2023年重慶科創(chuàng)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年重慶科創(chuàng)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年重慶科創(chuàng)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年重慶科創(chuàng)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年重慶科創(chuàng)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩42頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年重慶科創(chuàng)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.若直線x+y=m與圓x=mcosφy=msinφ(φ為參數(shù),m>0)相切,則m為

______.答案:圓x=mcosφy=msinφ的圓心為(0,0),半徑為m∵直線x+y=m與圓相切,∴d=r即|m|2=m,解得m=2故為:22.已知曲線C上的動點P(x,y)滿足到點F(0,1)的距離比到直線l:y=-2的距離小1.

(Ⅰ)求曲線C的方程;

(Ⅱ)動點E在直線l上,過點E分別作曲線C的切線EA,EB,切點為A、B.

(?。┣笞C:直線AB恒過一定點,并求出該定點的坐標;

(ⅱ)在直線l上是否存在一點E,使得△ABM為等邊三角形(M點也在直線l上)?若存在,求出點E坐標,若不存在,請說明理由.答案:(Ⅰ)曲線C的方程x2=4y(5分)(Ⅱ)(?。┰O(shè)E(a,-2),A(x1,x214),B(x2,x224),∵y=x24∴y′=12x過點A的拋物線切線方程為y-x214=12x1(x-x1),∵切線過E點,∴-2-x214=12x1(a-x1),整理得:x12-2ax1-8=0同理可得:x22-2ax2-8=0,∴x1,x2是方程x2-2ax-8=0的兩根,∴x1+x2=2a,x1?x2=-8可得AB中點為(a,a2+42)又kAB=y1-y2x1-x2=x214-x224x1-x2=x1+x24=a2,∴直線AB的方程為y-(a22+2)=a2(x-a)即y=a2x+2,∴AB過定點(0,2)(10分)(ⅱ)由(ⅰ)知AB中點N(a,a2+42),直線AB的方程為y=a2x+2當a≠0時,則AB的中垂線方程為y-a2+42=-2a(x-a),∴AB的中垂線與直線y=-2的交點M(a3+12a4,-2)∴|MN|2=(a3+12a4-a)2+(-2-a2+42)2=116(a2+8)2(a2+4)∵|AB|=1+a24(x1+x2)2-4x1x2=(a2+4)(a2+8)若△ABM為等邊三角形,則|MN|=32|AB|,∴116(a2+8)2(a2+4)=34(a2+4)(a2+8),解得a2=4,∴a=±2,此時E(±2,-2),當a=0時,經(jīng)檢驗不存在滿足條件的點E綜上可得:滿足條件的點E存在,坐標為E(±2,-2).(15分)3.如圖,已知C點在圓O直徑BE的延長線上,CA切圓O于A點,∠ACB的平分線分別交AE、AB于點F、D.

(Ⅰ)求∠ADF的度數(shù);

(Ⅱ)若AB=AC,求ACBC的值.答案:解

(1)∵AC為圓O的切線,∴∠B=∠EAC,又CD是∠ACB的平分線,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.又∵BE為圓O的直徑,∴∠BAE=90°,∴∠ADF=12(180°-∠BAE)=45°(2)∵∠B=∠EAC,∠ACE=∠BCA,∴△ACE∽△BCA又∵AB=AC,∴∠B=∠ACB,∴∠B=∠ACB=∠EAC,由∠BAE=90°及三角形內(nèi)角和知,∠B=30°,∴在Rt△ABE中,ACBC=AEBA=tan∠B=tan30°=334.(x3+1xx)10的展開式中的第四項是______.答案:由二項式定理的通項公式可知(x3+1xx)10的展開式中的第四項是:C310(x3)7(1xx)3=120x16?x.故為:120x16?x.5.拋物線y2=4px(p>0)的準線與x軸交于M點,過點M作直線l交拋物線于A、B兩點.

(1)若線段AB的垂直平分線交x軸于N(x0,0),求證:x0>3p;

(2)若直線l的斜率依次為p,p2,p3,…,線段AB的垂直平分線與x軸的交點依次為N1,N2,N3,…,當0<p<1時,求1|N1N2|+1|N2N3|+…+1|N10N11|的值.答案:(1)證明:設(shè)直線l方程為y=k(x+p),代入y2=4px.得k2x2+(2k2p-4p)x+k2p2=0.△=4(k2p-2p)2-4k2?k2p2>0,得0<k2<1.令A(yù)(x1,y1)、B(x2,y2),則x1+x2=-2k2p-4pk2,y1+y2=k(x1+x2+2p)=4pk,AB中點坐標為(2P-k2Pk2,2pk).AB垂直平分線為y-2pk=-1k(x-2P-k2Pk2).令y=0,得x0=k2P+2Pk2=p+2Pk2.由上可知0<k2<1,∴x0>p+2p=3p.∴x0>3p.(2)∵l的斜率依次為p,p2,p3,時,AB中垂線與x軸交點依次為N1,N2,N3,(0<p<1).∴點Nn的坐標為(p+2p2n-1,0).|NnNn+1|=|(p+2p2n-1)-(p+2p2n+1)|=2(1-p2)p2n+1,1|NnNn+1|=p2n+12(1-p2),所求的值為12(1-p2)[p3+p4++p21]=p3(1-p19)2(1-p)2(1+p).6.若A(x,5-x,2x-1),B(1,x+2,2-x),當||取最小值時,x的值等于(

A.

B.

C.

D.答案:C7.如圖,l1、l2、l3是同一平面內(nèi)的三條平行直線,l1與l2間的距離是1,l2與l3間的距離是2,正三角形ABC的三頂點分別在l1、l2、l3上,則△ABC的邊長是()

A.2

B.

C.

D.

答案:D8.在市場上供應(yīng)的燈泡中,甲廠產(chǎn)品占70%,乙廠占30%,甲廠產(chǎn)品的合格率是95%,乙廠的合格率是80%,則從市場上買到一個甲廠生產(chǎn)的合格燈泡的概率是______.答案:由題意知本題是一個相互獨立事件同時發(fā)生的概率,∵甲廠產(chǎn)品占70%,甲廠產(chǎn)品的合格率是95%,∴從市場上買到一個甲廠生產(chǎn)的合格燈泡的概率是0.7×0.95=0.665故為:0.6659.等腰梯形ABCD,上底邊CD=1,腰AD=CB=2,下底AB=3,按平行于上、下底邊取x軸,則直觀圖A′B′C′D′的面積為

______.答案:等腰梯形ABCD,上底邊CD=1,腰AD=CB=2,下底AB=3,所以梯形的高為:1,按平行于上、下底邊取x軸,則直觀圖A′B′C′D′的高為:12sin45°=24所以直觀圖的面積為:12×(1+3)×24=22故為:2210.f(x)=(1+2x)m+(1+3x)n(m,n∈N*)的展開式中x的系數(shù)為13,則x2的系數(shù)為()A.31B.40C.31或40D.71或80答案:(1+2x)m的展開式中x的系數(shù)為2Cm1=2m,(1+3x)n的展開式中x的系數(shù)為3Cn1=3n∴3n+2m=13∴n=1m=5或n=3m=2(1+2x)m的展開式中的x2系數(shù)為22Cm2,(1+3x)n的展開式中的x2系數(shù)為32Cn2∴當n=1m=5時,x2的系數(shù)為22Cm2+32Cn2=40當n=3m=2時,x2的系數(shù)為22Cm2+32Cn2=31故選C.11.已知曲線C的極坐標方程是ρ=4cosθ.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是:x=22t+1y=22t,求直線l與曲線C相交所成的弦的弦長.答案:曲線C的極坐標方程是ρ=4cosθ化為直角坐標方程為x2+y2-4x=0,即(x-2)2+y2=4直線l的參數(shù)方程x=22t+1y=22t,化為普通方程為x-y-1=0,曲線C的圓心(2,0)到直線l的距離為12=22所以直線l與曲線C相交所成的弦的弦長24-12=14.12.空間向量a=(2,-1,0),.b=(1,0,-1),n=(1,y,z),若n⊥a,n⊥b,則y+z=______.答案:∵n⊥a,n⊥b,∴n?a=0n?b=0,即2-y=01-z=0,解得y=2z=1,∴y+z=3.故為3.13.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()

