版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數與的圖象上存在關于直線對稱的點,則的取值范圍是()A. B. C. D.2.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題3.已知的展開式中第項與第項的二項式系數相等,則奇數項的二項式系數和為().A. B. C. D.4.若點(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或5.已知是球的球面上兩點,,為該球面上的動點.若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.6.已知,則()A. B. C. D.7.已知,,則()A. B. C.3 D.48.函數滿足對任意都有成立,且函數的圖象關于點對稱,,則的值為()A.0 B.2 C.4 D.19.已知函數是定義在上的奇函數,函數滿足,且時,,則()A.2 B. C.1 D.10.設a,b∈(0,1)∪(1,+∞),則"a=b"是"logA.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件11.已知數列滿足,(),則數列的通項公式()A. B. C. D.12.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若,則______.14.在中,已知,,是邊的垂直平分線上的一點,則__________.15.復數為虛數單位)的虛部為__________.16.已知數列的前項和且,設,則的值等于_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線:.過點的直線:(為參數)與曲線相交于,兩點.(1)求曲線的直角坐標方程和直線的普通方程;(2)若,求實數的值.18.(12分)在四邊形中,,;如圖,將沿邊折起,連結,使,求證:(1)平面平面;(2)若為棱上一點,且與平面所成角的正弦值為,求二面角的大小.19.(12分)如圖,在直角中,,通過以直線為軸順時針旋轉得到().點為斜邊上一點.點為線段上一點,且.(1)證明:平面;(2)當直線與平面所成的角取最大值時,求二面角的正弦值.20.(12分)已知拋物線的準線過橢圓C:(a>b>0)的左焦點F,且點F到直線l:(c為橢圓焦距的一半)的距離為4.(1)求橢圓C的標準方程;(2)過點F做直線與橢圓C交于A,B兩點,P是AB的中點,線段AB的中垂線交直線l于點Q.若,求直線AB的方程.21.(12分)如圖,在四棱錐中,底面是矩形,四條側棱長均相等.(1)求證:平面;(2)求證:平面平面.22.(10分)已知動圓過定點,且與直線相切,動圓圓心的軌跡為,過作斜率為的直線與交于兩點,過分別作的切線,兩切線的交點為,直線與交于兩點.(1)證明:點始終在直線上且;(2)求四邊形的面積的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
由題可知,曲線與有公共點,即方程有解,可得有解,令,則,對分類討論,得出時,取得極大值,也即為最大值,進而得出結論.【詳解】解:由題可知,曲線與有公共點,即方程有解,即有解,令,則,則當時,;當時,,故時,取得極大值,也即為最大值,當趨近于時,趨近于,所以滿足條件.故選:C.【點睛】本題主要考查利用導數研究函數性質的基本方法,考查化歸與轉化等數學思想,考查抽象概括、運算求解等數學能力,屬于難題.2.D【解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.3.D【解析】因為的展開式中第4項與第8項的二項式系數相等,所以,解得,所以二項式中奇數項的二項式系數和為.考點:二項式系數,二項式系數和.4.D【解析】
由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點睛】(1)本題主要考查點到直線的距離公式,意在考查學生對該知識的掌握水平和計算推理能力.(2)點到直線的距離.5.C【解析】
如圖所示,當點C位于垂直于面的直徑端點時,三棱錐的體積最大,設球的半徑為,此時,故,則球的表面積為,故選C.考點:外接球表面積和椎體的體積.6.C【解析】
