2023年云南旅游職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年云南旅游職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年云南旅游職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年云南旅游職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年云南旅游職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩37頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年云南旅游職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.直線y=33x繞原點(diǎn)逆時(shí)針方向旋轉(zhuǎn)30°后,所得直線與圓(x-2)2+y2=3的交點(diǎn)個(gè)數(shù)是______.答案:∵直線y=33x的斜率為33,∴此直線的傾斜角為30°,∴此直線繞原點(diǎn)逆時(shí)針方向旋轉(zhuǎn)30°后傾斜角為60°,∴此直線旋轉(zhuǎn)后的方程為y=3x,由圓(x-2)2+y2=3,得到圓心坐標(biāo)為(2,0),半徑r=3,∵圓心到直線y=3x的距離d=232=3=r,∴該直線與圓相切,則直線與圓(x-2)2+y2=3的交點(diǎn)個(gè)數(shù)是1.故為:12.設(shè)、、為實(shí)數(shù),,則下列四個(gè)結(jié)論中正確的是(

)A.B.C.且D.且答案:D解析:若,則,則.若,則對于二次函數(shù),由可得結(jié)論.3.已知a=(3,3,2),b=(4,-3,7),c=(0,5,1),則(a+b)?c=______.答案:由于a=(3,3,2),b=(4,-3,7),則a+b=(7,0,9)又由c=(0,5,1),則(a+b)?c=(7,0,9)?(0,5,1)=9故為94.在平行六面體ABCD-A′B′C′D′中,若AC′=xAB+2yBC-3zC′C,則x+y+z等于______.答案:根據(jù)向量的加法法則可得,AC′=AC+CC′=AB+BC+CC′∵AC′=xAB+2yBC-3zC′C∴x=1,2y=1,-3z=1∴x=1,y=12,z=-13∴x+y+z=1+12-13=76故為:765.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,F(xiàn)為焦點(diǎn),A,B,C為拋物線上的三點(diǎn),且滿足FA+FB+FC=0,|FA|+|FB|+|FC|=6,則拋物線的方程為______.答案:設(shè)向量FA,F(xiàn)B,F(xiàn)C的坐標(biāo)分別為(x1,y1)(x2,y2)(x3,y3)由FA+FB+FC=0得x1+x2+x3=0∵XA=x1+p2,同理XB=x2+p2,XC=x3+p2∴|FA|=x1+p2+p2=x1+p,同理有|FB|=x2+p2+p2=x2+p,|FC|=x3+p2+p2=x3+p,又|FA|+|FB|+|FC|=6,∴x1+x2+x3+3p=6,∴p=2,∴拋物線方程為y2=4x.故為:y2=4x.6.Rt△ABC的直角邊AB在平面α內(nèi),頂點(diǎn)C在平面α外,則直角邊BC、斜邊AC在平面α上的射影與直角邊AB組成的圖形是()

A.線段或銳角三角形

B.線段與直角三角形

C.線段或鈍角三角形

D.線段、銳角三角形、直角三角形或鈍角三角形答案:B7.圓x2+y2-6x+4y+12=0與圓x2+y2-14x-2y+14=0的位置關(guān)系是______.答案:∵圓x2+y2-6x+4y+12=0化成標(biāo)準(zhǔn)形式,得(x-3)2+(y+2)2=1∴圓x2+y2-6x+4y+12=0的圓心為C1(3,-2),半徑r1=1同理可得圓x2+y2-14x-2y+14=0的C2(7,1),半徑r2=6∵兩圓的圓心距|C1C2|=(7-3)2+(1+2)2=5∴|C1C2|=r2-r1=5,可得兩圓的位置關(guān)系是內(nèi)切故為:內(nèi)切8.已知點(diǎn)P是拋物線y2=2x上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和的最小值為()

A.

B.3

C.

D.答案:A9.已知P為拋物線y2=4x上一個(gè)動(dòng)點(diǎn),Q為圓x2+(y-4)2=1上一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到拋物線的準(zhǔn)線距離之和的最小值是()

A.2-1

B.2-2

C.-1

D.-2答案:C10.下列圖形中不一定是平面圖形的是()

A.三角形

B.四邊相等的四邊形

C.梯形

D.平行四邊形答案:B11.如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點(diǎn)D,則BD=______cm.答案:∵易知AB=32+42=5,又由切割線定理得BC2=BD?AB,∴42=BD?5∴BD=165.故為:16512.平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)向量其中,若且0≤μ≤λ≤1,那么C點(diǎn)所有可能的位置區(qū)域用陰影表示正確的是()

A.

B.

C.

D.

答案:A13.已知函數(shù)f(x),如果對任意一個(gè)三角形,只要它的三邊長a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長,則稱f(x)為“保三角形函數(shù)”.在函數(shù)①f1(x)=x,②f2(x)=x,③f3(x)=x2中,其中______是“保三角形函數(shù)”.(填上正確的函數(shù)序號)答案:f1(x),f2(x)是“保三角形函數(shù)”,f3(x)不是“保三角形函數(shù)”.任給三角形,設(shè)它的三邊長分別為a,b,c,則a+b>c,不妨假設(shè)a≤c,b≤c,由于a+b>a+b>c>0,所以f1(x),f2(x)是“保三角形函數(shù)”.對于f3(x),3,3,5可作為一個(gè)三角形的三邊長,但32+32<52,所以不存在三角形以32,32,52為三邊長,故f3(x)不是“保三角形函數(shù)”.故為:①②.14.函數(shù)數(shù)列{fn(x)}滿足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]

(1)求f2(x),f3(x);

(2)猜想fn(x)的表達(dá)式,并證明你的結(jié)論.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用數(shù)學(xué)歸納法證明:①當(dāng)n=1時(shí),f1(x)=x1+x22,已知,顯然成立②假設(shè)當(dāng)n=K(K∈N*)4時(shí),猜想成立,即fk(x)=x1+kx2則當(dāng)n=K+1時(shí),fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即對n=K+1時(shí),猜想也成立.結(jié)合①②可知:猜想fn(x)=x1+nx2對一切n∈N*都成立.15.在對吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,下列說法正確的是()

A.若隨機(jī)變量K2的觀測值k>6.635,我們有99%的把握說明吸煙與患肺病有關(guān),則若某人吸煙,那么他有99%的可能患有肺病

B.若由隨機(jī)變量求出有99%的把握說吸煙與患肺病有關(guān),則在100個(gè)吸煙者中必有99個(gè)人患有肺病

C.若由隨機(jī)變量求出有95%的把握說吸煙與患肺病有關(guān),那么有5%的可能性使得推斷錯(cuò)誤

D.以上說法均不正確答案:D16.某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本、用系統(tǒng)抽樣法,將全體職工隨機(jī)按1~200編號,并按編號順序平均分為40組(1~5號,6~10號,…,196~200號).若第5組抽出的號碼為22,則第8組抽出的號碼應(yīng)是______.若用分層抽樣方法,則40歲以下年齡段應(yīng)抽取______人.答案:∵將全體職工隨機(jī)按1~200編號,并按編號順序平均分為40組,由分組可知,抽號的間隔為5,∵第5組抽出的號碼為22,∴第6組抽出的號碼為27,第7組抽出的號碼為32,第8組抽出的號碼為37.40歲以下的年齡段的職工數(shù)為200×0.5=100,則應(yīng)抽取的人數(shù)為40200×100=20(人).故為:37;2017.下列點(diǎn)在x軸上的是()

A.(0.1,0.2,0.3)

B.(0,0,0.001)

C.(5,0,0)