A.k1<k2<k3

B.k2<k1<k3

C.k3<k2<k1

D.k1<k3<k2

答案:B14.點(1,1)在圓(x-a)2+(y+a)2=4的內(nèi)部,則a的取值范圍是(

A.-1<a<1

B.0<a<1

C.a(chǎn)<-1或a>1

D.a(chǎn)=±1答案:A15.若一元二次方程ax2+2x+1=0有一個正根和一個負根,則有

A.a(chǎn)<0

B.a(chǎn)>0

C.a(chǎn)<-1

D.a(chǎn)>1答案:A16.已知點P是拋物線y2=2x上的動點,點P在y軸上的射影是M,點A(72,4),則|PA|+|PM|的最小值是()A.5B.92C.4D.AD答案:依題意可知焦點F(12,0),準線x=-12,延長PM交準線于H點.則|PF|=|PH||PM|=|PH|-12=|PA|-12|PM|+|PA|=|PF|+|PA|-12,我們只有求出|PF|+|PA|最小值即可.由三角形兩邊長大于第三邊可知,|PF|+|PA|≥|FA|,①設(shè)直線FA與拋物線交于P0點,可計算得P0(3,94),另一交點(-13,118)舍去.當P重合于P0時,|PF|+|PA|可取得最小值,可得|FA|=194.則所求為|PM|+|PA|=194-14=92.故選B.17.已知直線l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,則A1B1=A2B2是l1∥l2的()A.充分非必要條件B.必要非充分條件C.充要條件D.既非充分又非必要條件答案:當A1B1=A2B2

時,兩直線可能平行,也可能重合,故充分性不成立.當l1∥l2時,B1與B2可能都等于0,故A1B1=A2B2

不一定成立,故必要性不成立.綜上,A1B1=A2B2是l1∥l2的既非充分又非必要條件,故選D.18.設(shè)O為坐標原點,給定一個定點A(4,3),而點B(x,0)在x正半軸上移動,l(x)表示AB的長,則△OAB中兩邊長的比值的最大值為()

A.

B.

C.

D.答案:B19.如圖所示,PD⊥平面ABCD,且四邊形ABCD為正方形,AB=2,E是PB的中點,

cos〈,〉=.

(1)建立適當?shù)目臻g坐標系,寫出點E的坐標;

(2)在平面PAD內(nèi)求一點F,使EF⊥平面PCB.答案:(1)點E的坐標是(1,1,1)(2)F是AD的中點時滿足EF⊥平面PCB解析:(1)如圖所示,以DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間直角坐標系,則A(2,0,0)、B(2,2,0)、C(0,2,0),設(shè)P(0,0,2m),則E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴點E的坐標是(1,1,1).(2)∵F∈平面PAD,∴可設(shè)F(x,0,z).則=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F點的坐標為(1,0,0)即點F是AD的中點時滿足EF⊥平面PCB.20.已知向量p=a|a|+2b|b|,其中a、b均為非零向量,則|p|的取值范圍是

______.答案:∵|a|a||=1,|2b|b||=2

∴p2=|p|2=1+4+4a|a|?b|b|?cos<a|a|,2b|b|>=5+4?cos<a|a|,2b|b|>∈[1,9],開方可得

|p|的取值范圍[1,3],故為[1,3].21.定義直線關(guān)于圓的圓心距單位λ為圓心到直線的距離與圓的半徑之比.若圓C滿足:①與x軸相切于點A(3,0);②直線y=x關(guān)于圓C的圓心距單位λ=2,試寫出一個滿足條件的圓C的方程______.答案:由題意可得圓心的橫坐標為3,設(shè)圓心的縱坐標為r,則半徑為|r|>0,則圓心的坐標為(3,r).設(shè)圓心到直線y=x的距離為d,d=|3-r|2,則由題意可得λ=d|r|=2,求得r=1,或r=-3,故一個滿足條件的圓C的方程是(x-3)2+(y-1)2=1,故為(x-3)2+(y-1)2=122.函數(shù)f(x)=2,0<x<104,10≤x<155,15≤x<20,則函數(shù)的值域是()A.[2,5]B.{2,4,5}C.(0,20)D.N答案:∵f(x)=20<x<10410≤x<15515≤x<20∴函數(shù)的值域是{2,4,5}故選B23.如果執(zhí)行如圖的程序框圖,那么輸出的S=______.答案:根據(jù)題意可知該循環(huán)體運行4次第一次:i=2,s=4,第二次:i=3,s=10,第三次:i=4,s=22,第四次:i=5,s=46,因為i=5>4,結(jié)束循環(huán),輸出結(jié)果S=46.故為:46.24.構(gòu)成多面體的面最少是(

A.三個

B.四個

C.五個

D.六個答案:B25.甲,乙兩個工人在同樣的條件下生產(chǎn),日產(chǎn)量相等,每天出廢品的情況如下表所列,則有結(jié)論:()

工人

廢品數(shù)

0

1

2

3

0

1

2

3

概率

0.4

0.3

0.2

0.1

0.3

0.5

0.2

0

A.甲的產(chǎn)品質(zhì)量比乙的產(chǎn)品質(zhì)量好一些

B.乙的產(chǎn)品質(zhì)量比甲的產(chǎn)品質(zhì)量好一些

C.兩人的產(chǎn)品質(zhì)量一樣好

D.無法判斷誰的質(zhì)量好一些答案:B26.已知向量i=(1,0),j=(0,1).若向量i+λj與λi+j垂直,則實數(shù)λ=______.答案:由題意可得,i+λj=(1,λ),λi+j=(λ,1)∵i+λj與λi+j垂直(i+λj)?(λi+j)=2λ=0∴λ=0故為:027.已知向量a與b的夾角為π3,|a|=2,則a在b方向上的投影為______.答案:由投影的定義可得:a在b方向上的投影為:|a|cos<a,b>,而|a|cos<a,b>=2cosπ3=22故為:2228.已知隨機變量ξ服從正態(tài)分布N(2,σ2),且P(ξ<0)=0.2,則P(ξ>4)=()

A.0.6

B.0.4

C.0.3

D.0.2答案:D29.若向量,則這兩個向量的位置關(guān)系是___________。答案:垂直30.某地區(qū)居民生活用電分為高峰和低谷兩個時間段進行分時計價.該地區(qū)的電網(wǎng)銷售電價表如圖:高峰時間段用電價格表低谷時間段用電價格表高峰月用電量

(單位:千瓦時)高峰電價(單位:元/千瓦時)低谷月用電量

(單位:千瓦時)低谷電價(單位:

元/千瓦時)50及以下的部分0.56850及以下的部分0.288超過50至200的部分0.598超過50至200的部分0.318超過200的部分0.668超過200的部分0.388若某家庭5月份的高峰時間段用電量為200千瓦時,低谷時間段用電量為100千瓦時,則按這種計費方式該家庭本月應(yīng)付的電費為______元(用數(shù)字作答)答案:高峰時間段用電的電費為50×0.568+150×0.598=28.4+89.7=118.1(元),低谷時間段用電的電費為50×0.288+50×0.318=14.4+15.9=30.3(元),本月的總電費為118.1+30.3=148.4(元),故為:148.4.31.(選做題)某制藥企業(yè)為了對某種藥用液體進行生物測定,需要優(yōu)選培養(yǎng)溫度,實驗范圍定為29℃~63℃,精確度要求±1℃,用分數(shù)法進行優(yōu)選時,能保證找到最佳培養(yǎng)溫度需要最少實驗次數(shù)為(

)。答案:732.如圖,在四棱臺ABCD-A1B1C1D1中,下底ABCD是邊長為2的正方形,上底A1B1C1D1是邊長為1的正方形,側(cè)棱DD1⊥平面ABCD,DD1=2.