利用誘導公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點睛】本題考查誘導公式、倍角公式,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數的符號.7.A【解析】
根據復數相等的特征,求出和,再利用復數的模公式,即可得出結果.【詳解】因為,所以,解得則.故選:A.【點睛】本題考查相等復數的特征和復數的模,屬于基礎題.8.C【解析】
根據函數的圖象關于點對稱可得為奇函數,結合可得是周期為4的周期函數,利用及可得所求的值.【詳解】因為函數的圖象關于點對稱,所以的圖象關于原點對稱,所以為上的奇函數.由可得,故,故是周期為4的周期函數.因為,所以.因為,故,所以.故選:C.【點睛】本題考查函數的奇偶性和周期性,一般地,如果上的函數滿足,那么是周期為的周期函數,本題屬于中檔題.9.D【解析】
說明函數是周期函數,由周期性把自變量的值變小,再結合奇偶性計算函數值.【詳解】由知函數的周期為4,又是奇函數,,又,∴,∴.故選:D.【點睛】本題考查函數的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎.10.A【解析】
根據題意得到充分性,驗證a=2,b=1【詳解】a,b∈0,1∪1,+∞,當"a=b當logab=log故選:A.【點睛】本題考查了充分不必要條件,意在考查學生的計算能力和推斷能力.11.A【解析】
利用數列的遞推關系式,通過累加法求解即可.【詳解】數列滿足:,,可得以上各式相加可得:,故選:.【點睛】本題考查數列的遞推關系式的應用,數列累加法以及通項公式的求法,考查計算能力.12.C【解析】
根據空間中平行關系、垂直關系的相關判定和性質可依次判斷各個選項得到結果.【詳解】對于,若,則可能為平行或異面直線,錯誤;對于,若,則可能為平行、相交或異面直線,錯誤;對于,若,且,由面面垂直的判定定理可知,正確;對于,若,只有當垂直于的交線時才有,錯誤.故選:.【點睛】本題考查空間中線面關系、面面關系相關命題的辨析,關鍵是熟練掌握空間中的平行關系與垂直關系的相關命題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
根據向量加法和減法的坐標運算,先分別求得與,再結合向量的模長公式即可求得的值.【詳解】向量,則,則因為即,化簡可得解得故答案為:【點睛】本題考查了向量坐標加法和減法的運算,向量模長的求法,屬于基礎題.14.【解析】
作出圖形,設點為線段的中點,可得出且,進而可計算出的值.【詳解】設點為線段的中點,則,,,.故答案為:.【點睛】本題考查平面向量數量積的計算,涉及平面向量數量積運算律的應用,解答的關鍵就是選擇合適的基底表示向量,考查計算能力,屬于中等題.15.1【解析】試題分析:,即虛部為1,故填:1.考點:復數的代數運算16.7【解析】
根據題意,當時,,可得,進而得數列為等比數列,再計算可得,進而可得結論.【詳解】由題意,當時,,又,解得,當時,由,所以,,即,故數列是以為首項,為公比的等比數列,故,又,,所以,.故答案為:.【點睛】本題考查了數列遞推關系、函數求值,考查了推理能力與計算能力,計算得是解決本題的關鍵,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),;(2).【解析】
(1)將代入求解,由(為參數)消去即可.(2)將(為參數)與聯立得,設,兩點對應的參數為,,則,,再根據,即,利用韋達定理求解.【詳解】(1)把代入,得,由(為參數),消去得,∴曲線的直角坐標方程和直線的普通方程分別是,.(2)將(為參數)代入得,設,兩點對應的參數為,,則,,由得,所以,即,所以,而,解得.【點睛】本題主要考查參數方程、極坐標方程、直角坐標方程的轉化和直線參數方程的應用,還考查了運算求解的能力,屬于中檔題.18.(1)證明見詳解;(2)【解析】