D.(0,0.01,0)答案:C18.若隨機(jī)變量X~B(5,12),那么P(X≤1)=______.答案:P(X≤1)=C06(12)0(12)6+C16(12)1(12)5=316故為:31619.某市為抽查控制汽車尾氣排放的執(zhí)行情況,選擇了抽取汽車車牌號的末位數(shù)字是6的汽車進(jìn)行檢查,這樣的抽樣方式是(

A.抽簽法

B.簡單隨機(jī)抽樣

C.分層抽樣

D.系統(tǒng)抽樣答案:D20.某次我市高三教學(xué)質(zhì)量檢測中,甲、乙、丙三科考試成績的直方圖如如圖所示(由于人數(shù)眾多,成績分布的直方圖可視為正態(tài)分布),則由如圖曲線可得下列說法中正確的一項(xiàng)是()

A.甲科總體的標(biāo)準(zhǔn)差最小

B.丙科總體的平均數(shù)最小

C.乙科總體的標(biāo)準(zhǔn)差及平均數(shù)都居中

D.甲、乙、丙的總體的平均數(shù)不相同

答案:A21.與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是______.答案:設(shè)M(x,y)為所求軌跡上任一點(diǎn),則由題意知1+|y|=x2+y2,化簡得x2=2|y|+1.因此與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是x2=2|y|+1.故為x2=2|y|+1.22.某校高一年級8個(gè)班參加合唱比賽的得分如莖葉圖所示,則這組數(shù)據(jù)的中位數(shù)是______.答案:由莖葉圖可知樣本數(shù)據(jù)共有8個(gè),按照從小到大的順序?yàn)椋?7,89,90,91,92,93,94,96.出現(xiàn)在中間兩位的數(shù)據(jù)是91,92.所以樣本的中位數(shù)是(91+92)÷2=91.5,故為:91.523.據(jù)上海中心氣象臺發(fā)布的天氣預(yù)報(bào),一月上旬某天上海下雨的概率是70%至80%.寫出下列解釋中正確的序號______.

①上海地區(qū)面積的70%至80%將降雨;

②上海地區(qū)下雨的時(shí)間在16.8小時(shí)至19.2%小時(shí)之間;

③上海地區(qū)在相似的氣候條件下有70%至80%的日子是下雨的;

④上海地區(qū)在相似的氣候條件下有20%至30%的日子是晴,或多云,或陰.答案:據(jù)上海中心氣象臺發(fā)布的天氣預(yù)報(bào),一月上旬某天上海下雨的概率是70%至80%.表示上海地區(qū)在相似的氣候條件下下雨的可能性很大,是有70%至80%的日子是下雨的.是但不一定下,也不是的70%至80%的時(shí)間與地區(qū).故解釋中正確的序號③故為:③24.如圖,直線l1、l2、l3的斜率分別為k1、k2、k3,則必有()A.k1<k3<k2B.k3<k1<k2C.k1<k2<k3D.k3<k2<k1答案:設(shè)直線l1、l2、l3的傾斜角分別為α1,α2,α3.由已知為α1為鈍角,α2>α3,且均為銳角.由于正切函數(shù)y=tanx在(0,π2)上單調(diào)遞增,且函數(shù)值為正,所以tanα2>tanα3>0,即k2>k3>0.當(dāng)α為鈍角時(shí),tanα為負(fù),所以k1=tanα1<0.綜上k1<k3<k2,故選A.25.若a<b<c,x<y<z,則下列各式中值最大的一個(gè)是()

A.a(chǎn)x+cy+bz

B.bx+ay+cz

C.bx+cy+az

D.a(chǎn)x+by+cz答案:D26.如圖,AD是圓內(nèi)接三角形ABC的高,AE是圓的直徑,AB=6,AC=3,則AE×AD等于

______.答案:∵AE是直徑∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故為32.27.平面上動(dòng)點(diǎn)M到定點(diǎn)F(3,0)的距離比M到直線l:x+1=0的距離大2,則動(dòng)點(diǎn)M滿足的方程()

A.x2=6y

B.x2=12y

C.y2=6x

D.y2=12x答案:D28.已知平面向量=(3,1),=(x,3),且⊥,則實(shí)數(shù)x的值為()

A.9

B.1

C.-1

D.-9答案:C29.下列說法中正確的有()

①平均數(shù)不受少數(shù)幾個(gè)極端值的影響,中位數(shù)受樣本中的每一個(gè)數(shù)據(jù)影響;

②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大

③用樣本的頻率分布估計(jì)總體分布的過程中,樣本容量越大,估計(jì)越準(zhǔn)確.

④向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是古典概型.A.①②B.③C.③④D.④答案:中位數(shù)數(shù)不受少數(shù)幾個(gè)極端值的影響,平均數(shù)受樣本中的每一個(gè)數(shù)據(jù)影響,故①不正確,拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”的概率是14“兩枚都是反面朝上的概率是14、“恰好一枚硬幣正面朝上的概率是12”,故②不正確,用樣本的頻率分布估計(jì)總體分布的過程中,樣本容量越大,估計(jì)越準(zhǔn)確.正確向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是幾何概型,故④不正確,故選B.30.OA、OB(O為原點(diǎn))是圓x2+y2=2的兩條互相垂直的半徑,C是該圓上任一點(diǎn),且OC=λOA+μOB,則λ2+μ2=______.答案:∵OC=λOA+μOB,OA⊥OB∴OA?OB=0∴OA2=OB2=OC2=2∴OC2=(λOA+μOB)2=λ2OA2+μ2OB2=2(λ2+μ2)=2∴λ2+μ2=1故為:131.如圖,⊙O過點(diǎn)B、C,圓心O在等腰Rt△ABC的內(nèi)部,,,

.則⊙O的半徑為(

).

A.6

B.13

C.

D.答案:C解析:分析:延長AO交BC于D,接OB,根據(jù)AB=AC,O是等腰Rt△ABC的內(nèi)心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.解答:解:延長AO交BC于D,連接OB,∵⊙O過B、C,∴O在BC的垂直平分線上,∵AB=AC,圓心O在等腰Rt△ABC的內(nèi)部,∴AD⊥BC,BD=DC=3,AO平分∠BAC,∵∠BAC=90°,∴∠ADB=90°,∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=3,∴OD=3-1=2,由勾股定理得:OB==故選C.32.如圖,圓周上按順時(shí)針方向標(biāo)有1,2,3,4,5五個(gè)點(diǎn).一只青蛙按順時(shí)針方向繞圓從一個(gè)點(diǎn)跳到另一個(gè)點(diǎn),若它停在奇數(shù)點(diǎn)上,則下次只能跳一個(gè)點(diǎn);若停在偶數(shù)點(diǎn)上,則跳兩個(gè)點(diǎn).該青蛙從“5”這點(diǎn)起跳,經(jīng)2

011次跳后它停在的點(diǎn)對應(yīng)的數(shù)字是______.答案:起始點(diǎn)為5,按照規(guī)則,跳一次到1,再到2,4,1,2,4,1,2,4,…,“1,2,4”循環(huán)出現(xiàn),而2011=3×670+1.故經(jīng)2011次跳后停在的點(diǎn)是1.故為133.寫出求1+2+3+4+5+6+…+100的一個(gè)算法.可運(yùn)用公式1+2+3+…+n=n(n+1)2直接計(jì)算.