(Ⅰ)求證:B1B∥平面D1AC;

(Ⅱ)求二面角B1-AD1-C的余弦值.答案:以D為原點,以DA、DC、DD1所在直線分別為x軸,z軸建立空間直角坐標系D-xyz如圖,則有A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2).…(3分)(Ⅰ)證明:設(shè)AC∩BD=E,連接D1、E,則有E(1,1,0),D1E=B1B=(1,1,-2),所以B1B∥D1E,∵BB?平面D1AC,D1E?平面D1AC,∴B1B∥平面D1AC;…(6分)(II)D1B1=(1,1,0),D1A=(2,0,-2),設(shè)n=(x,y,z)為平面AB1D1的法向量,n?B1D1=x+y=0,n?D1A=2x-2z=0.于是令x=1,則y=-1,z=1.則n=(1,-1,1)…(8分)同理可以求得平面D1AC的一個法向量m=(1,1,1),…(10分)cos<m,n>=m?n|m||n|=13.∴二面角B1-AD1-C的余弦值為13.…(12分)33.若21-i=a+bi(i為虛數(shù)單位,a,b∈R),則a+b=______.答案:∵21-i=2(1+i)(1-i)(1+i)=2(1+i)2=1+i,∵21-i=a+bi∴a+bi=1+i∴a=b=1∴a+b=2.故為:234.下列關(guān)于算法的說法不正確的是()A.算法必須在有限步操作之后停止.B.求解某一類問題的算法是唯一的.C.算法的每一步必須是明確的.D.算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.答案:因為算法具有有窮性、確定性和可輸出性.由算法的特性可知,A是指的有窮性;C是確定性;D是可輸出性.而解決某一類問題的算法不一定唯一,例如求排序問題算法就不唯一,所以,給出的說法不正確的是B.故選B.35.點P(1,3,5)關(guān)于平面xoz對稱的點是Q,則向量=()

A.(2,0,10)

B.(0,-6,0)

C.(0,6,0)

D.(-2,0,-10)答案:B36.如圖所示,判斷正整數(shù)x是奇數(shù)還是偶數(shù),(1)處應(yīng)填______.答案:根據(jù)程序的功能是判斷正整數(shù)x是奇數(shù)還是偶數(shù),結(jié)合數(shù)的奇偶性的定義,我們可得當滿足條件是x是奇數(shù),不滿足條件時x為偶數(shù)故(1)中應(yīng)填寫r=1故為:r=137.已知:關(guān)于x的方程2x2+kx-1=0

(1)求證:方程有兩個不相等的實數(shù)根;

(2)若方程的一個根是-1,求另一個根及k值.答案:(1)證明:2x2+kx-1=0,△=k2-4×2×(-1)=k2+8,無論k取何值,k2≥0,所以k2+8>0,即△>0,∴方程2x2+kx-1=0有兩個不相等的實數(shù)根.(2)設(shè)2x2+kx-1=0的另一個根為x,則x-1=-k2,(-1)?x=-12,解得:x=12,k=1,∴2x2+kx-1=0的另一個根為12,k的值為1.38.某市為研究市區(qū)居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)繪制了樣本的頻率分布直方圖(如圖).

(Ⅰ)求月收入在[3000,3500)內(nèi)的被調(diào)查人數(shù);

(Ⅱ)估計被調(diào)查者月收入的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).

答案:(I)10000×0.0003×500=1500(人)∴月收入在[3000,3500)內(nèi)的被調(diào)查人數(shù)1500人(II).x=1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400∴估計被調(diào)查者月收入的平均數(shù)為240039.直線被圓x2+y2=9截得的弦長為(

A.

B.

C.

D.答案:B40.已知A(1,0,0)、B(0,1,0)、C(0,0,1)三點,n=(1,1,1),則以n為方向向量的直線l與平面ABC的關(guān)系是()A.垂直B.不垂直C.平行D.以上都有可能答案:由題意,AB=(-1,1,0),BC=(0,-1,1)∵n?AB=0,n?BC=0∴以n為方向向量的直線l與平面ABC垂直故選A.41.已知:如圖,⊙O1與⊙O2外切于C點,AB一條外公切線,A、B分別為切點,連接AC、BC.設(shè)⊙O1的半徑為R,⊙O2的半徑為r,若tan∠ABC=,則的值為()

A.

B.

C.2

D.3

答案:C42.如果執(zhí)行如圖的程序框圖,那么輸出的S=______.答案:根據(jù)題意可知該循環(huán)體運行5次第一次:k=2,s=2,第二次:k=3,s=2+4,第三次:k=4,s=2+4+6,第四次:k=5,s=2+4+6+8,因為k=5,結(jié)束循環(huán),輸出結(jié)果S=2+4+6+8=20.故為:20.43.三棱柱ABC-A1B1C1中,M、N分別是BB1、AC的中點,設(shè),,=,則等于()

A.

B.

C.

D.答案:A44.已知f(x)=3mx2-2(m+n)x+n(m≠0)滿足f(0)?f(1)>0,設(shè)x1,x2是方程f(x)=0的兩根,則|x1-x2|的取值范圍為()

A.[,)

B.[,)

C.[,)

D.[,)答案:A45.由1、2、3可以組成______個沒有重復(fù)數(shù)字的兩位數(shù).答案:沒有重復(fù)數(shù)字的兩位數(shù)共有3×2=6個故為:646.利用“直接插入排序法”給按從大到小的順序排序,

當插入第四個數(shù)時,實際是插入哪兩個數(shù)之間(

)A.與B.與C.與D.與答案:B解析:先比較與,得;把插入到,得;把插入到,得;47.圓錐曲線G的一個焦點是F,與之對應(yīng)的準線是,過F作直線與G交于A、B兩點,以AB為直徑作圓M,圓M與的位置關(guān)系決定G

是何種曲線之間的關(guān)系是:______

圓M與的位置相離相切相交G

是何種曲線答案:設(shè)圓錐曲線過焦點F的弦為AB,過A、B分別向相應(yīng)的準線作垂線AA',BB',則由第二定義得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2

?

e.設(shè)以AB為直徑的圓半徑為r,圓心到準線的距離為d,即有r=de,橢圓的離心率

0<e<1,此時r<d,圓M與準線相離;拋物線的離心率

e=1,此時r=d,圓M與準線相切;雙曲線的離心率

e>1,此時r>d,圓M與準線相交.故為:橢圓、拋物線、雙曲線.48.設(shè)曲線C的參數(shù)方程為(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上到直線l距離為的點的個數(shù)為()

