版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)若函數(shù)在上零點(diǎn)最多,則實(shí)數(shù)的取值范圍是()A. B. C. D.2.已知點(diǎn)P在橢圓τ:=1(a>b>0)上,點(diǎn)P在第一象限,點(diǎn)P關(guān)于原點(diǎn)O的對稱點(diǎn)為A,點(diǎn)P關(guān)于x軸的對稱點(diǎn)為Q,設(shè),直線AD與橢圓τ的另一個(gè)交點(diǎn)為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.3.已知集合,,則等于()A. B. C. D.4.閱讀名著,品味人生,是中華民族的優(yōu)良傳統(tǒng).學(xué)生李華計(jì)劃在高一年級每周星期一至星期五的每天閱讀半個(gè)小時(shí)中國四大名著:《紅樓夢》、《三國演義》、《水滸傳》及《西游記》,其中每天閱讀一種,每種至少閱讀一次,則每周不同的閱讀計(jì)劃共有()A.120種 B.240種 C.480種 D.600種5.已知向量,且,則等于()A.4 B.3 C.2 D.16.已知函數(shù),,其中為自然對數(shù)的底數(shù),若存在實(shí)數(shù),使成立,則實(shí)數(shù)的值為()A. B. C. D.7.已知,,且是的充分不必要條件,則的取值范圍是()A. B. C. D.8.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.149.執(zhí)行如圖所示的程序框圖,則輸出的()A.2 B.3 C. D.10.函數(shù)y=sin2x的圖象可能是A. B.C. D.11.網(wǎng)格紙上小正方形邊長為1單位長度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.412.若,則“”是“的展開式中項(xiàng)的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知定義在的函數(shù)滿足,且當(dāng)時(shí),,則的解集為__________________.14.函數(shù)在處的切線方程是____________.15.在棱長為6的正方體中,是的中點(diǎn),點(diǎn)是面,所在平面內(nèi)的動點(diǎn),且滿足,則三棱錐的體積的最大值是__________.16.從一箱產(chǎn)品中隨機(jī)地抽取一件,設(shè)事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,則事件“抽到的產(chǎn)品不是一等品”的概率為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:()的離心率為,且橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合.過點(diǎn)的直線交橢圓于,兩點(diǎn),為坐標(biāo)原點(diǎn).(1)若直線過橢圓的上頂點(diǎn),求的面積;(2)若,分別為橢圓的左、右頂點(diǎn),直線,,的斜率分別為,,,求的值.18.(12分)一年之計(jì)在于春,一日之計(jì)在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對一塊地的個(gè)坑進(jìn)行播種,每個(gè)坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨(dú)立.對每一個(gè)坑而言,如果至少有兩粒種子發(fā)芽,則不需要進(jìn)行補(bǔ)播種,否則要補(bǔ)播種.(1)當(dāng)取何值時(shí),有3個(gè)坑要補(bǔ)播種的概率最大?最大概率為多少?(2)當(dāng)時(shí),用表示要補(bǔ)播種的坑的個(gè)數(shù),求的分布列與數(shù)學(xué)期望.19.(12分)在中,、、分別是角、、的對邊,且.(1)求角的值;(2)若,且為銳角三角形,求的取值范圍.20.(12分)如圖,在四棱錐中,平面,四邊形為正方形,點(diǎn)為線段上的點(diǎn),過三點(diǎn)的平面與交于點(diǎn).將①,②,③中的兩個(gè)補(bǔ)充到已知條件中,解答下列問題:(1)求平面將四棱錐分成兩部分的體積比;(2)求直線與平面所成角的正弦值.21.(12分)設(shè)為實(shí)數(shù),已知函數(shù),.(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間:(2)設(shè)為實(shí)數(shù),若不等式對任意的及任意的恒成立,求的取值范圍;(3)若函數(shù)(,)有兩個(gè)相異的零點(diǎn),求的取值范圍.22.(10分)已知函數(shù),其中,為自然對數(shù)的底數(shù).(1)當(dāng)時(shí),求函數(shù)的極值;(2)設(shè)函數(shù)的導(dǎo)函數(shù)為,求證:函數(shù)有且僅有一個(gè)零點(diǎn).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