第一步______;

第二步______;

第三步

輸出計(jì)算的結(jié)果.答案:由條件知構(gòu)成等差數(shù)列,從而前n項(xiàng)和公式求得其值,求1+2+3+4+5+6+…+100,故先取n=100,再代入計(jì)算S=n(n+1)2.故為:取n=100;計(jì)算S=n(n+1)2.34.甲、乙兩人參加一次考試,已知在備選的10道試題中,甲能答對其中6題,乙能答對其中8題.若規(guī)定每次考試分別都從這10題中隨機(jī)抽出3題進(jìn)行測試,至少答對2題算合格.

(1)分別求甲、乙兩人考試合格的概率;

(2)求甲、乙兩人至少有一人合格的概率.答案:(1)(2)解析:(1)設(shè)甲、乙考試合格分別為事件A、B,甲考試合格的概率為P(A)=,乙考試合格的概率為P(B)=.(2)A與B相互獨(dú)立,且P(A)=,P(B)=,則甲、乙兩人至少有一人合格的概率為P(AB++A)=×+×+×=.35.函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上的最大值比最小值大a2,則a的值為()A.32B.2C.12或32D.12答案:當(dāng)a>1時(shí),函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是增函數(shù),由題意可得a2-a=a2,∴a=32.當(dāng)1>a>0時(shí),函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是減函數(shù),由題意可得a-a2=a2,解得

a=12.綜上,a的值為12或32故選C.36.設(shè)a=log32,b=log23,c=,則()

A.c<b<a

B.a(chǎn)<c<b

C.c<a<b

D.b<c<a答案:C37.已知點(diǎn)P是拋物線y2=2x上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影是M,點(diǎn)A(72,4),則|PA|+|PM|的最小值是()A.5B.92C.4D.AD答案:依題意可知焦點(diǎn)F(12,0),準(zhǔn)線x=-12,延長PM交準(zhǔn)線于H點(diǎn).則|PF|=|PH||PM|=|PH|-12=|PA|-12|PM|+|PA|=|PF|+|PA|-12,我們只有求出|PF|+|PA|最小值即可.由三角形兩邊長大于第三邊可知,|PF|+|PA|≥|FA|,①設(shè)直線FA與拋物線交于P0點(diǎn),可計(jì)算得P0(3,94),另一交點(diǎn)(-13,118)舍去.當(dāng)P重合于P0時(shí),|PF|+|PA|可取得最小值,可得|FA|=194.則所求為|PM|+|PA|=194-14=92.故選B.38.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若向量OB=a100OA+a101OC,且A、B、C三點(diǎn)共線(該直線不過點(diǎn)O),則S200等于______.答案:由題意可知:向量OB=a100OA+a101OC,又∵A、B、C三點(diǎn)共線,則a100+a101=1,等差數(shù)列前n項(xiàng)的和為Sn=(a1+an)?n

2,∴S200=(a1+a200)×200

2=(a100+

a101)×2002=100,故為100.39.半徑為1、2、3的三個(gè)圓兩兩外切.證明:以這三個(gè)圓的圓心為頂點(diǎn)的三角形是直角三角形.

答案:證明:設(shè)⊙O1、⊙O2、⊙O3的半徑分別為1、2、3.因這三個(gè)圓兩兩外切,故有O1O2=1+2=3,O2O3=2+3=5,O1O3=1+3=4,則有O1O22+O1O32=32+42=52=O2O32根據(jù)勾股定理的逆定理,得到△O1O2O3為直角三角形.40.(選做題)參數(shù)方程中當(dāng)t為參數(shù)時(shí),化為普通方程為(

)。答案:x2-y2=141.函數(shù)f(x)=8xx2+2(x>0)()A.當(dāng)x=2時(shí),取得最小值83B.當(dāng)x=2時(shí),取得最大值83C.當(dāng)x=2時(shí),取得最小值22D.當(dāng)x=2時(shí),取得最大值22答案:f(x)=8xx2+2=8x+2x≤822(x>0)=22當(dāng)且僅當(dāng)x=2x即x=2時(shí),取得最大值22故選D.42.已知圓C:x2+y2-4x-6y+12=0的圓心在點(diǎn)C,點(diǎn)A(3,5),求:

(1)過點(diǎn)A的圓的切線方程;

(2)O點(diǎn)是坐標(biāo)原點(diǎn),連接OA,OC,求△AOC的面積S.答案:(1)⊙C:(x-2)2+(y-3)2=1.當(dāng)切線的斜率不存在時(shí),對直線x=3,C(2,3)到直線的距離為1,滿足條件;當(dāng)k存在時(shí),設(shè)直線y-5=k(x-3),即y=kx+5-3k,∴|-k+2|k2+1=1,得k=34.∴得直線方程x=3或y=34x+114.(2)|AO|=9+25=34,l:5x-3y=0,d=134,S=12d|AO|=12.43.在獨(dú)立性檢驗(yàn)中,統(tǒng)計(jì)量Χ2有兩個(gè)臨界值:3.841和6.635.當(dāng)Χ2>3.841時(shí),有95%的把握說明兩個(gè)事件有關(guān),當(dāng)Χ2>6.635時(shí),有99%的把握說明兩個(gè)事件有關(guān),當(dāng)Χ2≤3.841時(shí),認(rèn)為兩個(gè)事件無關(guān).在一項(xiàng)打鼾與患心臟病的調(diào)查中,共調(diào)查了2000人,經(jīng)計(jì)算Χ2=20.87.根據(jù)這一數(shù)據(jù)分析,認(rèn)為打鼾與患心臟病之間()

A.有95%的把握認(rèn)為兩者有關(guān)

B.約有95%的打鼾者患心臟病

C.有99%的把握認(rèn)為兩者有關(guān)

D.約有99%的打鼾者患心臟病答案:C44.擬定從甲地到乙地通話m分鐘的電話費(fèi)由f(m)=1.06(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù)(例如[3]=3,[3.7]=4,[3.1]=4),則從甲地到乙地通話時(shí)間為5.5分鐘的話費(fèi)為()A.3.71B.3.97C.4.24D.4.77C答案:由[m]是大于或等于m的最小整數(shù)可得[5.5]=6.所以f(5.5)=1.06×(0.50×[5.5]+1)=1.06×4=4.24.故選:C.45.若集合M={a,b,c}中的元素是△ABC的三邊長,則△ABC一定不是()

A.銳角三角形

B.直角三角形

C.鈍角三角形

D.等腰三角形答案:D46.因?yàn)闃颖臼强傮w的一部分,是由某些個(gè)體所組成的,盡管對總體具有一定的代表性,但并不等于總體,為什么不把所有個(gè)體考查一遍,使樣本就是總體?答案:如果樣本就是總體,抽樣調(diào)查就變成普查了,盡管這樣確實(shí)反映了實(shí)際情況,但不是統(tǒng)計(jì)的基本思想,其操作性、可行性、人力、物力等方面,都會(huì)有制約因素存在,何況有些調(diào)查是破壞性的,如考查一批玻璃的抗碎能力,燈泡的使用壽命等,普查就全破壞了.47.如果雙曲線的半實(shí)軸長為2,焦距為6,那么該雙曲線的離心率是()

A.

B.

C.

D.2答案:C48.已知||=3,A、B分別在x軸和y軸上運(yùn)動(dòng),O為原點(diǎn),則動(dòng)點(diǎn)P的軌跡方程是()

A.

B.

C.