A.1

B.2

C.3

D.4答案:B49.已知向量a表示“向東航行1km”,向量b表示“向北航行3km”,則向量a+b表示()A.向東北方向航行2kmB.向北偏東30°方向航行2kmC.向北偏東60°方向航行2kmD.向東北方向航行(1+3)km答案:如圖,作OA=a,OB=b.則OC=a+b,所以|OC|=3+1=2,且sin∠BOC=12,所以∠BOC=30°.因此

a+b表示向北偏東30°方向航行2km.故選B.50.與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是______.答案:設(shè)M(x,y)為所求軌跡上任一點,則由題意知1+|y|=x2+y2,化簡得x2=2|y|+1.因此與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是x2=2|y|+1.故為x2=2|y|+1.第2卷一.綜合題(共50題)1.若對n個向量a1,a2,…,an,存在n個不全為零的實數(shù)k1,k2…,kn,使得k1a1+k2a2+…+knan=0成立,則稱向量a1,a2,…,an為“線性相關(guān)”.依此規(guī)定,請你求出一組實數(shù)k1,k2,k3的值,它能說明a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關(guān)”.k1,k2,k3的值分別是______(寫出一組即可).答案:設(shè)a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關(guān)”.則存在實數(shù),k1,k2,k3,使k1a1+k2a2+k3a3=0∵a1=(1,0),a2=(1,-1),a3=(2,2)∴k1+k2+2k3=0,且-k2+2k3=0令k3=1,則k2=2,k1=-4故為:-4,2,12.某個幾何體的三視圖如圖所示,則該幾何體的體積是()A.23B.3C.334D.332答案:由三視圖可知該幾何體是直三棱柱,高為1,底面三角形一邊長為2,此邊上的高為3,所以V=Sh=12×2×3×1=3故選B.3.探測某片森林知道,可采伐的木材有10萬立方米.設(shè)森林可采伐木材的年平均增長率為8%,則經(jīng)過______年,可采伐的木材增加到40萬立方米.答案:設(shè)經(jīng)過n年可采伐本材達到40萬立方米則有10×(1+8%)n=40即(1+8%)n=4故有n=log1.084,解得n≈19即經(jīng)過19年,可采伐的木材增加到40萬立方米故為194.對于空間四點A、B、C、D,命題p:AB=xAC+yAD,且x+y=1;命題q:A、B、C、D四點共面,則命題p是命題q的()A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件答案:根據(jù)命題p:AB=xAC+yAD,且x+y=1,可得AB

、AC

、AD

共面,從而可得命題q:A、B、C、D四點共面成立,故命題p是命題q的充分條件.根據(jù)命題q:A、B、C、D四點共面,可得A、B、C、D四點有可能在同一條直線上,若AB=xAC+yAD,則x+y不一定等于1,故命題p不是命題q的必要條件.綜上,可得命題p是命題q的充分不必要條件.故選:A.5.在平面直角坐標系xOy中,橢圓x2a2+y2b2=1(a>b>0)的焦距為2c,以O(shè)為圓心,a為半徑作圓M,若過P(a2c,0)作圓M的兩條切線相互垂直,則橢圓的離心率為______.答案:設(shè)切線PA、PB互相垂直,又半徑OA垂直于PA,所以△OAP是等腰直角三角形,故a2c=2a,解得e=ca=22,故為22.6.已知復(fù)數(shù)z滿足(1-i)?z=1,則z=______.答案:∵復(fù)數(shù)z滿足(1-i)?z=1,∴z=11-i=1+i(1-i)(1+i)=12+12i,故為12+i2.7.要使直線y=kx+1(k∈R)與焦點在x軸上的橢圓x27+y2a=1總有公共點,實數(shù)a的取值范圍是______.答案:要使方程x27+y2a=1表示焦點在x軸上的橢圓,需a<7,由直線y=kx+1(k∈R)恒過定點(0,1),所以要使直線y=kx+1(k∈R)與橢圓x27+y2a=1總有公共點,則(0,1)應(yīng)在橢圓上或其內(nèi)部,即a>1,所以實數(shù)a的取值范圍是[1,7).故為[1,7).8.若A、B兩點的極坐標為A(4

,

π3),B(6,0),則AB中點的極坐標是

______(極角用反三角函數(shù)值表示)答案:A的直角坐標為:(2,23),所以AB的中點坐標為:(4,3)所以極徑為:19;極角為:α,tanα=34所以α=arctan34;AB中點的極坐標是:(19,

arctan34)故為:(19,

arctan34)9.從裝有5只紅球和5只白球的袋中任意取出3只球,有如下幾對事件:

①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”;

②“取出兩只紅球和一只白球”與“取出3只紅球”;

③“取出3只紅球”與“取出的3只球中至少有一只白球”;

④“取出3只紅球”與“取出3只白球”.

其中是對立事件的有______(只填序號).答案:對于①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”,由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.對于②“取出兩只紅球和一只白球”與“取出3只紅球”,由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.對于③“取出3只紅球”與“取出的3只球中至少有一只白球”,它們不可能同時發(fā)生,而且它們的并事件是必然事件,故它們是對立事件.④“取出3只紅球”與“取出3只白球”.由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.故為③.10.已知拋物線方程為y2=2px(p>0),過該拋物線焦點F且不與x軸垂直的直線AB交拋物線于A,B兩點,過點A,點B分別作AM,BN垂直于拋物線的準線,分別交準線于M,N兩點,那么∠MFN必是()

A.銳角

B.直角

C.鈍角

D.以上皆有可能答案:B11.在某路段檢測點對200輛汽車的車速進行檢測,檢測結(jié)果表示為如圖所示的頻率分布直方圖,則車速不小于90km/h的汽車有輛.()A.60B.90C.120D.150答案:頻率=頻率組距×組距=(0.02+0.01)×10=0.3,頻數(shù)=頻率×樣本總數(shù)=200×0.3=60(輛).故選A.12.設(shè)a,b,c是正實數(shù),求證:aabbcc≥(abc)a+b+c3.答案:證明:不妨設(shè)a≥b≥c>0,則lga≥lgb≥lgc.據(jù)排序不等式有:alga+blgb+clgc≥blga+clgb+algcalga+blgb+clgc≥clga+algb+blgcalga+blgb+clgc=alga+blgb+clgc上述三式相加得:3(alga+blgb+clgc)≥(a+b+c)(lga+lgb+lgc)即lg(aabbcc)≥a+b+c3lg(abc)故aabbcc≥(abc)a+b+c3.13.如圖程序框圖箭頭a指向①處時,輸出

s=______.箭頭a指向②處時,輸出

s=______.答案:程序在運行過程中各變量的情況如下表所示:(1)當箭頭a指向①時,是否繼續(xù)循環(huán)

S

i循環(huán)前/0

1第一圈

1

2第二圈

2

3第三圈

3

4第四圈

4

5第五圈

5

6第六圈

否故最終輸出的S值為5,即m=5;(2)當箭頭a指向②時,是否繼續(xù)循環(huán)

S

i循環(huán)前/0

1第一圈

1

2第二圈

1+2

3第三圈

1+2+3

4第四圈

1+2+3+4

5第五圈

1+2+3+4+5

6第六圈

否故最終輸出的S值為1+2+3+4+5=15;則n=15.故為:5,15.14.已知直線l過點P(1,0,-1),平行于向量=(2,1,1),平面α過直線l與點M(1,2,3),則平面α的法向量不可能是()