將函數(shù)的零點(diǎn)個(gè)數(shù)問題轉(zhuǎn)化為函數(shù)與直線的交點(diǎn)的個(gè)數(shù)問題,畫出函數(shù)的圖象,易知直線過定點(diǎn),故與在時(shí)的圖象必有兩個(gè)交點(diǎn),故只需與在時(shí)的圖象有兩個(gè)交點(diǎn),再與切線問題相結(jié)合,即可求解.【詳解】由圖知與有個(gè)公共點(diǎn)即可,即,當(dāng)設(shè)切點(diǎn),則,.故選:D.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)個(gè)數(shù)的問題,曲線的切線問題,注意運(yùn)用轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于較難的壓軸題.2.C【解析】
設(shè),則,,,設(shè),根據(jù)化簡得到,得到答案.【詳解】設(shè),則,,,則,設(shè),則,兩式相減得到:,,,即,,,故,即,故,故.故選:.【點(diǎn)睛】本題考查了橢圓的離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.3.B【解析】
解不等式確定集合,然后由補(bǔ)集、并集定義求解.【詳解】由題意或,∴,.故選:B.【點(diǎn)睛】本題考查集合的綜合運(yùn)算,以及一元二次不等式的解法,屬于基礎(chǔ)題型.4.B【解析】
首先將五天進(jìn)行分組,再對名著進(jìn)行分配,根據(jù)分步乘法計(jì)數(shù)原理求得結(jié)果.【詳解】將周一至周五分為組,每組至少天,共有:種分組方法;將四大名著安排到組中,每組種名著,共有:種分配方法;由分步乘法計(jì)數(shù)原理可得不同的閱讀計(jì)劃共有:種本題正確選項(xiàng):【點(diǎn)睛】本題考查排列組合中的分組分配問題,涉及到分步乘法計(jì)數(shù)原理的應(yīng)用,易錯(cuò)點(diǎn)是忽略分組中涉及到的平均分組問題.5.D【解析】
由已知結(jié)合向量垂直的坐標(biāo)表示即可求解.【詳解】因?yàn)椋?,,則.故選:.【點(diǎn)睛】本題主要考查了向量垂直的坐標(biāo)表示,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.6.A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是減函數(shù),(﹣1,+∞)上是增函數(shù),故當(dāng)x=﹣1時(shí),y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(當(dāng)且僅當(dāng)ex﹣a=4ea﹣x,即x=a+ln1時(shí),等號成立);故f(x)﹣g(x)≥3(當(dāng)且僅當(dāng)?shù)忍柾瑫r(shí)成立時(shí),等號成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故選:A.7.D【解析】
“是的充分不必要條件”等價(jià)于“是的充分不必要條件”,即中變量取值的集合是中變量取值集合的真子集.【詳解】由題意知:可化簡為,,所以中變量取值的集合是中變量取值集合的真子集,所以.【點(diǎn)睛】利用原命題與其逆否命題的等價(jià)性,對是的充分不必要條件進(jìn)行命題轉(zhuǎn)換,使問題易于求解.8.A【解析】
設(shè)等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項(xiàng)與公差,進(jìn)而求得即可.【詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.9.B【解析】
運(yùn)行程序,依次進(jìn)行循環(huán),結(jié)合判斷框,可得輸出值.【詳解】起始階段有,,第一次循環(huán)后,,第二次循環(huán)后,,第三次循環(huán)后,,第四次循環(huán)后,,所有后面的循環(huán)具有周期性,周期為3,當(dāng)時(shí),再次循環(huán)輸出的,,此時(shí),循環(huán)結(jié)束,輸出,故選:B【點(diǎn)睛】本題主要考查程序框圖的相關(guān)知識,經(jīng)過幾次循環(huán)找出規(guī)律是關(guān)鍵,屬于基礎(chǔ)題型.10.D【解析】分析:先研究函數(shù)的奇偶性,再研究函數(shù)在上的符號,即可判斷選擇.詳解:令,因?yàn)?,所以為奇函?shù),排除選項(xiàng)A,B;因?yàn)闀r(shí),,所以排除選項(xiàng)C,選D.點(diǎn)睛:有關(guān)函數(shù)圖象的識別問題的常見題型及解題思路:(1)由函數(shù)的定義域,判斷圖象的左、右位置,由函數(shù)的值域,判斷圖象的上、下位置;(2)由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)由函數(shù)的奇偶性,判斷圖象的對稱性;(4)由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).11.A【解析】
采用數(shù)形結(jié)合,根據(jù)三視圖可知該幾何體為三棱錐,然后根據(jù)錐體體積公式,可得結(jié)果.【詳解】根據(jù)三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長度如上圖所以所以所以故選:A【點(diǎn)睛】本題考查根據(jù)三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對本題可以利用長方體,根據(jù)三視圖刪掉沒有的點(diǎn)與線,屬中檔題.12.B【解析】