D.答案:B49.選修4-2:矩陣與變換

已知矩陣M=0110,N=0-110.在平面直角坐標(biāo)系中,設(shè)直線2x-y+1=0在矩陣MN對應(yīng)的變換作用下得到曲線F,求曲線F的方程.答案:由題設(shè)得MN=01100-111=100-1.…(3分)設(shè)(x,y)是直線2x-y+1=0上任意一點(diǎn),點(diǎn)(x,y)在矩陣MN對應(yīng)的變換作用下變?yōu)椋▁′,y′),則有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因?yàn)辄c(diǎn)(x,y)在直線2x-y+1=0上,從而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲線F的方程為2x+y+1=0.

…(10分)50.將n2個(gè)正整數(shù)1,2,3,…,n2填入n×n方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個(gè)正方形就叫做n階幻方.記f(n)為n階幻方對角線的和,如右表就是一個(gè)3階幻方,可知f(3)=15,則f(4)=()

816357492A.32B.33C.34D.35答案:由等差數(shù)列得前n項(xiàng)和公式可得,所有數(shù)之和S=1+2+3+…+42=16?(1+16)2=136,所以,f(4)=1364=34,故選C.第2卷一.綜合題(共50題)1.把下列命題寫成“若p,則q”的形式,并指出條件與結(jié)論.

(1)相似三角形的對應(yīng)角相等;

(2)當(dāng)a>1時(shí),函數(shù)y=ax是增函數(shù).答案:(1)若兩個(gè)三角形相似,則它們的對應(yīng)角相等.條件p:三角形相似,結(jié)論q:對應(yīng)角相等.(2)若a>1,則函數(shù)y=ax是增函數(shù).條件p:a>1,結(jié)論q:函數(shù)y=ax是增函數(shù).2.如圖,四邊形OABC是邊長為1的正方形,OD=3,點(diǎn)P為△BCD內(nèi)(含邊界)的動(dòng)點(diǎn),設(shè)(α,β∈R),則α+β的最大值等于

()

A.

B.

C.

D.1

答案:B3.如圖,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,則點(diǎn)P在平面α內(nèi)的軌跡是()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四邊形ABCD是梯形,則AD∥BC,可得BC⊥α,BC⊥BP,則tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,則AP+BP>AB,故P在平面α內(nèi)的軌跡是橢圓的一部分,故選B.4.設(shè)P,Q為△ABC內(nèi)的兩點(diǎn),且AP=mAB+nAC

(m,n>0)AQ=pAB+qAC

(p,q>0),則△ABP的面積與△ABQ的面積之比為______.答案:設(shè)P到邊AB的距離為h1,Q到邊AB的距離為h2,則△ABP的面積與△ABQ的面積之比為h1h2,設(shè)AB邊上的單位法向量為e,AB?e=0,則h1=|AP?e|=|(mAB+nAC)?e|=|m?AB?e+nAC?e|=|nAC?e|,同理可得h2=|qAC?e|,∴h1h2=|nq|=nq,故為n:q.5.已知橢圓的焦點(diǎn)是F1、F2,P是橢圓上的一個(gè)動(dòng)點(diǎn),如果延長F1P到Q,使得|PQ|=|PF2|,那么動(dòng)點(diǎn)Q的軌跡是()

A.圓

B.橢圓

C.雙曲線的一支

D.拋物線答案:A6.如圖,F(xiàn)1,F(xiàn)2分別為橢圓x2a2+y2b2=1的左、右焦點(diǎn),點(diǎn)P在橢圓上,△POF2是面積為3的正三角形,則b2的值是______.答案:∵△POF2是面積為3的正三角形,∴S=34|PF2|2=3,|PF2|=2.∴c=2,∵△PF1F2為直角三角形,∴a=3+1,故為23.7.設(shè)A=xn+x-n,B=xn-1+x1-n,當(dāng)x∈R+,n∈N+時(shí),求證:A≥B.答案:證明:A-B=(xn+x-n)-(xn-1+x1-n)=x-n(x2n+1-x2n-1-x)=x-n[x(x2n-1-1)-(x2n-1-1)]=x-n(x-1)(x2n-1-1).由x∈R+,x-n>0,得當(dāng)x≥1時(shí),x-1≥0,x2n-1-1≥0;當(dāng)x<1時(shí),x-1<0,x2n-1<0,即x-1與x2n-1-1同號.∴A-B≥0.∴A≥B.8.在120個(gè)零件中,一級品24個(gè),二級品36個(gè),三級品60個(gè).用系統(tǒng)抽樣法從中抽取容量為20的樣本、則每個(gè)個(gè)體被抽取到的概率是()

A.

B.

C.

D.答案:D9.設(shè)a,b是非負(fù)實(shí)數(shù),求證:a3+b3≥ab(a2+b2).答案:證明:由a,b是非負(fù)實(shí)數(shù),作差得a3+b3-ab(a2+b2)=a2a(a-b)+b2b(b-a)=(a-b)[(a)5-(b)5].當(dāng)a≥b時(shí),a≥b,從而(a)5≥(b)5,得(a-b)[(a)5-(b)5]≥0;當(dāng)a<b時(shí),a<b,從而(a)5<(b)5,得(a-b)[(a)5-(b)5]>0.所以a3+b3≥ab(a2+b2).10.已知命題p:所有有理數(shù)都是實(shí)數(shù),命題q:正數(shù)的對數(shù)都是負(fù)數(shù),則下列命題中為真命題的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不難判斷命題p為真命題,命題q為假命題,從而?p為假命題,?q為真命題,所以A、B、C均為假命題,故選D.11.對于回歸方程y=4.75x+2.57,當(dāng)x=28時(shí),y

的估計(jì)值是______.答案:∵回歸方程y=4.75x+2.57,∴當(dāng)x=28時(shí),y的估計(jì)值是4.75×28+2.57=135.57.故為:135.57.12.已知點(diǎn)M在z軸上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,則點(diǎn)M的坐標(biāo)是

______.答案:∵點(diǎn)M在z軸上,∴設(shè)點(diǎn)M的坐標(biāo)為(0,0,z)又|MA|=|MB|,由空間兩點(diǎn)間的距離公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故點(diǎn)M的坐標(biāo)是(0,0,-3).故為:(0,0,-3).13.設(shè)函數(shù)f(x)的定義域?yàn)镽,如果對任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,那么f(3)=______.答案:對任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,∴f(2)=2f(1)=1∴f(1)=12那么f(3)=f(2)+f(1)=1=12=32故為:3214.已知一個(gè)球與一個(gè)正三棱柱的三個(gè)側(cè)面和兩個(gè)底面相切,若這個(gè)球的體積是32π3,則這個(gè)三棱柱的體積是______.答案:由43πR3=32π3,得R=2.∴正三棱柱的高h(yuǎn)=4.設(shè)其底面邊長為a,則13?32a=2.∴a=43.∴V=34(43)2?4=483.故為:48315.點(diǎn)M的直角坐標(biāo)為(-3,-1),則點(diǎn)M的極坐標(biāo)為______.答案:∵M(jìn)的直角坐標(biāo)為(-3,-1),設(shè)M的極坐標(biāo)為(ρ,θ),則ρ=(-3)2+(-1)2=2,又tanθ=33,∴θ=7π6,∴M的極坐標(biāo)為(2,7π6).16.AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長為______.答案:連接AC、BC,則∠ACD=∠ABC,又因?yàn)椤螦DC=∠ACB=90°,所以△ACD~△ACB,所以ADAC=ACAB,解得AC=23.故填:23.17.向量在基底{,,}下的坐標(biāo)為(1,2,3),則向量在基底{}下的坐標(biāo)為()

A.(3,4,5)

B.(0,1,2)

C.(1,0,2)