A.(1,-4,2)

B.(,-1,)

C.(-,-1,-)

D.(0,-1,1)答案:D15.以知F是雙曲線x24-y212=1的左焦點,A(1,4),P是雙曲線右支上的動點,則|PF|+|PA|的最小值為______.答案:∵A點在雙曲線的兩只之間,且雙曲線右焦點為F′(4,0),∴由雙曲線性質(zhì)|PF|-|PF′|=2a=4而|PA|+|PF′|≥|AF′|=5兩式相加得|PF|+|PA|≥9,當且僅當A、P、F’三點共線時等號成立.故為916.(1)在數(shù)軸上求一點的坐標,使它到點A(9)與到點B(-15)的距離相等;

(2)在數(shù)軸上求一點的坐標,使它到點A(3)的距離是它到點B(-9)的距離的2倍.答案:(1)設(shè)該點為M(x),根據(jù)題意,得A、M兩點間的距離為d(A,M)=|x-9|,B、M兩點間的距離為d(M,B)=|-15-x|,結(jié)合題意,可得|x-9|=|-15-x|,∴x-9=15+x或x-9=-15-x,解之得x=-3,得M的坐標為-3故所求點的坐標為-3.(2)設(shè)該點為N(x'),則A、N兩點間的距離為d(A,N)=|x'-3|,B、N兩點間的距離為d(N,B)=|-9-x'|,根據(jù)題意有|x'-3|=2|9+x'|,∴x'-3=18+2x'或x'-3=-18-2x',解之得x'=-21,或x'=-5.故所求點的坐標是-21或-5.17.過點A(-1,4)作圓C:(x-2)2+(y-3)2=1的切線l,求切線l的方程.答案:設(shè)方程為y-4=k(x+1),即kx-y+k+4=0∴d=|2k-3+k+4|k2+1=1∴4k2+3k=0∴k=0或k=-34∴切線l的方程為y=4或3x+4y-13=018.

選修1:幾何證明選講

如圖,設(shè)AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點,AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:

(1)l是⊙O的切線;

(2)PB平分∠ABD.答案:證明:(1)連接OP,因為AC⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以O(shè)P∥BD,從而OP⊥l.因為P在⊙O上,所以l是⊙O的切線.(2)連接AP,因為l是⊙O的切線,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.19.已知,棱長都相等的正三棱錐內(nèi)接于一個球,某學(xué)生畫出四個過球心的平面截球與正三棱錐所得的圖形,如下圖所示,則

A、以上四個圖形都是正確的

B、只有(2)(4)是正確的

C、只有(4)是錯誤的

D、只有(1)(2)是正確的答案:C20.已知P為x24+y29=1,F(xiàn)1,F(xiàn)2為橢圓的左右焦點,則PF2+PF1=______.答案:∵x24+y29=1,F(xiàn)1,F(xiàn)2為橢圓的左右焦點,∴根據(jù)橢圓的定義,可得|PF2|+|PF1|=2×2=4故為:421.若以(y+2)2=4(x-1)上任一點P為圓心作與y軸相切的圓,那么這些圓必定過平面內(nèi)的點()

A.(1,-2)

B.(3,-2)

C.(2,-2)

D.不存在這樣的點答案:C22.某海域有A、B兩個島嶼,B島在A島正東40海里處.經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線像一個橢圓,其焦點恰好是A、B兩島.曾有漁船在距A島正西20海里發(fā)現(xiàn)過魚群.某日,研究人員在A、B兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),A、B兩島收到魚群反射信號的時間比為5:3.你能否確定魚群此時分別與A、B兩島的距離?答案:以AB的中點為原點,AB所在直線為x軸建立直角坐標系設(shè)橢圓方程為:x2a2+y2b2=1(a>b>0)且c=a2-b2------(3分)因為焦點A的正西方向橢圓上的點為左頂點,所以a-c=20------(5分)又|AB|=2c=40,則c=20,a=40,故b=203------(7分)所以魚群的運動軌跡方程是x21600+y21200=1------(8分)由于A,B兩島收到魚群反射信號的時間比為5:3,因此設(shè)此時距A,B兩島的距離分別為5k,3k-------(10分)由橢圓的定義可知5k+3k=2×40=80?k=10--------(13分)即魚群分別距A,B兩島的距離為50海里和30海里.------(14分)23.已知直線l:kx-y+1+2k=0.

(1)證明l經(jīng)過定點;

(2)若直線l交x軸負半軸于A,交y軸正半軸于B,△AOB的面積為S,求S的最小值并求此時直線l的方程;

(3)若直線不經(jīng)過第四象限,求k的取值范圍.答案:(1)由kx-y+1+2k=0,得y-1=k(x+2),所以,直線l經(jīng)過定點(-2,1).(2)由題意得A(2k+1-k,0),B(0,2k+1),且2k+1-k<01+2k>0,故k>0,△AOB的面積為S=12×2k+1k×(2k+1)=4k2+4k+12k=2k+2+12k≥4,當且僅當k=12時等號成立,此時面積取最小值4,k=12,直線的方程是:x-2y+4=0.(3)由直線過定點(-2,1),可得當斜率k>0或k=0時,直線不經(jīng)過第四象限.故k的取值范圍為[0,+∞).24.A、B、C、D、E五種不同的商品要在貨架上排成一排,其中A、B兩種商品必須排在一起,而C、D兩種商品不能排在一起,則不同的排法共有______種.答案:先把A、B進行排列,有A22種排法,再把A、B看成一個元素,和E進行排列,有A22種排法,最后再把C、D插入進去,有A23種排法,根據(jù)分步計數(shù)原理可得A22A22A23=24種排法.故為:2425.已知函數(shù)y=ax2+bx+c,如果a>b>c,且a+b+c=0,則它的圖象是(

)

A.

B.

C.

D.

答案:D26.已知F1(-8,3),F(xiàn)2(2,3),動點P滿足PF1-PF2=10,則點P的軌跡是______.答案:由于兩點間的距離|F1F2|=10,所以滿足條件|PF1|-|PF2|=10的點P的軌跡應(yīng)是一條射線.故為一條射線.27.已知隨機變量X的分布列是:(

)

X

4

a

9

10

P

0.3

0.1

b

0.2

且EX=7.5,則a的值為()

A.5

B.6

C.7

D.8答案:C28.已知⊙C1:x2+y2+2x+8y-8=0,⊙C2:x2+y2-4x-4y-2=0,則的位置關(guān)系為()

A.相切

B.相離

C.相交

D.內(nèi)含答案:C29.某總體容量為M,其中帶有標記的有N個,現(xiàn)用簡單隨機抽樣方法從中抽出一個容量為m的樣本,則抽取的m個個體中帶有標記的個數(shù)估計為()A.mNMB.mMNC.MNmD.N答案:由題意知,總體中帶有標記的魚所占比例是NM,故樣本中帶有標記的個數(shù)估計為mNM,故選A.30.A、B、C是我軍三個炮兵陣地,A在B的正東方向相距6千米,C在B的北30°西方向,相距4千米,P為敵炮陣地.某時刻,A發(fā)現(xiàn)敵炮陣地的某信號,由于B、C比A距P更遠,因此,4秒后,B、C才同時發(fā)現(xiàn)這一信號(該信號的傳播速度為每秒1千米).若從A炮擊敵陣地P,求炮擊的方位角.答案:以線段AB的中點為原點,正東方向為x軸的正方向建立直角坐標系,則A(3,0)

B(-3,0)

