C6701×7669×11+C6702×7668×12+…+C6702010×70×1670∴22010除7的余數(shù)是1故今天為星期六,則今天后的第22010天是星期日故選D3.曲線的參數(shù)方程是(t是參數(shù),t≠0),它的普通方程是()
A.(x-1)2(y-1)=1
B.
C.
D.答案:B4.直線ax+by=1與圓x2+y2=1有兩不同交點(diǎn),則點(diǎn)P(a,b)與圓的位置關(guān)系為_(kāi)_____.答案:圓心到直線ax+by=1的距離,1a2+b2,∵直線ax+by=1與圓x2+y2=1有兩不同交點(diǎn),∴1a2+b2<1即a2+b2>1.故為:點(diǎn)在圓外.5.
已知向量a,b的夾角為,且|a|=2,|b|=1,則向量a與向量2+2b的夾角等于()
A.
B.
C.
D.答案:D6.等腰三角形兩腰所在的直線方程是l1:7x-y-9=0,l2:x+y-7=0,它的底邊所在直線經(jīng)過(guò)點(diǎn)A(3,-8),求底邊所在直線方程.答案:設(shè)l1,l2,底邊所在直線的斜率分別為k1,k2,k;由l1:7x-y-9=0得y=7x-9,所以k1=7,由l2:x+y-7=0得y=-x+7,所以k2=-1;…(2分)如圖,由等腰三角形性質(zhì),可知:l到l1的角=l2到l的角;由到角公式得:7-k1+7k=k-(-1)1+k(-1)…(4分)解出:k=-3或k=13…(6分)由已知:底邊經(jīng)過(guò)點(diǎn)A(3,-8),代入點(diǎn)斜式,得出直線方程:y-(-8)=(-3)(x-3)或y-(-8)=13(x-3)…(7分)3x+y-1=0或x-3y-27=0.…(8分)7.已知一個(gè)四棱錐的三視圖如圖所示,則該四棱錐的體積是______.答案:因?yàn)槿晥D復(fù)原的幾何體是正四棱錐,底面邊長(zhǎng)為2,高為1,所以四棱錐的體積為13×2×2×1=43.故為:43.8.電視機(jī)的使用壽命顯像管開(kāi)關(guān)的次數(shù)有關(guān).某品牌電視機(jī)的顯像管開(kāi)關(guān)了10000次還能繼續(xù)使用的概率是0.96,開(kāi)關(guān)了15000次后還能繼續(xù)使用的概率是0.80,則已經(jīng)開(kāi)關(guān)了10000次的電視機(jī)顯像管還能繼續(xù)使用到15000次的概率是______.答案:記“開(kāi)關(guān)了10000次還能繼續(xù)使用”為事件A,記“開(kāi)關(guān)了15000次后還能繼續(xù)使用”為事件B,根據(jù)題意,易得P(A)=0.96,P(B)=0.80,則P(A∩B)=0.80,由條件概率的計(jì)算方法,可得P=P(A∩B)P(A)=0.800.96=56;故為56.9.已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)為A(1,3)、B(-1,-1)、C(-3,5),求這個(gè)三角形外接圓的方程.答案:設(shè)圓的方程為(x-a)2+(y-b)2=r2,則(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,這個(gè)三角形外接圓的方程為(x+2)2+(y-2)2=10.10.在輸入語(yǔ)句中,若同時(shí)輸入多個(gè)變量,則變量之間的分隔符號(hào)是()
A.逗號(hào)
B.空格
C.分號(hào)
D.頓號(hào)答案:A11.某項(xiàng)考試按科目A、科目B依次進(jìn)行,只有當(dāng)科目A成績(jī)合格時(shí),才可繼續(xù)參加科目B的考試.已知每個(gè)科目只允許有一次補(bǔ)考機(jī)會(huì),兩個(gè)科目成績(jī)均合格方可獲得證書(shū).現(xiàn)某人參加這項(xiàng)考試,科目A每次考試成績(jī)合格的概率均為23,科目B每次考試成績(jī)合格的概率均為12.假設(shè)各次考試成績(jī)合格與否均互不影響.
(Ⅰ)求他不需要補(bǔ)考就可獲得證書(shū)的概率;
(Ⅱ)在這項(xiàng)考試過(guò)程中,假設(shè)他不放棄所有的考試機(jī)會(huì),記他參加考試的次數(shù)為ξ,求ξ的數(shù)學(xué)期望Eξ.答案:設(shè)“科目A第一次考試合格”為事件A1,“科目A補(bǔ)考合格”為事件A2;“科目B第一次考試合格”為事件B1,“科目B補(bǔ)考合格”為事件B2.(Ⅰ)不需要補(bǔ)考就獲得證書(shū)的事件為A1?B1,注意到A1與B1相互獨(dú)立,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率可得P(A1?B1)=P(A1)×P(B1)=23×12=13.即該考生不需要補(bǔ)考就獲得證書(shū)的概率為13.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之間的獨(dú)立性與互斥性,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率可得P(ξ=2)=P(A1?B1)+P(.A1?.A2)=23×12+13×13=13+19=49.P(ξ=3)=P(A1?.B1?B2)+P(A1?.B1?.B2)+P(.A1?A2?B2)=23×12×12+23×12×12+13×23×12=16+16+19=49,P(ξ=4)=P(.A1?A2?.B2?B2)+P(.A1?A2?.B1?.B2)=13×23×12×12+13×23×12×12=118+118=19,∴Eξ=2×49+3×49+4×19=83.即該考生參加考試次數(shù)的數(shù)學(xué)期望為83.12.某醫(yī)療研究所為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計(jì)算得Χ2≈3.918,經(jīng)查對(duì)臨界值表知P(Χ2≥3.841)≈0.05.則下列結(jié)論中,正確結(jié)論的序號(hào)是______
(1)有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”
(2)若某人未使用該血清,那么他在一年中有95%的可能性得感冒
(3)這種血清預(yù)防感冒的有效率為95%
(4)這種血清預(yù)防感冒的有效率為5%答案:查對(duì)臨界值表知P(Χ2≥3.841)≈0.05,故有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”950/0僅是指“血清與預(yù)防感冒”可信程度,但也有“在100個(gè)使用血清的人中一個(gè)患感冒的人也沒(méi)有”的可能.故為:(1).13.已知拋物線C1:x2=2py(p>0)上縱坐標(biāo)為p的點(diǎn)到其焦點(diǎn)的距離為3.
(Ⅰ)求拋物線C1的方程;
(Ⅱ)過(guò)點(diǎn)P(0,-2)的直線交拋物線C1于A,B兩點(diǎn),設(shè)拋物線C1在點(diǎn)A,B處的切線交于點(diǎn)M,
(?。┣簏c(diǎn)M的軌跡C2的方程;
(ⅱ)若點(diǎn)Q為(?。┲星€C2上的動(dòng)點(diǎn),當(dāng)直線AQ,BQ,PQ的斜率kAQ,kBQ,kPQ均存在時(shí),試判斷kPQkAQ+kPQkBQ是否為常數(shù)?若是,求出這個(gè)常數(shù);若不是,請(qǐng)說(shuō)明理由.答案:(Ⅰ)由題意得p+p2=3,則p=2,…(3分)所以拋物線C1的方程為x2=4y.
…(5分)(Ⅱ)(?。┰O(shè)過(guò)點(diǎn)P(0,-2)的直線方程為y=kx-2,A(x1,y1),B(x2,y2),由y=kx-2x2=4y得x2-4kx+8=0.由△>0,得k<-2或k>2,x1+x2=4k,x1x2=8.…(7分)拋物線C1在點(diǎn)A,B處的切線方程分別為y-y1=x12(x-x1),y-y2=x22(x-x2),即y=x12x-x214,y=x22x-x224,由y=x12x-x214y=x22x-x224得x=x1+x22=2ky=x1x24=2.所以點(diǎn)M的軌跡C2的方程為y=2
(x<-22或x>22).…(10分)(ⅱ)設(shè)Q(m,2)(|m|>22),則kPQ=4m,kAQ=y1-2x1-m,kBQ=y2-2x2-m.…(11分)所以kPQkAQ+kPQkBQ=4m(1kAQ+1kBQ)=4m(x1-my1-2+x2-my2-2)…(12分)=4m[(x1-m)(y2-2)+(x2-m)(y1-2)(y1-2)(y2-2)]=4m[2kx1x2-(mk+4)(x1+x2)+8mk2x1x2-4k(x1+x2)+16]=4m[16k-(mk+4)?4k+8m8k2-4k?4k+16]=4m[8m-4mk216-8k2]=4m[4m(2-k2)8(2-k2)]=2,即kPQkAQ+kPQkBQ為常數(shù)2.