D.(0,2,1)答案:D18.(參數(shù)方程與極坐標(biāo))已知F是曲線x=2cosθy=1+cos2θ(θ∈R)的焦點(diǎn),M(12,0),則|MF|的值是

______.答案:y=1+cos2θ=2cos2θ=2?(x2)2化簡得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故為:2219.函數(shù)y=ax2+1的圖象與直線y=x相切,則a=______.答案:設(shè)切點(diǎn)為(x0,y0),∵y′=2ax,∴k=2ax0=1,①又∵點(diǎn)(x0,y0)在曲線與直線上,即y0=ax20+1y0=x0,②由①②得a=14.故為14.20.已知事件A與B互斥,且P(A)=0.3,P(B)=0.6,則P(A|.B)=______.答案:∵P(B)=0.6,∴P(.B)=0.4.又事件A與B互斥,且P(A)=0.3,∴P(A|.B)=P(A)P(.B)=0.30.4=34.故為:34.21.如果x2+ky2=2表示焦點(diǎn)在y軸上的橢圓,則實(shí)數(shù)k的取值范圍是

______.答案:根據(jù)題意,x2+ky2=2化為標(biāo)準(zhǔn)形式為x22+y22k=1;根據(jù)題意,其表示焦點(diǎn)在y軸上的橢圓,則有2k>2;解可得0<k<1;故為0<k<1.22.如圖,I表示南北方向的公路,A地在公路的正東2km處,B地在A地北偏東60°方向2km處,河流沿岸PQ(曲線)上任一點(diǎn)到公路l和到A地距離相等,現(xiàn)要在河岸PQ上選一處M建一座碼頭,向A,B兩地轉(zhuǎn)運(yùn)貨物,經(jīng)測算從M到A,B修建公路的費(fèi)用均為a萬元/km,那么修建這兩條公路的總費(fèi)用最低是(單位萬元)()

A.(2+)a

B.5a

C.2(+1)a

D.6a

答案:B23.已知e1,e2是夾角為60°的單位向量,且a=2e1+e2,b=-3e1+2e2

(1)求a?b;

(2)求a與b的夾角<a,b>.答案:(1)求a?b=(2e1+e2)?

(-3e1+2e2)=

-6e12+e1

?e2+2e22=-6+1×1×cos60°+2=-72.(2)|a|=|2e1+e2|=(2e1+e2)2=4e12+2e1?e2+e22=7同樣地求得|b|=7.所以cos<a,b>=a?b|a||b|=-727

×7=-12,又0<<a,b><π,所以<a,b>=2π3.24.曲線C:x=t-2y=1t+1(t為參數(shù))的對稱中心坐標(biāo)是______.答案:曲線C:x=t-2y=1t+1(t為參數(shù))即y-1=1x+2,其對稱中心為(-2,1).故為:(-2,1).25.已知a=(1,-2,1),a+b=(3,-6,3),則b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故選A.26.根據(jù)下面的要求,求滿足1+2+3+…+n>500的最小的自然數(shù)n.

(1)畫出執(zhí)行該問題的程序框圖;

(2)以下是解決該問題的一個(gè)程序,但有2處錯(cuò)誤,請找出錯(cuò)誤并予以更正.答案:(12分)(1)程序框圖如圖:(兩者選其一即可,不唯一)(2)①直到型循環(huán)結(jié)構(gòu)是直到滿足條件退出循環(huán),While錯(cuò)誤,應(yīng)改成LOOP

UNTIL;②根據(jù)循環(huán)次數(shù)可知輸出n+1

應(yīng)改為輸出n;27.設(shè)和為不共線的向量,若2-3與k+6(k∈R)共線,則k的值為()

A.k=4

B.k=-4

C.k=-9

D.k=9答案:B28.如圖所示,已知P是平行四邊形ABCD所在平面外一點(diǎn),連結(jié)PA、PB、PC、PD,點(diǎn)E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心,求證:E、F、G、H四點(diǎn)共面答案:證明:分別延長P、PF、PG、PH交對邊于M、N、Q、R.∵E、F、G、H分別是所在三角形的重心,∴M、N、Q、R為所在邊的中點(diǎn),順次連結(jié)MNQR所得四邊形為平行四邊形,且有∵M(jìn)NQR為平行四邊形,∴由共面向量定理得E、F、G、H四點(diǎn)共面.29.設(shè)函數(shù)f(x)定義如下表,數(shù)列{xn}滿足x0=5,且對任意自然數(shù)均有xn+1=f(xn),則x2004的值為()

A.1B.2C.4D.5答案:由于函數(shù)f(x)定義如下表:故數(shù)列{xn}滿足:5,2,1,4,5,2,1,…是一個(gè)周期性變化的數(shù)列,周期為:4.∴x2004=x0=5.故選D.30.①學(xué)校為了了解高一學(xué)生的情況,從每班抽2人進(jìn)行座談;②一次數(shù)學(xué)競賽中,某班有10人在110分以上,40人在90~100分,12人低于90分.現(xiàn)在從中抽取12人了解有關(guān)情況;③運(yùn)動(dòng)會(huì)服務(wù)人員為參加400m決賽的6名同學(xué)安排跑道.就這三件事,合適的抽樣方法為()A.分層抽樣,分層抽樣,簡單隨機(jī)抽樣B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機(jī)抽樣C.分層抽樣,簡單隨機(jī)抽樣,簡單隨機(jī)抽樣D.系統(tǒng)抽樣,分層抽樣,簡單隨機(jī)抽樣答案:①是從較多的一個(gè)總體中抽取樣本,且總體之間沒有差異,故用系統(tǒng)抽樣,②是從不同分?jǐn)?shù)的總體中抽取樣本,總體之間的差異比較大,故用分層抽樣,③是六名運(yùn)動(dòng)員選跑道,用簡單隨機(jī)抽樣,故選D.31.平面內(nèi)有兩定點(diǎn)A、B及動(dòng)點(diǎn)P,設(shè)命題甲是:“|PA|+|PB|是定值”,命題乙是:“點(diǎn)P的軌跡是以A.B為焦點(diǎn)的橢圓”,那么()A.甲是乙成立的充分不必要條件B.甲是乙成立的必要不充分條件C.甲是乙成立的充要條件D.甲是乙成立的非充分非必要條件答案:命題甲是:“|PA|+|PB|是定值”,命題乙是:“點(diǎn)P的軌跡是以A.B為焦點(diǎn)的橢圓∵當(dāng)一個(gè)動(dòng)點(diǎn)到兩個(gè)頂點(diǎn)距離之和等于定值時(shí),再加上這個(gè)和大于兩個(gè)定點(diǎn)之間的距離,可以得到動(dòng)點(diǎn)的軌跡是橢圓,沒有加上的條件不一定推出,而點(diǎn)P的軌跡是以A.B為焦點(diǎn)的橢圓,一定能夠推出|PA|+|PB|是定值,∴甲是乙成立的必要不充分條件故選B.32.4名同學(xué)分別報(bào)名參加學(xué)校的足球隊(duì),籃球隊(duì),乒乓球隊(duì),每人限報(bào)其中的一個(gè)運(yùn)動(dòng)隊(duì),不同報(bào)法的種數(shù)是()

A.34

B.43

C.24

D.12答案:A33.若一點(diǎn)P的極坐標(biāo)是(r,θ),則它的直角坐標(biāo)如何?答案:由題意可知x=rcosθ,y=rsinθ.所以點(diǎn)P的極坐標(biāo)是(r,θ)的直角坐標(biāo)為:(rcosθ,rsinθ).34.下列說法中正確的是()