(1)由題可知,等腰直角三角形與等邊三角形,在其公共邊AC上取中點O,連接、,可得,可求出.在中,由勾股定理可證得,結合,可證明平面.再根據面面垂直的判定定理,可證平面平面.(2)以為坐標原點,建立如圖所示的空間直角坐標系,由點F在線段上,設,得出的坐標,進而求出平面的一個法向量.用向量法表示出與平面所成角的正弦值,由其等于,解得.再結合為平面的一個法向量,用向量法即可求出與的夾角,結合圖形,寫出二面角的大小.【詳解】證明:(1)在中,為正三角形,且在中,為等腰直角三角形,且取的中點,連接,,,平面平面平面..平面平面(2)以為坐標原點,建立如圖所示的空間直角坐標系,則,,,設.則設平面的一個法向量為.則,令,解得與平面所成角的正弦值為,整理得解得或(含去)又為平面的一個法向量,二面角的大小為.【點睛】本題考查了線面垂直的判定,面面垂直的判定,向量法解決線面角、二面角的問題,屬于中檔題.19.(1)見解析;(2)【解析】
(1)先算出的長度,利用勾股定理證明,再由已知可得,利用線面垂直的判定定理即可證明;(2)由(1)可得為直線與平面所成的角,要使其最大,則應最小,可得為中點,然后建系分別求出平面的法向量即可算得二面角的余弦值,進一步得到正弦值.【詳解】(1)在中,,由余弦定理得,∴,∴,由題意可知:∴,,,∴平面,平面,∴,又,∴平面.(2)以為坐標原點,以,,的方向為,,軸的正方向,建立空間直角坐標系.∵平面,∴在平面上的射影是,∴與平面所成的角是,∴最大時,即,點為中點.,,,,,,,設平面的法向量,由,得,令,得,所以平面的法向量,同理,設平面的法向量,由,得,令,得,所以平面的法向量,∴,,故二面角的正弦值為.【點睛】本題考查線面垂直的判定定理以及利用向量法求二面角的正弦值,考查學生的運算求解能力,是一道中檔題.20.(1);(2)或.【解析】
(1)由拋物線的準線方程求出的值,確定左焦點坐標,再由點F到直線l:的距離為4,求出即可;(2)設直線方程,與橢圓方程聯立,運用根與系數關系和弦長公式,以及兩直線垂直的條件和中點坐標公式,即可得到所求直線的方程.【詳解】(1)拋物線的準線方程為,,直線,點F到直線l的距離為,,所以橢圓的標準方程為;(2)依題意斜率不為0,又過點,設方程為,聯立,消去得,,,設,,,,線段AB的中垂線交直線l于點Q,所以橫坐標為3,,,,平方整理得,解得或(舍去),,所求的直線方程為或.【點睛】本題考查橢圓的方程以及直線與橢圓的位置關系,要熟練應用根與系數關系、相交弦長公式,合理運用兩點間的距離公式,考查計算求解能力,屬于中檔題.21.(1)證明見解析;(2)證明見解析.【解析】
證明:(1)在矩形中,,又平面,平面,所以平面.(2)連結,交于點,連結,在矩形中,點為的中點,又,故,,又,平面,所以平面,又平面,所以平面平面.22.(1)見解析(2)最小值為1.【解析】
(1)根據拋物線的定義,判斷出的軌跡為拋物線,并由此求得軌跡的方程.設出兩點的坐標,利用導數求得切線的方程,由此求得點的坐標.寫出直線的方程,聯立直線的方程和曲線的方程,根據韋達定理求得點的坐標,并由此判斷出始終在直線上,且.(2)設直線的傾斜角為,求得的表達式,求得的表達式,由此求得四邊形的面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年商用電器買賣協議模板
- 2024安徽省農民工勞務協議模板
- 城市電纜布設施工協議文本
- 2024年金融權利質押協議模板
- 文書模板-《幫忙辦事協議書》
- 2024年店面租賃協議模板
- 2024年管理局服務協議條款
- 2024年技術顧問服務協議樣本
- 中餐分餐課件教學課件
- 廣東省清遠市陽山縣2024-2025學年上學期期中質檢八年級數學試卷(含答案)
- 2024-2029年中國水上游樂園行業(yè)十四五發(fā)展分析及投資前景與戰(zhàn)略規(guī)劃研究報告
- 節(jié)能電梯知識培訓課件
- 小班美術《小刺猬背果果》課件
- 檔案移交方案
- 高中英語外研版(2019)選擇性必修第一冊各單元主題語境與單元目標
- 人教版數學三年級上冊《1-4單元綜合復習》試題
- 2024年水利工程行業(yè)技能考試-水利部質量檢測員筆試歷年真題薈萃含答案
- (新版)三級物聯網安裝調試員技能鑒定考試題庫大全-上(單選題匯總)
- 2024年室內裝飾設計師(高級工)考試復習題庫(含答案)
- 教育培訓行業(yè)2024年生產與制度改革方案
- 快消行業(yè)品牌分析
評論
0/150
提交評論