求得的二項(xiàng)展開式的通項(xiàng)為,令時(shí),可得項(xiàng)的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項(xiàng)展開式的通項(xiàng)為,令,即,則項(xiàng)的系數(shù)為,充分性成立;當(dāng)?shù)恼归_式中項(xiàng)的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計(jì)算能力,難度較易.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由已知得出函數(shù)是偶函數(shù),再得出函數(shù)的單調(diào)性,得出所解不等式的等價(jià)的不等式,可得解集.【詳解】因?yàn)槎x在的函數(shù)滿足,所以函數(shù)是偶函數(shù),又當(dāng)時(shí),,得時(shí),,所以函數(shù)在上單調(diào)遞減,所以函數(shù)在上單調(diào)遞減,函數(shù)在上單調(diào)遞增,所以不等式等價(jià)于,即或,解得或,所以不等式的解集為:.故答案為:.【點(diǎn)睛】本題考查抽象函數(shù)的不等式的求解,關(guān)鍵得出函數(shù)的奇偶性,單調(diào)性,屬于中檔題.14.【解析】
求出和的值,利用點(diǎn)斜式可得出所求切線的方程.【詳解】,則,,.因此,函數(shù)在處的切線方程是,即.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的切線方程,考查計(jì)算能力,屬于基礎(chǔ)題.15.【解析】
根據(jù)與相似,,過作于,利用體積公式求解OP最值,根據(jù)勾股定理得出,,利用函數(shù)單調(diào)性判斷求解即可.【詳解】∵在棱長為6的正方體中,是的中點(diǎn),點(diǎn)是面所在平面內(nèi)的動點(diǎn),且滿足,又,∴與相似∴,即,過作于,設(shè),,∴,化簡得:,,根據(jù)函數(shù)單調(diào)性判斷,時(shí),取得最大值36,,在正方體中平面.三棱錐體積的最大值為【點(diǎn)睛】本題考查三角形相似,幾何體體積以及函數(shù)單調(diào)性的綜合應(yīng)用,難度一般.16.0.35【解析】
根據(jù)對立事件的概率和為1,結(jié)合題意,即可求出結(jié)果來.【詳解】解:由題意知本題是一個(gè)對立事件的概率,抽到的不是一等品的對立事件是抽到一等品,,抽到不是一等品的概率是,故答案為:.【點(diǎn)睛】本題考查了求互斥事件與對立事件的概率的應(yīng)用問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)根據(jù)拋物線的焦點(diǎn)求得橢圓的焦點(diǎn),由此求得,結(jié)合橢圓離心率求得,進(jìn)而求得,從而求得橢圓的標(biāo)準(zhǔn)方程,求得橢圓上頂點(diǎn)的坐標(biāo),由此求得直線的方程.聯(lián)立直線的方程和橢圓方程,求得兩點(diǎn)的縱坐標(biāo),由此求得的面積.(2)求得兩點(diǎn)的坐標(biāo),設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出韋達(dá)定理,由此求得的值,根據(jù)在橢圓上求得的值,由此求得的值.【詳解】(1)因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,所以橢圓的右焦點(diǎn)的坐標(biāo)為,所以,因?yàn)闄E圓的離心率為,所以,解得,所以,故橢圓的標(biāo)準(zhǔn)方程為.其上頂點(diǎn)為,所以直線:,聯(lián)立,消去整理得,解得,,所以的面積.(2)由題知,,,設(shè),.由題還可知,直線的斜率不為0,故可設(shè):.由,消去,得,所以所以,又因?yàn)辄c(diǎn)在橢圓上,所以,所以.【點(diǎn)睛】本小題主要考查拋物線的焦點(diǎn),橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線與橢圓,三角形的面積等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想、函數(shù)與方程思想.18.(1)當(dāng)或時(shí),有3個(gè)坑要補(bǔ)播種的概率最大,最大概率為;(2)見解析.【解析】
(1)將有3個(gè)坑需要補(bǔ)種表示成n的函數(shù),考查函數(shù)隨n的變化情況,即可得到n為何值時(shí)有3個(gè)坑要補(bǔ)播種的概率最大.(2)n=1時(shí),X的所有可能的取值為0,1,2,3,1.分別計(jì)算出每個(gè)變量對應(yīng)的概率,列出分布列,求期望即可.【詳解】(1)對一個(gè)坑而言,要補(bǔ)播種的概率,有3個(gè)坑要補(bǔ)播種的概率為.欲使最大,只需,解得,因?yàn)椋援?dāng)時(shí),;當(dāng)時(shí),;所以當(dāng)或時(shí),有3個(gè)坑要補(bǔ)播種的概率最大,最大概率為.(2)由已知,的可能取值為0,1,2,3,1.,所以的分布列為01231的數(shù)學(xué)期望.【點(diǎn)睛】本題考查了古典概型的概率求法,離散型隨機(jī)變量的概率分布,二項(xiàng)分布,主要考查簡單的計(jì)算,屬于中檔題.19.(1).(2).【解析】