A.若∥,則與向相同

B.若||<||,則<

C.起點(diǎn)不同,但方向相同且模相等的兩個(gè)向量相等

D.所有的單位向量都相等答案:C35.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是

______.答案:∵“a,b都是奇數(shù)”的否命題是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否命題是“a+b不是偶數(shù)”,∴命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故為:若a+b不是偶數(shù),則a,b不都是奇數(shù).36.設(shè)隨機(jī)事件A、B,P(A)=35,P(B|A)=12,則P(AB)=______.答案:由條件概率的計(jì)算公式,可得P(AB)=P(A)×P(B|A)=35×12=310;故為310.37.如果命題“曲線C上的點(diǎn)的坐標(biāo)都是方程f(x,y)=0的解”是正確的,則下列命題中正確的是()

A.曲線C是方程f(x,y)=0的曲線

B.方程f(x,y)=0的每一組解對應(yīng)的點(diǎn)都在曲線C上

C.不滿足方程f(x,y)=0的點(diǎn)(x,y)不在曲線C上

D.方程f(x,y)=0是曲線C的方程答案:C38.已知f(x)是定義域?yàn)檎麛?shù)集的函數(shù),對于定義域內(nèi)任意的k,若f(k)≥k2成立,則f(k+1)≥(k+1)2成立,下列命題成立的是()A.若f(3)≥9成立,則對于任意k≥1,均有f(k)≥k2成立;B.若f(4)≥16成立,則對于任意的k≥4,均有f(k)<k2成立;C.若f(7)≥49成立,則對于任意的k<7,均有f(k)<k2成立;D.若f(4)=25成立,則對于任意的k≥4,均有f(k)≥k2成立答案:對A,當(dāng)k=1或2時(shí),不一定有f(k)≥k2成立;對B,應(yīng)有f(k)≥k2成立;對C,只能得出:對于任意的k≥7,均有f(k)≥k2成立,不能得出:任意的k<7,均有f(k)<k2成立;對D,∵f(4)=25≥16,∴對于任意的k≥4,均有f(k)≥k2成立.故選D39.一個(gè)完整的程序框圖至少應(yīng)該包含______.答案:完整程序框圖必須有起止框,用來表示程序的開始和結(jié)束,還要包括處理框,用來處理程序的執(zhí)行.故為:起止框、處理框.40.有5組(x,y)的統(tǒng)計(jì)數(shù)據(jù):(1,2),(2,4),(4,5),(3,10),(10,12),要使剩下的數(shù)據(jù)具有較強(qiáng)的相關(guān)關(guān)系,應(yīng)去掉的一組數(shù)據(jù)是()

A.(1,2)

B.(4,5)

C.(3,10)

D.(10,12)答案:C41.圓x2+y2=1和圓x2+y2-6y+5=0的位置關(guān)系是()

A.外切

B.內(nèi)切

C.外離

D.內(nèi)含答案:A42.如圖,已知C點(diǎn)在圓O直徑BE的延長線上,CA切圓O于A點(diǎn),∠ACB的平分線分別交AE、AB于點(diǎn)F、D.

(Ⅰ)求∠ADF的度數(shù);

(Ⅱ)若AB=AC,求ACBC的值.答案:解

(1)∵AC為圓O的切線,∴∠B=∠EAC,又CD是∠ACB的平分線,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.又∵BE為圓O的直徑,∴∠BAE=90°,∴∠ADF=12(180°-∠BAE)=45°(2)∵∠B=∠EAC,∠ACE=∠BCA,∴△ACE∽△BCA又∵AB=AC,∴∠B=∠ACB,∴∠B=∠ACB=∠EAC,由∠BAE=90°及三角形內(nèi)角和知,∠B=30°,∴在Rt△ABE中,ACBC=AEBA=tan∠B=tan30°=3343.不等式的解集是

.答案:[0,2]解析:本小題主要考查根式不等式的解法,去掉根號是解根式不等式的基本思路,也考查了轉(zhuǎn)化與化歸的思想.原不等式等價(jià)于解得0≤x≤2.44.設(shè)k>1,則關(guān)于x,y的方程(1-k)x2+y2=k2-1所表示的曲線是()

A.長軸在x軸上的橢圓

B.長軸在y軸上的橢圓

C.實(shí)軸在x軸上的雙曲線

D.實(shí)軸在y軸上的雙曲線答案:D45.一只螞蟻在三邊邊長分別為3,4,5的三角形的邊上爬行,某時(shí)刻該螞蟻距離三角形的三個(gè)頂點(diǎn)的距離均超過1的概率為______.答案:如下圖所示,當(dāng)螞蟻位于圖中紅色線段上時(shí),距離三角形的三個(gè)頂點(diǎn)的距離均超過1,由已知易得:紅色線段的長度和為:6三角形的周長為:12故P=612=12故為:1246.設(shè)集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M與P的關(guān)系為______.答案:由x+y<0,xy>0,?x<0,y<0.∴M=P.故為M=P.47.平面ABCD中,點(diǎn)A坐標(biāo)為(0,1,1),點(diǎn)B坐標(biāo)為(1,2,1),點(diǎn)C坐標(biāo)為(-1,0,-1).若向量a=(-2,y,z),且a為平面ABC的法向量,則yz=()A.2B.0C.1D.-1答案:AB=(1,1,0),AC=(-1,-1,-2),與平面ABC垂直的向量應(yīng)與上面的向量的數(shù)量積為零,向量a=(-2,y,z),且a為平面ABC的法向量,則a⊥AB且a⊥AC,即a?AB=0,且a?AC=0,即-2+y+0=0且2-y-2z=0,即y=2z=0,∴則yz=20=1,故選C.48.已知||=2,||=,∠AOB=150°,點(diǎn)C在∠AOB內(nèi),且∠AOC=30°,設(shè)(m,n∈R),則=()

A.

B.

C.

D.答案:B49.直線y=2的傾斜角和斜率分別是()A.90°,斜率不存在B.90°,斜率為0C.180°,斜率為0D.0°,斜率為0答案:由題意,直線y=2的傾斜角是0°,斜率為0故選D.50.若向量n與直線l垂直,則稱向量n為直線l的法向量.直線x+2y+3=0的一個(gè)法向量為()

A.(2,-1)

B.(1,-2)

C.(2,1)

D.(1,2)答案:D第3卷一.綜合題(共50題)1.將兩粒均勻的骰子各拋擲一次,觀察向上的點(diǎn)數(shù),計(jì)算:

(1)共有多少種不同的結(jié)果?并試著列舉出來.

(2)兩粒骰子點(diǎn)數(shù)之和等于3的倍數(shù)的概率;

(3)兩粒骰子點(diǎn)數(shù)之和為4或5的概率.答案:(1)每一粒均勻的骰子拋擲一次,都有6種結(jié)果,根據(jù)分步計(jì)數(shù)原理,所有可能結(jié)果共有6×6=36種.

…(4分)(2)兩粒骰子點(diǎn)數(shù)之和等于3的倍數(shù)的有以下12種:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(5,4),(4,5),(6,6),共有12個(gè)結(jié)果,因此,兩粒骰子點(diǎn)數(shù)之和等于3的倍數(shù)的概率是1236=13.

…(8分)(3)兩粒骰子點(diǎn)數(shù)之和為4或5的有以下7種:(2,2),(1,3),(3,1),(2,3),(3,2),(1,4),(4,1),因此,兩粒骰子點(diǎn)數(shù)之和為4或5的概率為736.

…(12分)2.已知點(diǎn)B是點(diǎn)A(2,-3,5)關(guān)于平面xOy的對稱點(diǎn),則|AB|=()

A.10

B.