C(-5,23)依題意|PB|-|PA|=4∴P在以A、B為焦點的雙曲線的右支上.這里a=2,c=3,b2=5.其方程為

x24-y25=1

(x>0)…(3分)又|PB|=|PC|,∴P又在線段BC的垂直平分線上x-3y+7=0…(5分)由方程組x-3y+7=05x2-4y2=20解得

x=8(負值舍去)y=53即

P(8,53)…(8分)由于kAP=3,可知P在A北30°東方向.…(10分)31.過點M(0,1)作直線,使它被兩直線l1:x-3y+10=0,l2:2x+y-8=0所截得的線段恰好被M所平分,求此直線方程.答案:設(shè)所求直線與已知直線l1,l2分別交于A、B兩點.∵點B在直線l2:2x+y-8=0上,故可設(shè)B(t,8-2t).又M(0,1)是AB的中點,由中點坐標公式得A(-t,2t-6).∵A點在直線l1:x-3y+10=0上,∴(-t)-3(2t-6)+10=0,解得t=4.∴B(4,0),A(-4,2),故所求直線方程為:x+4y-4=0.32.下列命題:

①用相關(guān)系數(shù)r來刻畫回歸的效果時,r的值越大,說明模型擬合的效果越好;

②對分類變量X與Y的隨機變量的K2觀測值來說,K2越小,“X與Y有關(guān)系”可信程度越大;

③兩個隨機變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近1;

其中正確命題的序號是

______.(寫出所有正確命題的序號)答案:①是由于r可能是負值,要改為|r|的值越大,說明模型擬合的效果越好,故①錯誤,②對分類變量X與Y的隨機變量的K2觀測值來說,K2越大,“X與Y有關(guān)系”可信程度越大;故②正確③兩個隨機變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近1;故③正確,故為:③33.設(shè)α和β為不重合的兩個平面,給出下列命題:

(1)若α內(nèi)的兩條相交直線分別平行于β內(nèi)的兩條直線,則α平行于β;

(2)若α外一條直線l與α內(nèi)的一條直線平行,則l和α平行;

(3)設(shè)α和β相交于直線l,若α內(nèi)有一條直線垂直于l,則α和β垂直;

(4)直線l與α垂直的充分必要條件是l與α內(nèi)的兩條直線垂直.

上面命題,真命題的序號是______(寫出所有真命題的序號)答案:由面面平行的判定定理可知,(1)正確.由線面平行的判定定理可知,(2)正確.對于(3)來說,α內(nèi)直線只垂直于α和β的交線l,得不到其是β的垂線,故也得不出α⊥β.對于(4)來說,l只有和α內(nèi)的兩條相交直線垂直,才能得到l⊥α.也就是說當l垂直于α內(nèi)的兩條平行直線的話,l不一定垂直于α.34.(幾何證明選講選做題)已知PA是⊙O的切線,切點為A,直線PO交⊙O于B、C兩點,AC=2,∠PAB=120°,則⊙O的面積為______.答案:∵PA是圓O的切線,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圓O的直徑2R=4∴圓O的面積S=πR2=4π故為:4π.35.現(xiàn)有一個關(guān)于平面圖形的命題:如圖,同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為a24.類比到空間,有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為______.答案:∵同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為a24,類比到空間有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為a38,故為a38.36.在平行四邊形ABCD中,AC與BD交于點O,E是線段CD的中點,若AC=a,BD=b,則AE=______.(用a、b表示)答案:∵平行四邊形ABCD中,AC與BD交于點O,E是線段CD的中點,若AC=a,BD=b,∴AE=AO+OE=12a+OD+OC2=12a+a+b4=3a4+14b.故為:34a+14b.37.己知集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N*,x∈A,y∈B,使B中元素y=3x+1和A中的元素x對應(yīng),則a=______,k=______.答案:若x∈A,y∈B,使B中元素y=3x+1和A中的元素x對應(yīng),則當x=1時,y=4;當x=2時,y=7;當x=3時,y=10;當x=k時,y=3k+1;又由a∈N*,∴a4≠10,則a2+3a=10,a4=3k+1解得a=2,k=5故為:2,538.拋擲兩個骰子,若至少有一個1點或一個6點出現(xiàn),就說這次試驗失?。敲矗?次試驗中成功2次的概率為()

A.

B.

C.

D.答案:D39.中心在原點,焦點在x軸上的雙曲線的一條漸近線經(jīng)過點(4,2),則它的離心率為()

A.

B.

C.

D.答案:D40.雙曲線(n>1)的兩焦點為F1、、F2,P在雙曲線上,且滿足|PF1|+|PF2|=2,則△P

F1F2的面積為()

A.

B.1

C.2

D.4答案:B41.已知函數(shù)y=f(x)是R上的奇函數(shù),其零點為x1,x2,…,x2011,則x1+x2+…+x2011=______.答案:∵f(x)是R上的奇函數(shù),∴0是函數(shù)y=f(x)的零點.其他非0的零點關(guān)于原點對稱.∴x1+x2+…+x2011=0.故為:0.42.設(shè)直線y=kx與橢圓x24+y23=1相交于A、B兩點,分別過A、B向x軸作垂線,若垂足恰為橢圓的兩個焦點,則k等于()A.±32B.±23C.±12D.±2答案:將直線與橢圓方程聯(lián)立,y=kxx24+y23=1,化簡整理得(3+4k2)x2=12(*)因為分別過A、B向x軸作垂線,垂足恰為橢圓的兩個焦點,故方程的兩個根為±1.代入方程(*),得k=±32故選A.43.在參數(shù)方程所表示的曲線上有B、C兩點,它們對應(yīng)的參數(shù)值分別為t1、t2,則線段BC的中點M對應(yīng)的參數(shù)值是()

A.

B.

C.

D.答案:B44.圓錐曲線x=4secθ+1y=3tanθ的焦點坐標是______.答案:由x=4secθ+1y=3tanθ可得secθ=x-14tanθ=y3,由三角函數(shù)的運算可得tan2θ+1=sec2θ,代入可得(x-14)2-(y3)2=1,即(x-1)216-y29=1,可看作雙曲線x216-y29=1向右平移1個單位得到,而雙曲線x216-y29=1的焦點為(-5,0),(5,0)故所求雙曲線的焦點為(-4,0),(6,0)故為:(-4,0),(6,0)45.某校高三有1000個學(xué)生,高二有1200個學(xué)生,高一有1500個學(xué)生.現(xiàn)按年級分層抽樣,調(diào)查學(xué)生的視力情況,若高一抽取了75人,則全校共抽取了

______人.答案:∵高三有1000個學(xué)生,高二有1200個學(xué)生,高一有1500個學(xué)生.∴本校共有學(xué)生1000+1200+1500=3700,∵按年級分層抽,高一抽取了75人,∴每個個體被抽到的概率是751500=120,∴全校要抽取120×3700=185,故為:185.46.方程cos2x=x的實根的個數(shù)為

______個.答案:cos2x=x的實根即函數(shù)y=cos2x與y=x的圖象交點的橫坐標,故可以將求根個數(shù)的問題轉(zhuǎn)化為求兩個函數(shù)圖象的交點個數(shù).如圖在同一坐標系中作出y=cos2x與y=x的圖象,由圖象可以看出兩圖象只有一個交點,故方程的實根只有一個.故應(yīng)該填

1.47.設(shè)a1,a2,…,an為正數(shù),求證:a21a2+a22a3+…+a2n-1an+a2na1≥a1+a2+…+an.答案:證明:不妨設(shè)a1>a2>…>an>0,則a12>a22>…>an2,1a1<1a2<…1an由排序原理:亂序和≥反序和,可得:a21a2+a22a3+…+a2n-1an+a2na1≥a12a1+a22a2+…+an2an=a1+a2+…+an.48.已知一個幾何體是由上下兩部分構(gòu)成的一個組合體,其三視圖如圖所示,則這個組合體的上下兩部分分別是(

)答案:A49.已知a=3i+2j-k,b=i-j+2k,則5a與3b的數(shù)量積等于______.答案:a=3i+2j-k=(3,2,-1),5a=(15,10,-5)b=i-j+2k=(1,-1,2),3b=(3,-3,6)5a?3b=15×3+10×(-3)+(-5)×6=-15故為:-1550.過點P(0,-2)的雙曲線C的一個焦點與拋物線x2=-16y的焦點相同,則雙曲線C的標準方程是()

A.