…(15分)14.已知θ是三角形內(nèi)角且sinθ+cosθ=,則表示答案:C15.已知拋物線C的參數(shù)方程為x=8t2y=8t(t為參數(shù)),設(shè)拋物線C的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PA⊥l,A為垂足,如果直線AF的斜率為-3,那么|PF|=______.答案:把拋物線C的參數(shù)方程x=8t2y=8t(t為參數(shù)),消去參數(shù)化為普通方程為y2=8x.故焦點(diǎn)F(2,0),準(zhǔn)線方程為x=-2,再由直線FA的斜率是-3,可得直線FA的傾斜角為120°,設(shè)準(zhǔn)線和x軸的交點(diǎn)為M,則∠AFM=60°,且MF=p=4,∴∠PAF=180°-120°=60°.∴AM=MF?tan60°=43,故點(diǎn)A(0,43),把y=43代入拋物線求得x=6,∴點(diǎn)P(6,43),故|PF|=(6-2)2+(43-0)2=8,故為8.16.若雙曲線的焦點(diǎn)到其漸近線的距離等于實(shí)軸長(zhǎng),則該雙曲線的離心率為()
A.5
B.
C.2
D.答案:B17.設(shè)a1,a2,…,an為正數(shù),求證:a21a2+a22a3+…+a2n-1an+a2na1≥a1+a2+…+an.答案:證明:不妨設(shè)a1>a2>…>an>0,則a12>a22>…>an2,1a1<1a2<…1an由排序原理:亂序和≥反序和,可得:a21a2+a22a3+…+a2n-1an+a2na1≥a12a1+a22a2+…+an2an=a1+a2+…+an.18.把函數(shù)y=sin(x-)-2的圖象經(jīng)過(guò)按平移得到y(tǒng)=sinx的圖象,則=(
)
A.
B.
C.
D.答案:A19.如圖,在⊙O中,弦CD垂直于直徑AB,求證:CBCO=CDCA.答案:證明:連接AD,如圖所示:由垂徑定理得:AD=AC又∵OC=OB∴∠ADC=∠OBC=∠ACD=∠OCB∴△CAD∽△COB∴CBCO=CDCA.20.在獨(dú)立性檢驗(yàn)中,統(tǒng)計(jì)量Χ2有兩個(gè)臨界值:3.841和6.635.當(dāng)Χ2>3.841時(shí),有95%的把握說(shuō)明兩個(gè)事件有關(guān),當(dāng)Χ2>6.635時(shí),有99%的把握說(shuō)明兩個(gè)事件有關(guān),當(dāng)Χ2≤3.841時(shí),認(rèn)為兩個(gè)事件無(wú)關(guān).在一項(xiàng)打鼾與患心臟病的調(diào)查中,共調(diào)查了2000人,經(jīng)計(jì)算Χ2=20.87.根據(jù)這一數(shù)據(jù)分析,認(rèn)為打鼾與患心臟病之間()
A.有95%的把握認(rèn)為兩者有關(guān)
B.約有95%的打鼾者患心臟病
C.有99%的把握認(rèn)為兩者有關(guān)
D.約有99%的打鼾者患心臟病答案:C21.一個(gè)正方體的展開(kāi)圖如圖所示,A、B、C、D為原正方體的頂點(diǎn),則在原來(lái)的正方體中()A.AB∥CDB.AB與CD相交C.AB⊥CDD.AB與CD所成的角為60°答案:將正方體的展開(kāi)圖,還原為正方體,AB,CD為相鄰表面,且無(wú)公共頂點(diǎn)的兩條面上的對(duì)角線∴AB與CD所成的角為60°故選D.22.(坐標(biāo)系與參數(shù)方程選做題)在平面直角坐標(biāo)系xOy中,曲線C1與C2的參數(shù)方程分別為x=ty=t(t為參數(shù))和x=2cosθy=2sinθ(θ為參數(shù)),則曲線C1與C2的交點(diǎn)坐標(biāo)為_(kāi)_____.答案:在平面直角坐標(biāo)系xOy中,曲線C1與C2的普通方程分別為y2=x,x2+y2=2.解方程組y2=xx2
+y2=2
可得x=1y=1,故曲線C1與C2的交點(diǎn)坐標(biāo)為(1,1),故為(1,1).23.設(shè)a,b∈R.“a=O”是“復(fù)數(shù)a+bi是純虛數(shù)”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件答案:因?yàn)閍,b∈R.“a=O”時(shí)“復(fù)數(shù)a+bi不一定是純虛數(shù)”.“復(fù)數(shù)a+bi是純虛數(shù)”則“a=0”一定成立.所以a,b∈R.“a=O”是“復(fù)數(shù)a+bi是純虛數(shù)”的必要而不充分條件.故選B.24.一個(gè)家庭有兩個(gè)小孩,假設(shè)生男生女是等可能的,已知這個(gè)家庭有一個(gè)是女孩的條件下,這時(shí)另一個(gè)也是女孩的概率是()
A.
B.
C.
D.答案:D25.不論k為何實(shí)數(shù),直線y=kx+1與曲線x2+y2-2ax+a2-2a-4=0恒有交點(diǎn),則實(shí)數(shù)a的取值范圍是______.答案:直線y=kx+1恒過(guò)(0,1)點(diǎn),與曲線x2+y2-2ax+a2-2a-4=0恒有交點(diǎn),必須定點(diǎn)在圓上或圓內(nèi),即:a2+12
≤4+2a所以,-1≤a≤3故為:-1≤a≤3.26.(選做題)
設(shè)集合A={x|x2﹣5x+4>0},B={x|x2﹣2ax+(a+2)=0},若A∩B≠,求實(shí)數(shù)a的取值范圍.答案:解:A={x|x2﹣5x+4>0}={x|x<1或x>4}.∵A∩B≠,∴方程x2﹣2ax+(a+2)=0有解,且至少有一解在區(qū)間(﹣∞,1)∪(4,+∞)內(nèi)直接求解情況比較多,考慮補(bǔ)集設(shè)全集U={a|△≥0}=(﹣∞,﹣1]∪[2,+∞),P={a|方程x2﹣2ax+(a+2)=0的兩根都在[1,4]內(nèi)}記f(x)=x2﹣2ax+(a+2),且f(x)=0的兩根都在[1,4]內(nèi)∴,∴,∴,∴∴實(shí)數(shù)a的取值范圍為.27.(幾何證明選做題)若A,B,C是⊙O上三點(diǎn),PC切⊙O于點(diǎn)C,∠ABC=110°,∠BCP=40°,則∠AOB的大小為_(kāi)_____.答案:∵PC切⊙O于點(diǎn)C,OC為圓的半徑∴OC⊥PC,即∠PCO=90°∵∠BCP=40°∴∠BCO=50°由弦切角定理及圓周角定理可知,∠BOC=2∠PCB=80°∵△BOC中,∠OBC=50°,∠ABC=110°∴∠OBA=60°∵OB=OA∴∠AOB=60°故為:60°28.(幾何證明選講選選做題)如圖,圓的兩條弦AC、BD相交于P,弧AB、BC、CD、DA的度數(shù)分別為60°、105°、90°、105°,則PAPC=______.答案:連接AB,CD∵弧AB、CD、的度數(shù)分別為60°、90°,∴弦AB的長(zhǎng)度等于半徑,弦CD的長(zhǎng)度等于半徑的2倍,即ABCD=12,∵∠A=∠D,∠C=∠B,∴△ABP∽△CDP∴ABCD=PAPC∴PAPC=12=22,故為:2229.平行投影與中心投影之間的區(qū)別是
______.答案:平行投影與中心投影之間的區(qū)別是平行投影的投影線互相平行,而中心投影的投影線交于一點(diǎn),故為:平行投影的投影線互相平行,而中心投影的投影線交于一點(diǎn)30.下列說(shuō)法不正確的是()A.圓柱側(cè)面展開(kāi)圖是一個(gè)矩形B.圓錐的過(guò)軸的截面是等腰三角形C.直角三角形繞它的一條邊旋轉(zhuǎn)一周形成的曲面圍成的幾何體是圓錐D.圓臺(tái)平行于底面的截面是圓面答案:圓柱的側(cè)面展開(kāi)圖是一個(gè)矩形,A正確,因?yàn)槟妇€長(zhǎng)相等,得到圓錐的軸截面是一個(gè)等腰三角形,B正確,圓臺(tái)平行于底面的截面是圓面,D正確,故選C.31.已知直線l:x=2+ty=1-at(t為參數(shù)),與橢圓x2+4y2=16交于A、B兩點(diǎn).