C.

D.38答案:A3.隨機(jī)變量ξ的分布列為

ξ01xP15p310且Eξ=1.1,則p=______;x=______.答案:由15+p+310=1,得p=12.由Eξ=0×15+1×12+310x=1.1,得x=2.故為12;2.4.設(shè)a、b、c均為正數(shù).求證:≥.答案:證明略解析:證明

方法一

∵+3=="(a+b+c)"=[(a+b)+(a+c)+(b+c)]≥

(·+·+·)2=.∴+≥.方法二

令,則∴左邊=≥=.∴原不等式成立.5.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,F(xiàn)為焦點(diǎn),A,B,C為拋物線上的三點(diǎn),且滿足FA+FB+FC=0,|FA|+|FB|+|FC|=6,則拋物線的方程為______.答案:設(shè)向量FA,F(xiàn)B,F(xiàn)C的坐標(biāo)分別為(x1,y1)(x2,y2)(x3,y3)由FA+FB+FC=0得x1+x2+x3=0∵XA=x1+p2,同理XB=x2+p2,XC=x3+p2∴|FA|=x1+p2+p2=x1+p,同理有|FB|=x2+p2+p2=x2+p,|FC|=x3+p2+p2=x3+p,又|FA|+|FB|+|FC|=6,∴x1+x2+x3+3p=6,∴p=2,∴拋物線方程為y2=4x.故為:y2=4x.6.不等式≥0的解集為[-2,3∪[7,+∞,則a-b+c的值是(

)A.2B.-2C.8D.6答案:B解析:∵-a、b的值為-2,7中的一個(gè),x≠c

c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2

選B評析:考察考生對不等式解集的結(jié)構(gòu)特征的理解,關(guān)注不等式中等號與不等號的關(guān)系。7.已知f(x)=2x,g(x)=3x.

(1)當(dāng)x為何值時(shí),f(x)=g(x)?

(2)當(dāng)x為何值時(shí),f(x)>1?f(x)=1?f(x)<1?

(3)當(dāng)x為何值時(shí),g(x)>3?g(x)=3?g(x)<3?答案:(1)作出函數(shù)f(x),g(x)的圖象,如圖所示.∵f(x),g(x)的圖象都過點(diǎn)(0,1),且這兩個(gè)圖象只有一個(gè)公共點(diǎn),∴當(dāng)x=0時(shí),f(x)=g(x)=1.(2)由圖可知,當(dāng)x>0時(shí),f(x)>1;當(dāng)x=0時(shí),f(x)=1;當(dāng)x<0時(shí),f(x)<1.(3)由圖可知:當(dāng)x>1時(shí),g(x)>3;當(dāng)x=1時(shí),g(x)=3;當(dāng)x<1時(shí),g(x)<3.8.六個(gè)不同大小的數(shù)按如圖形式隨機(jī)排列,設(shè)第一行這個(gè)數(shù)為M1,M2,M3分別表示第二、三行中最大數(shù),則滿足M1<M2<M3所有排列的個(gè)數(shù)______.答案:首先M3一定是6個(gè)數(shù)中最大的,設(shè)這六個(gè)數(shù)分別為a,b,c,d,e,f,不妨設(shè)a>b>c>d>e>f.因?yàn)槿绻鸻在第三行,則a一定是M3,若a不在第三行,則a一定是M1或M2,此時(shí)無法滿足M1<M2<M3,故a一定在第三行.故

M2一定是b,c,d中一個(gè),否則,若M2是e,則第二行另一個(gè)數(shù)只能是f,那么第一行的數(shù)就比e大,無法滿足M1<M2<M3.當(dāng)M2是b時(shí),此時(shí),a在第三行,b在第二行,其它數(shù)任意排,所有的排法有C31

C21

A44=144(種),當(dāng)M2是c時(shí),此時(shí)a和b必須在第三行,c在第二行,其它數(shù)任意排,所有的排法有A32

C21

A33=72(種),當(dāng)M2是d時(shí),此時(shí),a,b,c在第三行,d在第二行,其它數(shù)任意排,所有的排法有A33

C21

A22=24(種),故滿足M1<M2<M3所有排列的個(gè)數(shù)為:24+72+144=240種,故為:240.9.已知二階矩陣A=2ab0屬于特征值-1的一個(gè)特征向量為1-3,求矩陣A的逆矩陣.答案:由矩陣A屬于特征值-1的一個(gè)特征向量為α1=1-3,可得2ab01-3=-1-3,得2-3a=-1b=3即a=1,b=3;

…(3分)解得A=2130,…(8分)∴A逆矩陣是A-1=dad-bc-bad-bc-cad-bcaad-bc=0131-23.10.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三個(gè)向量共面,則實(shí)數(shù)λ等于

A.

B.

C.

D.答案:D11.某射擊運(yùn)動(dòng)員在四次射擊中分別打出了9,x,10,8環(huán)的成績,已知這組數(shù)據(jù)的平均數(shù)為9,則這組數(shù)據(jù)的方差是______.答案:∵四次射擊中分別打出了10,x,10,8環(huán),這組數(shù)據(jù)的平均數(shù)為9,∴9+x+10+84,∴x=9,∴這組數(shù)據(jù)的方差是14(00+1+1)=12,故為:1212.下列命題中,正確的是()

A.若a∥b,則a與b的方向相同或相反

B.若a∥b,b∥c,則a∥c

C.若兩個(gè)單位向量互相平行,則這兩個(gè)單位向量相等

D.若a=b,b=c,則a=c答案:D13.已知a、b、c是實(shí)數(shù),且a2+b2+c2=1,求2a+b+2c的最大值.答案:因?yàn)橐阎猘、b、c是實(shí)數(shù),且a2+b2+c2=1根據(jù)柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(22+1+22)≥(2a+b+2c)2故(2a+b+2c)2≤9,即2a+b+2c≤3即2a+b+2c的最大值為3.14.如圖,點(diǎn)O是平行六面體ABCD-A1B1C1D1的對角線BD1與A1C的交點(diǎn),=,=,=,則=()

A.++

B.++

C.--+

D.+-

答案:C15.若向量兩兩所成的角相等,且,則等于()

A.2

B.5

C.2或5

D.或答案:C16.已知直線l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,則A1B1=A2B2是l1∥l2的()A.充分非必要條件B.必要非充分條件C.充要條件D.既非充分又非必要條件答案:當(dāng)A1B1=A2B2

時(shí),兩直線可能平行,也可能重合,故充分性不成立.當(dāng)l1∥l2時(shí),B1與B2可能都等于0,故A1B1=A2B2

不一定成立,故必要性不成立.綜上,A1B1=A2B2是l1∥l2的既非充分又非必要條件,故選D.17.將參數(shù)方程x=2sinθy=1+2cos2θ(θ為參數(shù),θ∈R)化為普通方程,所得方程是______.答案:由x=2sinθ

①y=1+2cos2θ

②,因?yàn)棣取蔙,所以-1≤sinθ≤1,則-2≤x≤2.由①兩邊平方得:x2=2sin2θ③由②得y-1=2cos2θ④③+④得:x2+y-1=2,即y=-x2+3(-2≤x≤2).故為y=-x2+3(-2≤x≤2).18.(坐標(biāo)系與參數(shù)方程選做題)在平面直角坐標(biāo)系xOy中,曲線C1與C2的參數(shù)方程分別為x=ty=t(t為參數(shù))和x=2cosθy=2sinθ(θ為參數(shù)),則曲線C1與C2的交點(diǎn)坐標(biāo)為______.答案:在平面直角坐標(biāo)系xOy中,曲線C1與C2的普通方程分別為y2=x,x2+y2=2.解方程組y2=xx2