(1)根據(jù)題意,由余弦定理求得,即可求解C角的值;(2)由正弦定理和三角恒等變換的公式,化簡得到,再根據(jù)為銳角三角形,求得,利用三角函數(shù)的圖象與性質(zhì),即可求解.【詳解】(1)由題意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即∴,又∵為銳角三角形,∴,即,則,所以,綜上的取值范圍為.【點(diǎn)睛】本題主要考查了利用正弦定理和三角函數(shù)的恒等變換求解三角形問題,對于解三角形問題,通常利用正弦定理進(jìn)行“邊轉(zhuǎn)角”尋求角的關(guān)系,利用“角轉(zhuǎn)邊”尋求邊的關(guān)系,利用余弦定理借助三邊關(guān)系求角,利用兩角和差公式及二倍角公式求三角函數(shù)值.利用正、余弦定理解三角形問題是高考高頻考點(diǎn),經(jīng)常利用三角形內(nèi)角和定理,三角形面積公式,結(jié)合正、余弦定理解題.20.(1);(2).【解析】
若補(bǔ)充②③根據(jù)已知可得平面,從而有,結(jié)合,可得平面,故有,而,得到,②③成立與①②相同,①③成立,可得,所以任意補(bǔ)充兩個(gè)條件,結(jié)果都一樣,以①②作為條件分析;(1)設(shè),可得,進(jìn)而求出梯形的面積,可求出,即可求出結(jié)論;(2),以為坐標(biāo)原點(diǎn),建立空間坐標(biāo)系,求出坐標(biāo),由(1)得為平面的法向量,根據(jù)空間向量的線面角公式即可求解.【詳解】第一種情況:若將①,②作為已知條件,解答如下:(1)設(shè)平面為平面.∵,∴平面,而平面平面,∴,又為中點(diǎn).設(shè),則.在三角形中,,由知平面,∴,∴梯形的面積,,,平面,,,∴,故,.(2)如圖,分別以所在直線為軸建立空間直角坐標(biāo)系,設(shè),則,由(1)得為平面的一個(gè)法向量,因?yàn)?,所以直線與平面所成角的正弦值為.第二種情況:若將①,③作為已知條件,則由知平面,,又,所以平面,,又,故為中點(diǎn),即,解答如上不變.第三種情況:若將②,③作為已知條件,由及第二種情況知,又,易知,解答仍如上不變.【點(diǎn)睛】本題考查空間點(diǎn)、線、面位置關(guān)系,以及體積、直線與平面所成的角,考查計(jì)算求解能力,屬于中檔題.21.(1)函數(shù)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為.(2)(3)【解析】
(1)據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系即可求出;(2)分離參數(shù),可得對任意的及任意的恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值即可求出的范圍;(3)先求導(dǎo),再分類討論,根據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性以及最值得關(guān)系即可求出的范圍【詳解】解:(1)當(dāng)時(shí),因?yàn)?當(dāng)時(shí),;當(dāng)時(shí),.所以函數(shù)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為.(2)由,得,由于,所以對任意的及任
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧政法職業(yè)學(xué)院《建筑模型制作實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 蘭州交通大學(xué)《影視劇創(chuàng)作》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西經(jīng)濟(jì)管理職業(yè)學(xué)院《中醫(yī)經(jīng)典傷寒論》2023-2024學(xué)年第一學(xué)期期末試卷
- 吉首大學(xué)《痕跡信息系統(tǒng)應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南高爾夫旅游職業(yè)學(xué)院《建筑材料與構(gòu)造1》2023-2024學(xué)年第一學(xué)期期末試卷
- 黑龍江外國語學(xué)院《系統(tǒng)辨識及自適應(yīng)控制》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶建筑科技職業(yè)學(xué)院《光纖通信系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 中央音樂學(xué)院《高級統(tǒng)計(jì)分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)五年專項(xiàng)發(fā)展規(guī)劃(教學(xué)工作)
- 長春工業(yè)大學(xué)人文信息學(xué)院《小學(xué)體育教師基本功》2023-2024學(xué)年第一學(xué)期期末試卷
- 蘇教版六年級數(shù)學(xué)下冊第三單元第3課《練習(xí)五》公開課課件
- 北京外國語大學(xué)自主招生考試綜合素質(zhì)測試面試試題答題技巧匯總
- 產(chǎn)品質(zhì)量反饋、回復(fù)單
- GB/T 7424.2-2002光纜總規(guī)范第2部分:光纜基本試驗(yàn)方法
- 《材料分析測試技術(shù)》全套教學(xué)課件
- 人教版8年級上英語各單元語法課件大全
- (完整版)形式發(fā)票模版(國際件通用)
- 武漢東湖賓館建設(shè)項(xiàng)目委托代建合同
- 安徽大學(xué)大學(xué)生素質(zhì)教育學(xué)分認(rèn)定辦法
- 高度限位裝置類型及原理
- 中文版gcs electrospeed ii manual apri rev8v00印刷稿修改版
評論
0/150
提交評論