(1)若A,B的中點(diǎn)為P(2,1),求|AB|;
(2)若P(2,1)是弦AB的一個(gè)三等分點(diǎn),求直線l的直角坐標(biāo)方程.答案:(1)直線l:x=2+ty=1-at代入橢圓方程,整理得(4a2+1)t2-4(2a-1)t-8=0設(shè)A、B對(duì)應(yīng)的參數(shù)分別為t1、t2,則t1+t2=4(2a-1)4a2+1,t1t2=-84a2+1,∵A,B的中點(diǎn)為P(2,1),∴t1+t2=0解之得a=12,∴t1t2=-4,∵|AP|=12+(-12)2|t1|=52|t1|,|BP|=52|t2|,∴|AB|=52(|t1|+|t1|)=52×(t1+t2)2-4t1t2=25,(2)P(2,1)是弦AB的一個(gè)三等分點(diǎn),∴|AP|=12|PB|,∴1+a2|t1|=21+a2|t2|,?t1=-2t2,∴t1+t2=-t2=4(2a-1)4a2+1,t1t2=-2t
22=-84a2+1,∴t
22=44a2+1,∴16(2a-1)2(4a2+1)2=44a2+1,解得a=4±76,∴直線l的直角坐標(biāo)方程y-1=4±76(x-2).32.直角三角形兩直角邊邊長(zhǎng)分別為3和4,將此三角形繞其斜邊旋轉(zhuǎn)一周,求得到的旋轉(zhuǎn)體的表面積和體積.答案:根據(jù)題意,所求旋轉(zhuǎn)體由兩個(gè)同底的圓錐拼接而成它的底面半徑等于直角三角形斜邊上的高,高分別等于兩條直角邊在斜邊的射影長(zhǎng)∵兩直角邊邊長(zhǎng)分別為3和4,∴斜邊長(zhǎng)為32+42=5,由面積公式可得斜邊上的高為h=3×45=125可得所求旋轉(zhuǎn)體的底面半徑r=125因此,兩個(gè)圓錐的側(cè)面積分別為S上側(cè)面=π×125×4=48π5;S下側(cè)面=π×125×3=36π5∴旋轉(zhuǎn)體的表面積S=48π5+36π5=84π5由錐體的體積公式,可得旋轉(zhuǎn)體的體積為V=13π×(125)2×5=48π533.已知2,4,2x,4y四個(gè)數(shù)的平均數(shù)是5而5,7,4x,6y四個(gè)數(shù)的平均數(shù)是9,則xy的值是______.答案:因?yàn)?,4,2x,4y四個(gè)數(shù)的平均數(shù)是5,則2+4+2x+4y=4×5,又由5,7,4x,6y四個(gè)數(shù)的平均數(shù)是9,則5+7+4x+6y=4×9,x與y滿足的關(guān)系式為x+2y=72x+3y=12解得x=3y=2故為6.34.(1)把參數(shù)方程(t為參數(shù))x=secty=2tgt化為直角坐標(biāo)方程;
(2)當(dāng)0≤t<π2及π≤t<3π2時(shí),各得到曲線的哪一部分?答案:(1)利用公式sec2t=1+tg2t,得x2=1+y24.∴曲線的直角坐標(biāo)普通方程為x2-y24=1.(2)當(dāng)0≤t≤π2時(shí),x≥1,y≥0,得到的是曲線在第一象限的部分(包括(1,0)點(diǎn));當(dāng)0≤t≤3π2時(shí),x≤-1,y≥0,得到的是曲線在第二象限的部分,(包括(-1,0)點(diǎn)).35.已知直線l的參數(shù)方程為x=3+12ty=7+32t(t為參數(shù)),曲線C的參數(shù)方程為x=4cosθy=4sinθ(θ為參數(shù)).
(I)將曲線C的參數(shù)方程轉(zhuǎn)化為普通方程;
(II)若直線l與曲線C相交于A、B兩點(diǎn),試求線段AB的長(zhǎng).答案:(I)由x=4cosθy=4sinθ得x2=16cos2θy2=16sin2θ故圓的方程為x2+y2=16.(II)把x=3+12ty=7+32t代入方程x2+y2=16,得t2+83t+36=0∴線段AB的長(zhǎng)為|AB|=|t1-t2|=(t1+t2)2-4t1t2=43.36.將一個(gè)等腰梯形繞著它的較長(zhǎng)的底邊所在的直線旋轉(zhuǎn)一周,所得的幾何體是(
)答案:B37.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()
A.k1<k2<k3
B.k2<k1<k3
C.k3<k2<k1
D.k1<k3<k2
答案:B38.已知點(diǎn)B是點(diǎn)A(2,-3,5)關(guān)于平面xOy的對(duì)稱點(diǎn),則|AB|=()
A.10
B.
C.
D.38答案:A39.將4封不同的信隨機(jī)地投入到3個(gè)信箱里,記有信的信箱個(gè)數(shù)為ξ,試求ξ的分布列.答案:由題意知變量ξ的可能取值是1,2,3,P(ξ=1)=C1334=127,P(ξ=2)=C23(2C14+C24)34=1427,P(ξ=3)=C24A3334=1227,∴ξ的分布列是40.如圖所示,I為△ABC的內(nèi)心,求證:△BIC的外心O與A、B、C四點(diǎn)共圓.答案:證明:連接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是內(nèi)心知∠ABC=2∠IBC.從而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四點(diǎn)共圓.41.在極坐標(biāo)系中,過(guò)點(diǎn)p(3,)且垂直于極軸的直線方程為()
A.Pcosθ=
B.Psinθ=
C.P=cosθ
D.P=sinθ答案:A42.若曲線的極坐標(biāo)方程為ρ=2sinθ+4cosθ,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系,則該曲線的直角坐標(biāo)方程為_(kāi)_____.答案:曲線的極坐標(biāo)方程為ρ=2sinθ+4cosθ,即ρ2=2ρsinθ+4ρcosθ,即x2+y2=2y+4x,化簡(jiǎn)為(x-2)2+(y-1)2=5,故為(x-2)2+(y-1)2=5.43.如圖,一個(gè)正方體內(nèi)接于一個(gè)球,過(guò)球心作一個(gè)截面,則截面的可能圖形為(
)
A.①③
B.②④
C.①②③
D.②③④答案:C44.某個(gè)幾何體的三視圖如圖所示,則該幾何體的體積是()A.23B.3C.334D.332答案:由三視圖可知該幾何體是直三棱柱,高為1,底面三角形一邊長(zhǎng)為2,此邊上的高為3,所以V=Sh=12×2×3×1=3故選B.45.(理)在直角坐標(biāo)系中,圓C的參數(shù)方程是x=2cosθy=2+2sinθ(θ為參數(shù)),以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,則圓C的圓心極坐標(biāo)為_(kāi)_____.答案:∵直角坐標(biāo)系中,圓C的參數(shù)方程是x=2cosθy=2+2sinθ(θ為參數(shù)),∴x2+(y-2)2=4,∵以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,∴圓心坐標(biāo)(0,2),r=2∵0=pcosθ,∴θ=π2,又p=r=2,∴圓C的圓心極坐標(biāo)為(2,π2),故為:(2,π2).46.一個(gè)類(lèi)似于細(xì)胞分裂的物體,一次分裂為二,兩次分裂為四,如此繼續(xù)分裂有限多次,而隨機(jī)終止.設(shè)分裂n次終止的概率是(n=1,2,3,…).記X為原物體在分裂終止后所生成的子塊數(shù)目,則P(X≤10)=()
A.