B.

C.

D.答案:C第3卷一.綜合題(共50題)1.設(shè)求證答案:證明略解析:左邊-右邊===

=

∴原不等式成立。證法二:左邊>0,右邊>0。∴原不等式成立。2.如圖,以1×3方格紙中的格點為起點和終點的所有向量中,有多少種大小不同的模?有多少種不同的方向?

答案:模為1的向量;模為2的向量;模為3的向量;模為2的向量;模為5的向量;模為10的向量共有6個模,進而分析方向,正方形的邊對應(yīng)的向量共有四個方向,邊長為1的正方形的對角線對應(yīng)的向量共四個方向;1×2的矩形的對角線對應(yīng)的向量共四個方向;1×3的矩形對角線對應(yīng)的向量共有四個方向共有16個方向3.直線x=2-12ty=-1+12t(t為參數(shù))被圓x2+y2=4截得的弦長為______.答案:∵直線x=2-12ty=-1+12t(t為參數(shù))∴直線的普通方程為x+y-1=0圓心到直線的距離為d=12=22,l=24-(22)2=14,故為:14.4.已知f(x)是定義域為正整數(shù)集的函數(shù),對于定義域內(nèi)任意的k,若f(k)≥k2成立,則f(k+1)≥(k+1)2成立,下列命題成立的是()A.若f(3)≥9成立,則對于任意k≥1,均有f(k)≥k2成立;B.若f(4)≥16成立,則對于任意的k≥4,均有f(k)<k2成立;C.若f(7)≥49成立,則對于任意的k<7,均有f(k)<k2成立;D.若f(4)=25成立,則對于任意的k≥4,均有f(k)≥k2成立答案:對A,當k=1或2時,不一定有f(k)≥k2成立;對B,應(yīng)有f(k)≥k2成立;對C,只能得出:對于任意的k≥7,均有f(k)≥k2成立,不能得出:任意的k<7,均有f(k)<k2成立;對D,∵f(4)=25≥16,∴對于任意的k≥4,均有f(k)≥k2成立.故選D5.已知F1=i+2j+3k,F(xiàn)2=2i+3j-k,F(xiàn)3=3i-4j+5k,若F1,F(xiàn)2,F(xiàn)3共同作用于一物體上,使物體從點M(1,-2,1)移動到N(3,1,2),則合力所作的功是______.答案:由題意可得F1=(1,2,3)F2=(2,3,-1),F(xiàn)3=(3,-4,5),故合力F=F1+F2+F3=(6,1,7),位移S=MN=(3,1,2)-(1,-2,1)=(2,3,1),故合力所作的功W=F?S=6×2+1×3+7×1=22故為:226.“sinx=siny”是“x=y”的()A.充要條件B.充分不必要條件C.必要不充分條件D.既不充分也不必要條件答案:∵“sinx=siny”不能推出“x=y”,例如sin30°=sin390°,但30°≠390°,即充分性不成立;反過來,若“x=y”,一定有“sinx=siny”,即必要性成立;∴“sinx=siny”是“x=y”的必要不充分條件.故選C.7.已知A(4,1,3)、B(2,-5,1),C為線段AB上一點,且則C的坐標為()

A.

B.

C.

D.答案:C8.已知拋物線y=14x2,則過其焦點垂直于其對稱軸的直線方程為______.答案:拋物線y=14x2的標準方程為x2=4y的焦點F(0,1),對稱軸為y軸所以拋物線y=14x2,則過其焦點垂直于其對稱軸的直線方程為y=1故為y=1.9.點M(2,-3,1)關(guān)于坐標原點對稱的點是()

A.(-2,3,-1)

B.(-2,-3,-1)

C.(2,-3,-1)

D.(-2,3,1)答案:A10.已知:如圖,四邊形ABCD內(nèi)接于⊙O,,過A點的切線交CB的延長線于E點,求證:AB2=BE·CD。

答案:證明:連結(jié)AC,因為EA切⊙O于A,所以∠EAB=∠ACB,因為,所以∠ACD=∠ACB,AB=AD,于是∠EAB=∠ACD,又四邊形ABCD內(nèi)接于⊙O,所以∠ABE=∠D,所以△ABE∽△CDA,于是,即AB·DA=BE·CD,所以。11.已知直線經(jīng)過點A(0,4)和點B(1,2),則直線AB的斜率為()

A.3

B.-2

C.2

D.不存在答案:B12.設(shè)m、n是兩條不同的直線,α、β是兩個不同的平面,則下列命題中正確的是()

A.若m∥n,m∥α,則n∥α

B.若α⊥β,m∥α,則m⊥β

C.若α⊥β,m⊥β,則m∥α

D.若m⊥n,m⊥α,n⊥β,則α⊥β答案:D13.有四個游戲盤,將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分,則可中獎,小明要想增加中獎機會,應(yīng)選擇的游戲盤的序號______

答案:(1)游戲盤的中獎概率為

38,(2)游戲盤的中獎概率為

14,(3)游戲盤的中獎概率為

26=13,(4)游戲盤的中獎概率為

13,(1)游戲盤的中獎概率最大.故為:(1).14.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()

A.k1<k2<k3

B.k2<k1<k3

C.k3<k2<k1

D.k1<k3<k2

答案:B15.盒中有10只螺絲釘,其中有3只是壞的,現(xiàn)從盒中隨機地抽取4只,那么310為()A.恰有1只壞的概率B.恰有2只好的概率C.4只全是好的概率D.至多2只壞的概率答案:∵盒中有10只螺絲釘∴盒中隨機地抽取4只的總數(shù)為:C104=210,∵其中有3只是壞的,∴所可能出現(xiàn)的事件有:恰有1只壞的,恰有2只壞的,恰有3只壞的,4只全是好的,至多2只壞的取法數(shù)分別為:C31×C73=105,C32C72=63,C74=35,C74+C31×C73+C32×C72=203∴恰有1只壞的概率分別為:105210=12,,恰有2只好的概率為63210=310,,4只全是好的概率為35210=16,至多2只壞的概率為203210=2930;故A,C,D不正確,B正確故選B16.已知A(2,1,1),B(1,1,2),C(2,0,1),則下列說法中正確的是()A.A,B,C三點可以構(gòu)成直角三角形B.A,B,C三點可以構(gòu)成銳角三角形C.A,B,C三點可以構(gòu)成鈍角三角形D.A,B,C三點不能構(gòu)成任何三角形答案:∵|AB|=2,|BC|=3,|AC|=1,∴|BC|2=|AC|2+|AB|2,∴A,B,C三點可以構(gòu)成直角三角形,故選A.17.拋擲兩枚骰子各一次,記第一枚骰子擲出的點數(shù)與第二枚骰子擲出的點數(shù)的差為X,則“X>4”表示試驗的結(jié)果為()