+y2=2

可得x=1y=1,故曲線C1與C2的交點(diǎn)坐標(biāo)為(1,1),故為(1,1).19.畫出《數(shù)學(xué)3》第一章“算法初步”的知識結(jié)構(gòu)圖.答案:《數(shù)學(xué)3》第一章“算法初步”的知識包括:算法、程序框圖、算法的三種基本邏輯結(jié)構(gòu)和框圖表示、基本算法語句.算法的三種基本邏輯結(jié)構(gòu)和框圖表示就是順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu),基本算法語句是指輸入語句、輸出語句、賦值語句、條件語句和循環(huán)語句.故《數(shù)學(xué)3》第一章“算法初步”的知識結(jié)構(gòu)圖示意圖如下:20.已知,向量與向量的夾角是,則x的值為()

A.±3

B.±

C.±9

D.3答案:D21.a=0是復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分又不必要條件答案:當(dāng)a=0時(shí),復(fù)數(shù)a+bi=bi,當(dāng)b=0是不是純虛數(shù)即“a=0”成立推不出“復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)”反之,當(dāng)復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù),則有a=0且b≠0即“復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)”成立能推出“a=0“成立故a=0是復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)的必要不充分條件故選B22.已知F1、F2為橢圓x225+y216=1的左、右焦點(diǎn),若M為橢圓上一點(diǎn),且△MF1F2的內(nèi)切圓的周長等于3π,則滿足條件的點(diǎn)M有

()個(gè).A.0B.1C.2D.4答案:設(shè)△MF1F2的內(nèi)切圓的內(nèi)切圓的半徑等于r,則由題意可得2πr=3π,∴r=32.由橢圓的定義可得

MF1+MF2=2a=10,又2c=6,∴△MF1F2的面積等于12

(MF1+MF2+2c)r=8r=12.又△MF1F2的面積等于12

2cyM=12,∴yM=4,故M是橢圓的短軸頂點(diǎn),故滿足條件的點(diǎn)M有2個(gè),故選

C.23.某校在檢查學(xué)生作業(yè)時(shí),抽出每班學(xué)號尾數(shù)為4的學(xué)生作業(yè)進(jìn)行檢查,這里主要運(yùn)用的抽樣方法是()

A.分層抽樣

B.抽簽抽樣

C.隨機(jī)抽樣

D.系統(tǒng)抽樣答案:D24.已知|a|=3,|b|=2,a與b的夾角為300,則|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a與b的夾角為300,∴a?b=|a||b|cos30°=2×3×32=3則|a+b|=a2+2a?b+b2=13故選A25.設(shè)隨機(jī)變量X~B(10,0.8),則D(2X+1)等于()

A.1.6

B.3.2

C.6.4

D.12.8答案:C26.現(xiàn)有10個(gè)保送上大學(xué)的名額,分配給7所學(xué)校,每校至少有1個(gè)名額,名額分配的方法共有______種(用數(shù)字作答).答案:根據(jù)題意,將10個(gè)名額,分配給7所學(xué)校,每校至少有1個(gè)名額,可以轉(zhuǎn)化為10個(gè)元素之間有9個(gè)間隔,要求分成7份,每份不空;相當(dāng)于用6塊檔板插在9個(gè)間隔中,共有C96=84種不同方法.所以名額分配的方法共有84種.27.已知一直線的斜率為3,則這條直線的傾斜角是()A.30°B.45°C.60°D.90°答案:設(shè)直線的傾斜角為α,由直線的斜率為3,得到:tanα=3,又α∈(0,180°),所以α=60°.故選C28.已知

|x|<a,|y|<a.求證:|xy|<a.答案:證明:∵0<|x|<a,0<|y|<a∴由不等式的性質(zhì),可得|xy|<a29.已知直線l的方程為x=2-4

ty=1+3

t,則直線l的斜率為______.答案:直線x=2-4

ty=1+3

t,所以直線的普通方程為:(y-1)=-34(x-2);所以直線的斜率為:-34;故為:-34.30.解關(guān)于x的不等式(k≥0,k≠1).答案:不等式的解集為{x|x2}解析:原不等式即,1°若k=0,原不等式的解集為空集;2°若1-k>0,即0,所以原不等式的解集為{x|x2}.</k<1,由原不等式的解集為{x|2<x<</k<1時(shí),原不等式等價(jià)于31.參數(shù)方程,(θ為參數(shù))表示的曲線是()

A.直線

B.圓

C.橢圓

D.拋物線答案:C32.函數(shù)y=(43)x,x∈N+是()A.增函數(shù)B.減函數(shù)C.奇函數(shù)D.偶函數(shù)答案:由正整數(shù)指數(shù)函數(shù)不具有奇偶性,可排除C、D;因?yàn)楹瘮?shù)y=(43)x,x∈N+的底數(shù)43大于1,所以此函數(shù)是增函數(shù).故選A.33.設(shè)四邊形ABCD中,有DC=12AB,且|AD|=|BC|,則這個(gè)四邊形是

______.答案:由DC=12AB知四邊形ABCD是梯形,又|AD|=|BC|,即梯形的對角線相等,所以,四邊形ABCD是等腰梯形.故為:等腰梯形.34.已知OA=a,OB=b,,且|a|=|b|=2,∠AOB=60°,則|a+b|=______;a+b與b的夾角為______.答案:∵|a+b|2=(a+b)2=a2+b2+2a?b

由|a|=|b|=2,∠AOB=60°,得:a2=b2=

4,a?b

=2∴|a+b|2=12,∴|a+b|=23令a+b與b的夾角為θ則0≤θ≤π,且cosθ=a?(a+b)|a|?|a+b|=32∴θ=π6故為:23,π635.如圖程序運(yùn)行后輸出的結(jié)果為______.答案:由題意,列出如下表格s

0

5

9

12

n

5

4

3

2當(dāng)n=12時(shí),不滿足“s<10”,則輸出n的值2故為:236.P在⊙O外,PC切⊙O于C,PAB交⊙O于A、B,則()

A.∠PCB=∠B

B.∠PAC=∠P

C.∠PCA=∠B

D.∠PAC=∠BCA答案:C37.某公司的管理機(jī)構(gòu)設(shè)置是:設(shè)總經(jīng)理一個(gè),副總經(jīng)理兩個(gè),直接對總經(jīng)理負(fù)責(zé),下設(shè)有6個(gè)部門,其中副總經(jīng)理A管理生產(chǎn)部、安全部和質(zhì)量部,副總經(jīng)理B管理銷售部、財(cái)務(wù)部和保衛(wèi)部.請根據(jù)以上信息補(bǔ)充該公司的人事結(jié)構(gòu)圖,其中①、②處應(yīng)分別填()

A.保衛(wèi)部,安全部

B.安全部,保衛(wèi)部

C.質(zhì)檢中心,保衛(wèi)部

D.安全部,質(zhì)檢中心

答案:B38.管理人員從一池塘中撈出30條魚做上標(biāo)記,然后放回池塘,將帶標(biāo)記的魚完全混合于魚群中.10天后,再捕上50條,發(fā)現(xiàn)其中帶標(biāo)記的魚有2條.根據(jù)以上收據(jù)可以估計(jì)該池塘有______條魚.答案:設(shè)該池塘中有x條魚,由題設(shè)條件建立方程:30x=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論