B.
C.
D.以上均不對(duì)答案:A47.命題“零向量與任意向量共線”的否定為_(kāi)_____.答案:命題“零向量與任意向量共線”即“任意向量與零向量共線”,是全稱命題,其否定為特稱命題:“有的向量與零向量不共線”.故為:“有的向量與零向量不共線”.48.春天到了,曲曲折折的荷塘上面,彌望的是田田的葉子,已知每一天荷葉覆蓋水面的面積是前一天的2倍,若荷葉20天可以完全長(zhǎng)滿池塘水面,當(dāng)荷葉剛好覆蓋水面面積的一半時(shí),荷葉已生長(zhǎng)了()A.10天B.15天C.19天D.20天答案:設(shè)荷葉覆蓋水面的初始面積為a,則x天后荷葉覆蓋水面的面積y=a?2x(x∈N+),根據(jù)題意,令2(a?2x)=a?220,解得x=19,故選C.49.如圖,在四邊形ABCD中,++=4,==0,+=4,則(+)的值為()
A.2
B.
C.4
D.
答案:C50.對(duì)賦值語(yǔ)句的描述正確的是(
)
①可以給變量提供初值
②將表達(dá)式的值賦給變量
③可以給一個(gè)變量重復(fù)賦值
④不能給同一變量重復(fù)賦值A(chǔ).①②③B.①②C.②③④D.①②④答案:A解析:試題分析:在表述一個(gè)算法時(shí),經(jīng)常要引入變量,并賦給該變量一個(gè)值。用來(lái)表明賦給某一個(gè)變量一個(gè)具體的確定值的語(yǔ)句叫做賦值語(yǔ)句。賦值語(yǔ)句的一般格式是:變量名=表達(dá)式其中“=”為賦值號(hào).故選A。點(diǎn)評(píng):簡(jiǎn)單題,賦值語(yǔ)句的一般格式是:變量名=表達(dá)式其中"="為賦值號(hào)。第2卷一.綜合題(共50題)1.已知:如圖,CD是⊙O的直徑,AE切⊙O于點(diǎn)B,DC的延長(zhǎng)線交AB于點(diǎn)A,∠A=20°,則
∠DBE=______.答案:連接BC,∵CD是⊙O的直徑,∴∠CBD=90°,∵AE是⊙O的切線,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°---(1),∠A+∠2=∠1----(2),(1)-(2)得∠1=55°即∠DBE=55°.故為:∠DBE=55°.2.點(diǎn)M的直角坐標(biāo)是,則點(diǎn)M的極坐標(biāo)為()
A.(2,)
B.(2,-)
C.(2,)
D.(2,2kπ+)(k∈Z)答案:C3.“所有10的倍數(shù)都是5的倍數(shù),某數(shù)是10的倍數(shù),則該數(shù)是5的倍數(shù),”上述推理()
A.完全正確
B.推理形式不正確
C.錯(cuò)誤,因?yàn)榇笮∏疤岵灰恢?/p>
D.錯(cuò)誤,因?yàn)榇笄疤徨e(cuò)誤答案:A4.考慮坐標(biāo)平面上以O(shè)(0,0),A(3,0),B(0,4)為頂點(diǎn)的三角形,令C1,C2分別為△OAB的外接圓、內(nèi)切圓.請(qǐng)問(wèn)下列哪些選項(xiàng)是正確的?
(1)C1的半徑為2
(2)C1的圓心在直線y=x上
(3)C1的圓心在直線4x+3y=12上
(4)C2的圓心在直線y=x上
(5)C2的圓心在直線4x+3y=6上.答案:O,A,B三點(diǎn)的位置如右圖所示,C1,C2為△OAB的外接圓與內(nèi)切圓,∵△OAB為直角三角形,∴C1為以線段AB為直徑的圓,故半徑為12|AB|=52,所以(1)選項(xiàng)錯(cuò)誤;又C1的圓心為線段AB的中點(diǎn)(32,2),此點(diǎn)在直線4x+3y=12上,所以選項(xiàng)(2)錯(cuò)誤,選項(xiàng)(3)正確;如圖,P為△OAB的內(nèi)切圓C2的圓心,故P到△OAB的三邊距離相等均為圓C2的半徑r.連接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB?12×3×4=12×3×r+12×5×r+12×4×r?r=1故P的坐標(biāo)為(1,1),此點(diǎn)在y=x上.所以選項(xiàng)(4)正確,選項(xiàng)(5)錯(cuò)誤,綜上,正確的選項(xiàng)有(3)、(4).5.為如圖所示的四塊區(qū)域涂色,要求相鄰區(qū)域不能同色,現(xiàn)有3種不同顏色可供選擇,則共有______種不同涂色方案(要求用具體數(shù)字作答).答案:由題意,首先給左上方一個(gè)涂色,有三種結(jié)果,再給最左下邊的上面的涂色,有兩種結(jié)果,右上方,如果與左下邊的同色,則右方的涂色,有兩種結(jié)果,右上方,如果與左下邊的不同色,則右方的涂色,有1種結(jié)果,∴根據(jù)分步計(jì)數(shù)原理得到共有3×2×(2+1)=18種結(jié)果,故為18.6.如圖,在四邊形ABCD中,++=4,==0,+=4,則(+)的值為()
A.2
B.
C.4
D.
答案:C7.拋物線y2=4x的焦點(diǎn)坐標(biāo)是()
A.(4,0)
B.(2,0)
C.(1,0)
D.答案:C8.如圖,⊙O是Rt△ABC的外接圓,點(diǎn)O在AB上,BD⊥AB,點(diǎn)B是垂足,OD∥AC,連接CD.