A.第一枚為5點,第二枚為1點

B.第一枚大于4點,第二枚也大于4點

C.第一枚為6點,第二枚為1點

D.第一枚為4點,第二枚為1點答案:C18.已知G是△ABC的重心,過G的一條直線交AB、AC兩點分別于E、F,且有AE=λAB,AF=μAC,則1λ+1μ=______.答案:∵G是△ABC的重心∴取過G平行BC的直線EF∵AE=λAB,AF=μAC∴λ=23,μ=23∴1λ+1μ=32+32=3故為319.橢圓有這樣的光學(xué)性質(zhì):從橢圓的一個焦點出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一焦點.一水平放置的橢圓形臺球盤,F(xiàn)1,F(xiàn)2是其焦點,長軸長2a,焦距為2c.一靜放在F1點處的小球(半徑忽略不計),受擊打后沿直線運動(不與直線F1F2重合),經(jīng)橢圓壁反彈后再回到點F1時,小球經(jīng)過的路程是()

A.4c

B.4a

C.2(a+c)

D.4(a+c)答案:B20.拋物線y=x2的焦點坐標是()

A.(,0)

B.(0,)

C.(0,1)

D.(1,0)答案:C21.若向量a=(2,-3,1),b=(2,0,3),c=(0,2,2),則a?(b+c)=33.答案:∵b+c=(2,0,3)+(0,2,2)=(2,2,5),∴a?(b+c)=(2,-3,1)?(2,2,5)=4-6+5=3.故為:3.22.求證:定義在實數(shù)集上的單調(diào)減函數(shù)y=f(x)的圖象與x軸至多只有一個公共點.答案:證明:假設(shè)函數(shù)y=f(x)的圖象與x軸有兩個交點…(2分)設(shè)交點的橫坐標分別為x1,x2,且x1<x2.因為函數(shù)y=f(x)在實數(shù)集上單調(diào)遞減所以f(x1)>f(x2),…(6分)這與f(x1)=f(x2)=0矛盾.所以假設(shè)不成立.

…(12分)故原命題成立.…(14分)23.一圓形紙片的圓心為O,點Q是圓內(nèi)異于O點的一個定點,點A是圓周上一動點,把紙片折疊使得點A與點Q重合,然后抹平紙片,折痕CD與OA交于點P,當點A運動時,點P的軌跡為()

A.橢圓

B.雙曲線

C.拋物線

D.圓答案:A24.已知一直線斜率為3,且過A(3,4),B(x,7)兩點,則x的值為()

A.4

B.12

C.-6

D.3答案:A25.下列命題:

①用相關(guān)系數(shù)r來刻畫回歸的效果時,r的值越大,說明模型擬合的效果越好;

②對分類變量X與Y的隨機變量的K2觀測值來說,K2越小,“X與Y有關(guān)系”可信程度越大;

③兩個隨機變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近1;

其中正確命題的序號是

______.(寫出所有正確命題的序號)答案:①是由于r可能是負值,要改為|r|的值越大,說明模型擬合的效果越好,故①錯誤,②對分類變量X與Y的隨機變量的K2觀測值來說,K2越大,“X與Y有關(guān)系”可信程度越大;故②正確③兩個隨機變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近1;故③正確,故為:③26.根據(jù)學(xué)過的知識,試把“推理與證明”這一章的知識結(jié)構(gòu)圖畫出來.答案:根據(jù)“推理與證明”這一章的知識可得結(jié)構(gòu)圖,如圖所示.27.管理人員從一池塘中撈出30條魚做上標記,然后放回池塘,將帶標記的魚完全混合于魚群中.10天后,再捕上50條,發(fā)現(xiàn)其中帶標記的魚有2條.根據(jù)以上收據(jù)可以估計該池塘有______條魚.答案:設(shè)該池塘中有x條魚,由題設(shè)條件建立方程:30x=250,解得x=750.故為:750.28.棱長為2的正方體ABCD-A1B1C1D1中,BC1?B1D1=()A.22B.4C.-22D.-4答案:棱長為2的正方體ABCD-A1B1C1D1中,BC1與

B1D1的夾角等于BC1與BD的夾角,等于60°.∴BC1?B1D1=22×22cos60°=4,故選B.29.m為何值時,關(guān)于x的方程8x2-(m-1)x+(m-7)=0的兩根,

(1)為正數(shù);

(2)一根大于2,一根小于2.答案:(1)設(shè)方程兩根為x1,x2,則∵方程的兩根為正數(shù),∴△≥0x1+x2>0x1x2>0即[-(m-1)]2-4×8×(m-7)>0--(m-1)8>0m-78>0解得7<m≤9或m≥25.(2)令f(x)=8x2-(m-1)x+(m-7),由題意得f(2)<0,解得m>27.30.已知|a|=3,|b|=2,a與b的夾角為300,則|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a與b的夾角為300,∴a?b=|a||b|cos30°=2×3×32=3則|a+b|=a2+2a?b+b2=13故選A31.△ABC所在平面內(nèi)點O、P,滿足OP=OA+λ(AB+12BC),λ∈[0,+∞),則點P的軌跡一定經(jīng)過△ABC的()A.重心B.垂心C.內(nèi)心D.外心答案:設(shè)BC的中點為D,則∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中線∴點P的軌跡一定經(jīng)過△ABC的重心故選A.32.命題“12既是4的倍數(shù),又是3的倍數(shù)”的形式是()A.p∨qB.p∧qC.¬pD.簡單命題答案:命題“12既是4的倍數(shù),又是3的倍數(shù)”可轉(zhuǎn)化成“12是4的倍數(shù)且12是3的倍數(shù)”故是p且q的形式;故選B.33.曲線x=sinθy=sin2θ(θ為參數(shù))與直線y=a有兩個公共點,則實數(shù)a的取值范圍是______.答案:曲線

x=sinθy=sin2θ

(θ為參數(shù)),為拋物線段y=x2(-1≤x≤1),借助圖形直觀易得0<a≤1.34.在空間直角坐標系中,已知A,B兩點的坐標分別是A(2,3,5),B(3,1,4),則這兩點間的距離|AB|=______.答案:∵A,B兩點的坐標分別是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故為:6.35.對于函數(shù)f(x),若存在區(qū)間M=[a,b],(a<b),使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的一個“穩(wěn)定區(qū)間”現(xiàn)有四個函數(shù):

①f(x)=ex②f(x)=x3③f(x)=sinπ2x④f(x)=lnx,其中存在“穩(wěn)定區(qū)間”的函數(shù)有()A.①②B.②③C.③④D.②④答案:①對于函數(shù)f(x)=ex若存在“穩(wěn)定區(qū)間”[a,b],由于函數(shù)是定義域內(nèi)的增函數(shù),故有ea=a,eb=b,即方程ex=x有兩個解,即y=ex和y=x的圖象有兩個交點,這與即y=ex和y=x的圖象沒有公共點相矛盾,故①不存在“穩(wěn)定區(qū)間”.②對于f(x)=x3存在“穩(wěn)定區(qū)間”,如x∈[0,1]時,f(x)=x3∈[0,1].③對于f(x)=sinπ2x,存在“穩(wěn)定區(qū)間”,如x∈[0,1]時,f(x)=sinπ2x∈[0,1].④對于f(x)=lnx,若

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論