求證:CD是⊙O的切線.答案:證明:連接CO,(1分)∵OD∥AC,∴∠COD=∠ACO,∠CAO=∠DOB.(3分)∵∠ACO=∠CAO,∴∠COD=∠DOB.(6分)∵OD=OD,OC=OB,∴△COD≌△BOD.(8分)∴∠OCD=∠OBD=90°.∴OC⊥CD,即CD是⊙O的切線.(10分)9.設(shè)a1,a2,…,an為正數(shù),求證:a21a2+a22a3+…+a2n-1an+a2na1≥a1+a2+…+an.答案:證明:不妨設(shè)a1>a2>…>an>0,則a12>a22>…>an2,1a1<1a2<…1an由排序原理:亂序和≥反序和,可得:a21a2+a22a3+…+a2n-1an+a2na1≥a12a1+a22a2+…+an2an=a1+a2+…+an.10.已知a=0.80.7,b=0.80.9,c=1.20.8,則a、b、c按從小到大的順序排列為
______.答案:由指數(shù)函數(shù)y=0.8x知,∵0.7<0.9,∴0.80.9<0.80.7<1,即b<a,又c=1.20.8>1,∴b<a<c.b<a<c11.設(shè)P、Q為兩個(gè)非空實(shí)數(shù)集合,定義集合P+Q={x|x=a+b,a∈P,b∈Q},若P={0,2,5},Q={1,2,6},則P+Q中元素的個(gè)數(shù)是______.答案:∵a∈P,b∈Q,∴a可以為0,2,5三個(gè)數(shù),b可以為1,2,6三個(gè)數(shù),∴x=0+1=1,x=0+2=2,x=0+6=6,x=2+1=3,x=2+2=4,x=2+6=8,x=5+1=6,x=5+2=7,x=5+6=11,∴P+Q={x|x=a+b,a∈P,b∈Q}={1,2,3,4,6,7,8,11},有8個(gè)元素.故為8.12.已知R為實(shí)數(shù)集,Q為有理數(shù)集.設(shè)函數(shù)f(x)=0,(x∈CRQ)1,(x∈Q),則()A.函數(shù)y=f(x)的圖象是兩條平行直線B.limx→∞f(x)=0或limx→∞f(x)=1C.函數(shù)f[f(x)]恒等于0D.函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0答案:函數(shù)y=f(x)的圖象是兩條平行直線上的一些孤立的點(diǎn),故A不正確;函數(shù)f(x)的極限只有唯一的值,左右極限不等,則該函數(shù)不存在極限,故B不正確;若x是無(wú)理數(shù),則f(x)=0,f[f(x)]=f(0)=1,故C不正確;∵f[f(x)]=1,∴函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0,故D正確;故選D.13.已知A(1,0,0)、B(0,1,0)、C(0,0,1)三點(diǎn),n=(1,1,1),則以n為方向向量的直線l與平面ABC的關(guān)系是()A.垂直B.不垂直C.平行D.以上都有可能答案:由題意,AB=(-1,1,0),BC=(0,-1,1)∵n?AB=0,n?BC=0∴以n為方向向量的直線l與平面ABC垂直故選A.14.設(shè)U={三角形},M={直角三角形},N={等腰三角形},則M∩N=______.答案:∵M(jìn)={直角三角形},N={等腰三角形},∴M∩N={直角三角形且等腰三角形}={等腰直角三角形}故為{等腰直角三角形}15.參數(shù)方程(θ為參數(shù))表示的曲線為()
A.圓的一部分
B.橢圓的一部分
C.雙曲線的一部分
D.拋物線的一部分答案:D16.在空間直角坐標(biāo)系O-xyz中,點(diǎn)P(4,3,7)關(guān)于坐標(biāo)平面yOz的對(duì)稱點(diǎn)的坐標(biāo)為_(kāi)_____.答案:設(shè)所求對(duì)稱點(diǎn)為P'(x,y,z)∵關(guān)于坐標(biāo)平面yOz的對(duì)稱的兩個(gè)點(diǎn),它們的縱坐標(biāo)、豎坐標(biāo)相等,而橫坐標(biāo)互為相反數(shù),∴x=-4,y=3,z=7即P關(guān)于坐標(biāo)平面yOz的對(duì)稱點(diǎn)的坐標(biāo)為P'(-4,3,7)故為:(-4,3,7)17.若圖中直線l1,l2,l3的斜率分別為k1,k2,k3,則()A.k2<k1<k3B.k3<k2<k1C.k2<k3<k1D.k1<k3<k2答案:∵直線l2的傾斜角為鈍角,∴k2<0.直線l1,l3的傾斜角為銳角,且直線l1的傾斜角小于l3的傾斜角,∴0<k1<k3.故選A.18.一個(gè)樣本a,99,b,101,c中五個(gè)數(shù)恰成等差數(shù)列,則這個(gè)樣本的極差與標(biāo)準(zhǔn)差分別為(
)。答案:4;19.拋物線y2=4x的焦點(diǎn)坐標(biāo)為()
A.(0,1)
B.(1,0)
C.(0,2)
D.(2,0)答案:B20.已知m2+n2=1,a2+b2=2,則am+bn的最大值是()
A.1
B.
C.
D.以上都不對(duì)答案:C21.能較好地反映一組數(shù)據(jù)的離散程度的是()
A.眾數(shù)
B.平均數(shù)
C.標(biāo)準(zhǔn)差
D.極差答案:C22.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點(diǎn),過(guò)
B作BD⊥AC于D,BD交⊙O于E點(diǎn),若AE平分∠BAD,則∠BAD=()
A.30°
B.45°
C.50°
D.60°
答案:D23.一個(gè)十二面體共有8個(gè)頂點(diǎn),其中2個(gè)頂點(diǎn)處各有6條棱,其它頂點(diǎn)處都有相同的棱,則其它頂點(diǎn)處的棱數(shù)為_(kāi)_____.答案:此十二面體如右圖,數(shù)形結(jié)合可得則其它頂點(diǎn)處的棱數(shù)為4故為424.數(shù)據(jù):1,1,3,3的眾數(shù)和中位數(shù)分別是()
A.1或3,2
B.3,2
C.1或3,1或3
D.3,3答案:A25.在△ABC中,D為AB上一點(diǎn),M為△ABC內(nèi)一點(diǎn),且滿足AD=34AB,AM=AD+35BC,則△AMD與△ABC的面積比為()A.925B.45C.916D.920答案:AP=AD+DP=AD+35BC,DP=35BC.∴三角形ADP的高三角形ABC=ADAB=34,∴S△APDS△ABC=35?34=920.故選D.26.若直線ax+by+1=0與圓x2+y2=1相離,則點(diǎn)P(a,b)的位置是()
A.在圓上
B.在圓外
C.在圓內(nèi)
D.以上都有可能答案:C27.已知z是純虛數(shù),z+21-i是實(shí)數(shù),則z=______.答案:令Z=bi,則z+21-i=(2+bi)(1+i)(1-i)(1+i)=(2-b)+(2+b)i2又z+21-i是實(shí)數(shù),故b=-2則Z=-2i故為:-2i28.命題“正數(shù)的絕對(duì)值等于它本身”的逆命題是______.答案:將命題“正數(shù)的絕對(duì)值等于它本身”改寫(xiě)為“若一個(gè)數(shù)是正數(shù),則其絕對(duì)值等于它本身”,所以逆命題是“若一個(gè)數(shù)的絕對(duì)值等于它本身,則這個(gè)數(shù)是正數(shù)”,即“絕對(duì)值等于它本身的數(shù)是正數(shù)”.故為:“絕對(duì)值等于它本身的數(shù)是正數(shù)”.29.某市為抽查控制汽車(chē)尾氣排放的執(zhí)行情況,選擇了抽取汽車(chē)車(chē)牌號(hào)的末位數(shù)字是6的汽車(chē)進(jìn)行檢查,這樣的抽樣方式是(
)
A.抽簽法
B.簡(jiǎn)單隨機(jī)抽樣
C.分層抽樣
D.系統(tǒng)抽樣答案:D30.已知大于1的正數(shù)x,y,z滿足x+y+z=33.
(1)求證:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.
(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴l(xiāng)og3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3當(dāng)且僅當(dāng)x=y=z=3時(shí),等號(hào)成立.故所求的最小值是3.31.已知a=(a1,a2),b=(b1,b2),丨a丨=5,丨b丨=6,a?b=30,則a1+a2b1+b2=______.答案:因?yàn)樨璦丨=5,丨b丨=6,a?b=30,又a?b=|a|?|b|cos<a,b>=30,即cos<a,b>=1,所以a,b同向共線.設(shè)b=ka,(k>0).則b1=ka1,b2=ka2,所以|b|=k|a|,所以k=65,所以a1+a2b1+b2=a1+a2k(a1+a2)=1k=56.故為:56.32.某產(chǎn)品的廣告費(fèi)用x與銷(xiāo)售額y的統(tǒng)計(jì)數(shù)據(jù)如下表
廣告費(fèi)用x(萬(wàn)元)4235銷(xiāo)售額y(萬(wàn)元)49263954根據(jù)上表可得回歸方程
y=
bx+
a中的
b為9.4,則
a=______.答案:由圖表中的數(shù)據(jù)可知.x=14(4+2+3+5)=144=3.5,.y=14(49+26+39+54)=42,即樣本中心為(3.5,42),將點(diǎn)代入回歸方程y=bx+a,得42=9.4×3.5+a,解得a=9.1.故為:9.1.33.直線y=1與直線y=3x+3的夾角為_(kāi)_____答案:l1與l2表示的圖象為(如下圖所示)y=1與x軸平行,y=3x+3與x軸傾斜角為60°,所以y=1與y=3x+3的夾角為60°.故為60°34.(坐標(biāo)系與參數(shù)方程選做題)點(diǎn)P(-3,0)到曲線x=t2y=2t(其中參數(shù)t∈R)上的點(diǎn)的最短距離為_(kāi)_____.答案:設(shè)點(diǎn)Q(t2,2t)為曲線上的任意一點(diǎn),則|PQ|=(t2+3)2+(2t)2=(t2+5)2-16≥52-16=3,當(dāng)且僅當(dāng)t=0取等號(hào),此時(shí)Q(0,0).故點(diǎn)P(-3,0)到曲線x=t2y=2t(其中參數(shù)t∈R)上的點(diǎn)的最短距離為3.故為3.35.設(shè)雙曲線的漸近線為:y=±32x,則雙曲線的離心率為_(kāi)_____.答案:由題意ba=32或ab=32,∴e=ca=132或133,故為132,133.36.構(gòu)成多面體的面最少是(
)
A.三個(gè)
B.四個(gè)
C.五個(gè)
D.六個(gè)答案:B37.已知向量=(1,2),=(2,x),且=-1,則x的值等于()
A.
B.
C.
D.答案:D38.數(shù)集{1,x,2x}中的元素x應(yīng)滿足的條件是______.答案:根據(jù)集合中元素的互異性可得1≠x,x≠2x,1≠2x∴x≠1且x≠12且x≠0.故為:x≠1且x≠12且x≠0.39.若純虛數(shù)z滿足(2-i)z=4-bi,(i是虛數(shù)單位,b是實(shí)數(shù)),則b=()
A.-2
B.2
C.-8
D.8答案:C40.中心在原點(diǎn),焦點(diǎn)在橫軸上,長(zhǎng)軸長(zhǎng)為4,短軸長(zhǎng)為2,則橢圓方程是(
)
A.
B.
C.
D.答案:B41.設(shè)15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,則查得次品數(shù)的數(shù)學(xué)期望為_(kāi)_____.答案:∵15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,∴查得次品數(shù)的數(shù)學(xué)期望為150×100015000=10.故為10.42.要考察某種品牌的850顆種子的發(fā)芽率,抽取60粒進(jìn)行實(shí)驗(yàn).利用隨機(jī)數(shù)表抽取種子時(shí),先將850顆種子按001,002,…,850進(jìn)行編號(hào),如果從隨機(jī)數(shù)表第8行第11列的數(shù)1開(kāi)始向右讀,請(qǐng)你依次寫(xiě)出最先檢測(cè)的4顆種子的編號(hào)______,______,______,______.
(下面摘取了隨機(jī)數(shù)表第7行至第9行的一部分)
84
42
17
53
31
57
24
55
06
88
77
04
74
47
67
21
76
33
50
25
63
01
63
78
59
16
95
55
67
19
98
10
50
71
75
12
86
73
58
07
44
39
52
38
79
33
21
12
34
29
78
64
56
07
82
52
42
07
44
38.答案:由于隨機(jī)數(shù)表中第8行的數(shù)字為:63
01
63
78
59
16
95
5567
19
98
10
50
71
75
12
86
73
58
07其第11列數(shù)字為1,故產(chǎn)生的第一個(gè)數(shù)字為:169,第二個(gè)數(shù)字為:555,第三個(gè)數(shù)字為:671,第四個(gè)數(shù)字為:998(超出編號(hào)范圍舍)第五個(gè)數(shù)字為:105故為:169,555,671,10543.直線y=kx+1與橢圓x29+y24=1的位置關(guān)系是()A.相交B.相切C.相離D.不確定答案:∵直線y=kx+1過(guò)定點(diǎn)(0,1),把(0,1)代入橢圓方程的左端有0+14<1,即(0,1)在橢圓內(nèi)部,∴直線y=kx+1與橢圓x29+y24=1必相交,
因此可排除B、C、D;
故選A.44.從集合M={1,2,3,…,10}選出5個(gè)數(shù)組成的子集,使得這5個(gè)數(shù)的任兩個(gè)數(shù)之和都不等于11,則這樣的子集有______個(gè).答案:集合{1,2,…,10}中和是11的有:1+10,2+9,3+8,4+7,5+6,選出5個(gè)不同的數(shù)組成子集,就是從這5組中分別取一個(gè)數(shù),而每組的取法有2種,所以這樣的子集有:2×2×2×2×2=32故這樣的子集有32個(gè)故為:3245.在圖中,M、N是圓柱體的同一條母線上且位于上、下底面上的兩點(diǎn),若從M點(diǎn)繞圓柱體的側(cè)面到達(dá)N,沿怎么樣的路線路程最短?答案:沿圓柱體的母線MN將圓柱的側(cè)面剪開(kāi)輔平,得出圓柱的側(cè)面展開(kāi)圖,從M點(diǎn)繞圓柱體的側(cè)面到達(dá)N點(diǎn),實(shí)際上是從側(cè)面展開(kāi)圖的長(zhǎng)方形的一個(gè)頂點(diǎn)M到達(dá)不相鄰的另一個(gè)頂點(diǎn)N.而兩點(diǎn)間以線段的長(zhǎng)度最短.所以最短路線就是側(cè)面展開(kāi)圖中長(zhǎng)方形的一條對(duì)角線.如圖所示.46.求證:菱形各邊中點(diǎn)在以對(duì)角線的交點(diǎn)為圓心的同一個(gè)圓上.答案:已知:如圖,菱形ABCD的對(duì)角線AC和BD相交于點(diǎn)O.求證:菱形ABCD各邊中點(diǎn)M、N、P、Q在以O(shè)為圓心的同一個(gè)圓上.證明:∵四邊形ABCD是菱形,∴AC⊥BD,垂足為O,且AB=BC=CD=DA,而M、N、P、Q分別是邊AB、BC、CD、DA的中點(diǎn),∴OM=ON=OP=OQ=12AB,∴M、N、P、Q四點(diǎn)在以O(shè)為圓心OM為半徑的圓上.所以菱形各邊中點(diǎn)在以對(duì)角線的交點(diǎn)為圓心的同一個(gè)圓上.47.下列命題中,正確的是()
A.若a∥b,則a與b的方向相同或相反
B.若a∥b,b∥c,則a∥c
C.若兩個(gè)單位向量互相平行,則這兩個(gè)單位向量相等
D.若a=b,b=c,則a=c答案:D48.一個(gè)單位有職工800人,其中具有高級(jí)職稱的160人,具有中級(jí)職稱的320人,具有初級(jí)職稱的200人,其余人員120人,為了解職工收入情況,決定采用分層抽樣的方法從中抽取樣本.若樣本中具有初級(jí)職稱的職工為10人,則樣本容量為()
A.10
B.20
C.40
D.50答案:C49.在吸煙與患肺病這兩個(gè)分類(lèi)變量的計(jì)算中,下列說(shuō)法正確的是()
A.若k2的觀測(cè)值為k=6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺病
B.從獨(dú)立性檢驗(yàn)可知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)時(shí),我們說(shuō)某人吸煙,那么他有99%的可能患有肺病
C.若從統(tǒng)計(jì)量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯(cuò)誤
D.以上三種說(shuō)法都不正確答案:D50.某學(xué)校準(zhǔn)備調(diào)查高三年級(jí)學(xué)生完成課后作業(yè)所需時(shí)間,采取了兩種抽樣調(diào)查的方式:第一種由學(xué)生會(huì)的同學(xué)隨機(jī)對(duì)24名同學(xué)進(jìn)行調(diào)查;第二種由教務(wù)處對(duì)年級(jí)的240名學(xué)生編號(hào),由001到240,請(qǐng)學(xué)號(hào)最后一位為3的同學(xué)參加調(diào)查,則這兩種抽樣方式依次為()A.分層抽樣,簡(jiǎn)單隨機(jī)抽樣B.簡(jiǎn)單隨機(jī)抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡(jiǎn)單隨機(jī)抽樣,系統(tǒng)抽樣答案:學(xué)生會(huì)的同學(xué)隨機(jī)對(duì)24名同學(xué)進(jìn)行調(diào)查,是簡(jiǎn)單隨機(jī)抽樣,對(duì)年級(jí)的240名學(xué)生編號(hào),由001到240,請(qǐng)學(xué)號(hào)最后一位為3的同學(xué)參加調(diào)查,是系統(tǒng)抽樣,故選D第3卷一.綜合題(共50題)1.設(shè)兩圓C1、C2都和兩坐標(biāo)軸相切,且都過(guò)點(diǎn)(4,1),則兩圓心的距離|C1C2|=______.答案:∵兩圓C1、C2都和兩坐標(biāo)軸相切,且都過(guò)點(diǎn)(4,1),故兩圓圓心在第一象限的角平分線上,設(shè)圓心的坐標(biāo)為(a,a),則有|a|=(a-4)2-(a-1)2,∴a=5+22,或a=5-22,故圓心為(5+22,5+22
)
和(5-22,5-22
),故兩圓心的距離|C1C2|=2[(5+22)-(5-22)]=8,故為:82.已知A(4,1,3)、B(2,-5,1),C為線段AB上一點(diǎn),且則C的坐標(biāo)為()
A.
B.
C.
D.答案:C3.到兩定點(diǎn)A(0,0),B(3,4)距離之和為5的點(diǎn)的軌跡是()
A.橢圓
B.AB所在直線
C.線段AB
D.無(wú)軌跡答案:C4.已知△ABC是邊長(zhǎng)為4的正三角形,D、P是△ABC內(nèi)部?jī)牲c(diǎn),且滿足AD=14(AB+AC),AP=AD+18BC,則△APD的面積為_(kāi)_____.答案:取BC的中點(diǎn)E,連接AE,根據(jù)△ABC是邊長(zhǎng)為4的正三角形∴AE⊥BC,AE=12(AB+AC)而AD=14(AB+AC),則點(diǎn)D為AE的中點(diǎn),AD=3取AF=18BC,以AD,AF為邊作平行四邊形,可知AP=AD+18BC=AD+AF而△APD為直角三角形,AF=12∴△APD的面積為12×12×3=34故為:345.已知點(diǎn)A(1,-2,0)和向量a=(-3,4,12),若AB=2a,則點(diǎn)B的坐標(biāo)為_(kāi)_____.答案:∵向量a=(-3,4,12),AB=2a,∴AB=(-6,8,24)∵點(diǎn)A(1,-2,0)∴B(-6+1,8-2,24-0)=(-5,6,24)故為:(-5,6,24)6.函數(shù)y=ax2+1的圖象與直線y=x相切,則a=______.答案:設(shè)切點(diǎn)為(x0,y0),∵y′=2ax,∴k=2ax0=1,①又∵點(diǎn)(x0,y0)在曲線與直線上,即y0=ax20+1y0=x0,②由①②得a=14.故為14.7.
若平面向量,,兩兩所成的角相等,||=||=1,||=3,則|++|=()
A.2
B.4
C.2或5
D.4或5答案:C8.“若x、y全為零,則xy=0”的否命題為_(kāi)_____.答案:由于“全為零”的否定為“不全為零”,所以“若x、y全為零,則xy=0”的否命題為“若x、y不全為零,則xy≠0”.故為:若x、y不全為零,則xy≠0.9.設(shè)集合A={1,2},則滿足A∪B={1,2,3}的集合B的個(gè)數(shù)是()A.1B.3C.4D.8答案:A={1,2},A∪B={1,2,3},則集合B中必含有元素3,即此題可轉(zhuǎn)化為求集合A={1,2}的子集個(gè)數(shù)問(wèn)題,所以滿足題目條件的集合B共有22=4個(gè).故選擇C.10.甲、乙兩人約定上午7:20至8:00之間到某站乘公共汽車(chē),在這段時(shí)間內(nèi)有3班公共汽車(chē),它們開(kāi)車(chē)的時(shí)刻分別是7:40、7:50和8:00,甲、乙兩人約定,見(jiàn)車(chē)就乘,則甲、乙同乘一車(chē)的概率為(假定甲、乙兩人到達(dá)車(chē)站的時(shí)刻是互相不牽連的,且每人在7:20至8:00時(shí)的任何時(shí)刻到達(dá)車(chē)站都是等可能的)()A.13B.12C.38D.58答案:甲、乙同乘第一輛車(chē)的概率為12×12=14,甲、乙同乘第二輛車(chē)的概率為14×14=116,甲、乙同乘第三輛車(chē)的概率為14×14=116,甲、乙同乘一車(chē)的概率為14+116+116=38,故選C.11.已知向量a=(8,x,x).b=(x,1,2),其中x>0.若a∥b,則x的值為()
A.8
B.4
C.2
D.0答案:B12.如圖,點(diǎn)O是正六邊形ABCDEF的中心,則以圖中點(diǎn)A、B、C、D、E、F、O中的任意一點(diǎn)為始點(diǎn),與始點(diǎn)不同的另一點(diǎn)為終點(diǎn)的所有向量中,除向量外,與向量共線的向量共有()
A.2個(gè)
B.3個(gè)
C.6個(gè)
D.9個(gè)
答案:D13.若x、y∈R+且x+2y≤ax+y恒成立,則a的最小值是()A.1B.2C.3D.1+22答案:由題意,根據(jù)柯西不等式得x+2y≤(1+2)(x+y)∴x+2y≤3(x+y)要使x+2y≤ax+y恒成立,∴a≥3∴a的最小值是3故選C.14.條件語(yǔ)句的一般形式如圖所示,其中B表示的是()
A.條件
B.條件語(yǔ)句
C.滿足條件時(shí)執(zhí)行的內(nèi)容
D.不滿足條件時(shí)執(zhí)行的內(nèi)容
答案:C15.在語(yǔ)句PRINT
3,3+2的結(jié)果是()
A.3,3+2
B.3,5
C.3,5
D.3,2+3答案:B16.已知:關(guān)于x的方程2x2+kx-1=0
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的一個(gè)根是-1,求另一個(gè)根及k值.答案:(1)證明:2x2+kx-1=0,△=k2-4×2×(-1)=k2+8,無(wú)論k取何值,k2≥0,所以k2+8>0,即△>0,∴方程2x2+kx-1=0有兩個(gè)不相等的實(shí)數(shù)根.(2)設(shè)2x2+kx-1=0的另一個(gè)根為x,則x-1=-k2,(-1)?x=-12,解得:x=12,k=1,∴2x2+kx-1=0的另一個(gè)根為12,k的值為1.17.P在⊙O外,PC切⊙O于C,PAB交⊙O于A、B,則()
A.∠PCB=∠B
B.∠PAC=∠P
C.∠PCA=∠B
D.∠PAC=∠BCA答案:C18.已知△ABC的頂點(diǎn)坐標(biāo)分別為A(2,3),B(-1,0),C(2,0),則△ABC的周長(zhǎng)是()
A.2
B.6+
C.3+2
D.6+3答案:D19.已知兩個(gè)力F1,F(xiàn)2的夾角為90°,它們的合力大小為10N,合力與F1的夾角為60°,那么F2的大小為()A.53NB.5NC.10ND.52N答案:由題意可知:對(duì)應(yīng)向量如圖由于α=60°,∴F2的大小為|F合|?sin60°=10×32=53.故選A.20.在直角三角形ABC中,∠ACB=90°,CD、CE分別為斜邊AB上的高和中線,且∠BCD與∠ACD之比為3:1,求證CD=DE.
答案:證明:∵∠A+∠ACD=∠A+∠B=90°,∴∠ACD=∠B又∵CE是直角△ABC的斜邊AB上的中線∴CE=EB∠B=∠ECB,∠ACD=∠ECB但∵∠BCD=3∠ACD,∠ECD=2∠ACD=12∠ACB=12×90°=45°,△EDC為等腰直角三角形∴CE=DE.21.已知O是正方形ABCD對(duì)角線的交點(diǎn),在以O(shè),A,B,C,D這5點(diǎn)中任意一點(diǎn)為起點(diǎn),另一點(diǎn)為終點(diǎn)的所有向量中,
(1)與BC相等的向量有
______;
(2)與OB長(zhǎng)度相等的向量有
______;
(3)與DA共線的向量有
______.答案:如圖:(1)與BC相等的向量有AD.(2)與OB長(zhǎng)度相等的向量有OA、OC、OD、AO、CO、DO.(3)與DA共線的向量有
CB、BC.22.一圓形紙片的圓心為O,點(diǎn)Q是圓內(nèi)異于O點(diǎn)的一個(gè)定點(diǎn),點(diǎn)A是圓周上一動(dòng)點(diǎn),把紙片折疊使得點(diǎn)A與點(diǎn)Q重合,然后抹平紙片,折痕CD與OA交于點(diǎn)P,當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí),點(diǎn)P的軌跡為()
A.橢圓
B.雙曲線
C.拋物線
D.圓答案:A23.通過(guò)隨機(jī)詢問(wèn)110名不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
男女總計(jì)愛(ài)好402060不愛(ài)好203050總計(jì)6050110為了判斷愛(ài)好該項(xiàng)運(yùn)動(dòng)是否與性別有關(guān),由表中的數(shù)據(jù)此算得k2≈7.8,因?yàn)镻(k2≥6.635)≈0.01,所以判定愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān),那么這種判斷出錯(cuò)的可能性為_(kāi)_____.答案:由題意知本題所給的觀測(cè)值,k2≈7.8∵7.8>6.635,又∵P(k2≥6.635)≈0.01,∴這個(gè)結(jié)論有0.01=1%的機(jī)會(huì)說(shuō)錯(cuò),故為:1%24.已知f(1,1)=1,f(m,n)∈N*(m、n∈N*),且對(duì)任意m、n∈N*都有:
①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1).給出以下四個(gè)結(jié)論:
(1)f(1,2)=3;
(2)f(1,5)=9;
(3)f(5,1)=16;
(4)f(5,6)=26.其中正確的為_(kāi)_____.答案:∵f(1,1)=1,f(m,n+1)=f(m,n)+2;f(m+1,1)=2f(m,1)(1)f(1,2)=f(1,1)+2=3;故(1)正確(2)f(1,5)=f(1,4)+2=f(1,3)+4=f(1,2)+6=f(1,1)+8=9;故(2)正確(3)f(5,1)=2f(4,1)=4f(3,1)=8f(2,1)=16f(1,1)=16;故(3)正確(4)f(5,6)=f(5,5)+2=f(5,4)+4=f(5,3)+6=f(5,2)=8=f(5,1)+10=16+10=26;故(4)正確故為(1)(2)(3)(4)25.已知點(diǎn)G是△ABC的重心,O是空間任一點(diǎn),若OA+OB+OC=λOG,則實(shí)數(shù)λ=______.答案:由于G是三角形ABC的重心,則有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故為:326.P是以F1,F(xiàn)2為焦點(diǎn)的橢圓上一點(diǎn),過(guò)焦點(diǎn)F2作∠F1PF2外角平分線的垂線,垂足為M,則點(diǎn)M的軌跡是()
A.橢圓
B.圓
C.雙曲線
D.雙曲線的一支答案:B27.設(shè)隨機(jī)變量ξ的概率分布如表所示:
求:(l)P(ξ<1),P(ξ≤1),P(ξ<2),P(ξ≤2);
(2)P(x)=P(ξ≤x),x∈R.答案:(1)根據(jù)所給的分布列可知14+13+m+112=1,∴m=13,∴P(ξ<1)=0P(ξ≤1)=P(ξ=1)=14P(ξ<2)=P(ξ≤1)=P(ξ=1)=14P(ξ≤2)=P(ξ=1)+P(ξ=2)=14+13=712(2)根據(jù)所給的分布列和第一問(wèn)做出的結(jié)果,得到P(X)=14,(x≤1)P(X)=712,(1<X≤2)P(X)=1112,(2<x≤3)p(X)=1,(X≥3)28.△ABC中,若有一個(gè)內(nèi)角不小于120°,求證:最長(zhǎng)邊與最短邊之比不小于3.答案:設(shè)最大角為∠A,最小角為∠C,則最大邊為a,最小邊為c因?yàn)锳≥120°,所以B+C≤60°,且C≤B,所以2C≤B+C≤60°,C≤30°.所以ac=sinAsinC=sin(B+C)sinC≥sin2CsinC=2cosC≥3.29.已知向量,,,則(
)A.B.C.5D.25答案:C解析:將平方即可求得C.30.已知大于1的正數(shù)x,y,z滿足x+y+z=33.
(1)求證:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.
(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴l(xiāng)og3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3當(dāng)且僅當(dāng)x=y=z=3時(shí),等號(hào)成立.故所求的最小值是3.31.某游泳館出售冬季游泳卡,每張240元,其使用規(guī)定:不記名,每卡每次只限一人,每天只限一次.某班有48名同學(xué),老師打算組織同學(xué)們集體去游泳,除需購(gòu)買(mǎi)若干張游泳卡外,每次游泳還需包一輛汽車(chē),無(wú)論乘坐多少名同學(xué),每次的包車(chē)費(fèi)均為40元.
若使每個(gè)同學(xué)游8次,每人最少應(yīng)交多少元錢(qián)?答案:設(shè)買(mǎi)x張游泳卡,總開(kāi)支為y元,則每批去x名同學(xué),共需去48×8x=384x批,總開(kāi)支又分為:①買(mǎi)卡所需費(fèi)用240x;②包車(chē)所需費(fèi)用384x×40.∴y=240x+384x×40(0<x≤48,x∈Z).因此,y=240(x+64x)≥240×2x?64x=3840當(dāng)且僅當(dāng)x=64x時(shí),即x=8時(shí)取等號(hào).∴當(dāng)x=8時(shí),總開(kāi)支y的最大值為3840元,此時(shí)每人最少應(yīng)交384048=80(元).答:若使每個(gè)同學(xué)游8次,每人最少應(yīng)交80元錢(qián).32.已知:空間四邊形ABCD,AB=AC,DB=DC,求證:BC⊥AD.答案:取BC的中點(diǎn)為E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.這樣,BC就和平面ADE內(nèi)的兩條相交直線AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.33.(1+x2)5的展開(kāi)式中x2的系數(shù)()A.10B.5C.52D.1答案:含x2項(xiàng)為C25(x2)2=10×x24=52x2,故選項(xiàng)為為C.34.在四棱錐P-ABCD中,底面ABCD是正方形,E為PD中點(diǎn),若PA=a,PB=b,PC=c,則BE=______.答案:BE=12(BP+BD)=-12PB
+12(BA+BC)=-12PB+12BA+12BC=-12PB+12(PA-PB)+12(PC-PB)=-32PB+12PA+
12PC=12a-32b+12c.故為:12a-32b+12c.35.極坐標(biāo)方程pcosθ=表示()
A.一條平行于x軸的直線
B.一條垂直于x軸的直線
C.一個(gè)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 降低氧化鋯陶瓷漿料的粘度用哪種分散劑合適
- 停車(chē)場(chǎng)管理制度
- 加強(qiáng)工程監(jiān)理檢查計(jì)劃
- 科幻故事的創(chuàng)作計(jì)劃
- 主管年度人員安全任務(wù)計(jì)劃
- 創(chuàng)新思維在工作計(jì)劃中的應(yīng)用
- 學(xué)校社團(tuán)工作計(jì)劃開(kāi)展農(nóng)村支教
- 班主任工作計(jì)劃開(kāi)創(chuàng)學(xué)生美好未來(lái)
- 健康養(yǎng)老貸款協(xié)議三篇
- 人事部標(biāo)準(zhǔn)規(guī)章制度
- YS/T 1022-2015偏釩酸銨
- GB/T 9574-2001橡膠和塑料軟管及軟管組合件試驗(yàn)壓力、爆破壓力與設(shè)計(jì)工作壓力的比率
- 馬工程《刑法學(xué)(下冊(cè))》教學(xué)課件 第19章 破壞社會(huì)主義市場(chǎng)經(jīng)濟(jì)秩序罪
- GB/T 1740-2007漆膜耐濕熱測(cè)定法
- 校園突發(fā)事件及危機(jī)應(yīng)對(duì)
- 《必修上第六單元》教案【高中語(yǔ)文必修上冊(cè)】
- 立體構(gòu)成的基本要素及形式美法則備課講稿課件
- 廣東省房屋建筑工程概算定額說(shuō)明及計(jì)算規(guī)則樣本
- 汽車(chē)文化知識(shí)考試參考題庫(kù)400題(含答案)
- 《水循環(huán)》-完整版課件
- 西游記 品味經(jīng)典名著導(dǎo)讀PPT
評(píng)論
0/150
提交評(píng)論