版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數x,y滿足約束條件,若的最大值為2,則實數k的值為()A.1 B. C.2 D.2.已知函數,對任意的,,當時,,則下列判斷正確的是()A. B.函數在上遞增C.函數的一條對稱軸是 D.函數的一個對稱中心是3.已知是偶函數,在上單調遞減,,則的解集是A. B.C. D.4.執(zhí)行如圖所示的程序框圖,若輸出的結果為11,則圖中的判斷條件可以為()A. B. C. D.5.已知函數,不等式對恒成立,則的取值范圍為()A. B. C. D.6.函數的大致圖象是A. B. C. D.7.已知直線:()與拋物線:交于(坐標原點),兩點,直線:與拋物線交于,兩點.若,則實數的值為()A. B. C. D.8.已知數列an滿足:an=2,n≤5a1A.16 B.17 C.18 D.199.在中,分別為所對的邊,若函數有極值點,則的范圍是()A. B.C. D.10.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為()A. B. C. D.11.在精準扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個扶貧小組分到某村工作,則不同的選法共有()A.60種 B.70種 C.75種 D.150種12.下列說法正確的是()A.命題“,”的否定形式是“,”B.若平面,,,滿足,則C.隨機變量服從正態(tài)分布(),若,則D.設是實數,“”是“”的充分不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中,的系數為_______(用數字作答).14.一個算法的偽代碼如圖所示,執(zhí)行此算法,最后輸出的T的值為________.15.函數在上的最小值和最大值分別是_____________.16.已知實數,滿足約束條件則的最大值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數列滿足,公差,等比數列滿足,,.求數列,的通項公式;若數列滿足,求的前項和.18.(12分)設數列是公差不為零的等差數列,其前項和為,,若,,成等比數列.(1)求及;(2)設,設數列的前項和,證明:.19.(12分)已知數列滿足,,其前n項和為.(1)通過計算,,,猜想并證明數列的通項公式;(2)設數列滿足,,,若數列是單調遞減數列,求常數t的取值范圍.20.(12分)數列滿足.(1)求數列的通項公式;(2)設,為的前n項和,求證:.21.(12分)已知橢圓的左頂點為,左、右焦點分別為,離心率為,是橢圓上的一個動點(不與左、右頂點重合),且的周長為6,點關于原點的對稱點為,直線交于點.(1)求橢圓方程;(2)若直線與橢圓交于另一點,且,求點的坐標.22.(10分)如圖所示,四棱錐P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E為AB的中點,底面四邊形ABCD滿足∠ADC=∠DCB=90°,AD=1,BC=1.(Ⅰ)求證:平面PDE⊥平面PAC;(Ⅱ)求直線PC與平面PDE所成角的正弦值;(Ⅲ)求二面角D﹣PE﹣B的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
畫出約束條件的可行域,利用目標函數的幾何意義,求出最優(yōu)解,轉化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當時,x在點B處取得最大值,即,得;當時,z在點C處取得最大值,即,得(舍去).故選:B.【點睛】本題考查由目標函數最值求解參數值,數形結合思想,分類討論是解題的關鍵,屬于中檔題.2.D【解析】
利用輔助角公式將正弦函數化簡,然后通過題目已知條件求出函數的周期,從而得到,即可求出解析式,然后利用函數的性質即可判斷.【詳解】,又,即,有且僅有滿足條件;又,則,,函數,對于A,,故A錯誤;對于B,由,解得,故B錯誤;對于C,當時,,故C錯誤;對于D,由,故D正確.故選:D【點睛】本題考查了簡單三角恒等變換以及三角函數的性質,熟記性質是解題的關鍵,屬于基礎題.3.D【解析】
先由是偶函數,得到關于直線對稱;進而得出單調性,再分別討論和,即可求出結果.【詳解】因為是偶函數,所以關于直線對稱;因此,由得;又在上單調遞減,則在上單調遞增;所以,當即時,由得,所以,解得;當即時,由得,所以,解得;因此,的解集是.【點睛】本題主要考查由函數的性質解對應不等式,熟記函數的奇偶性、對稱性、單調性等性質即可,屬于??碱}型.4.B【解析】
根據程序框圖知當時,循環(huán)終止,此時,即可得答案.【詳解】,.運行第一次,,不成立,運行第二次,,不成立,運行第三次,,不成立,運行第四次,,不成立,運行第五次,,成立,輸出i的值為11,結束.故選:B.【點睛】本題考查補充程序框圖判斷框的條件,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意模擬程序一步一步執(zhí)行的求解策略.5.C【解析】
確定函數為奇函數,且單調遞減,不等式轉化為,利用雙勾函數單調性求最值得到答案.【詳解】是奇函數,,易知均為減函數,故且在上單調遞減,不等式,即,結合函數的單調性可得,即,設,,故單調遞減,故,當,即時取最大值,所以.故選:.【點睛】本題考查了根據函數單調性和奇偶性解不等式,參數分離求最值是解題的關鍵.6.A【解析】
利用函數的對稱性及函數值的符號即可作出判斷.【詳解】由題意可知函數為奇函數,可排除B選項;當時,,可排除D選項;當時,,當時,,即,可排除C選項,故選:A【點睛】本題考查了函數圖象的判斷,函數對稱性的應用,屬于中檔題.7.D【解析】
設,,聯立直線與拋物線方程,消去、列出韋達定理,再由直線與拋物線的交點求出點坐標,最后根據,得到方程,即可求出參數的值;【詳解】解:設,,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點睛】本題考查直線與拋物線的綜合應用,弦長公式的應用,屬于中檔題.8.B【解析】
由題意可得a1=a2=a3=a4=a5=2,累加法求得a62+【詳解】解:an即a1=an?6時,a1a1兩式相除可得1+a則an2=由a6a7…,ak2=可得aa1且a1正整數k(k?5)時,要使得a1則ak+1則k=17,故選:B.【點睛】本題考查與遞推數列相關的方程的整數解的求法,注意將題設中的遞推關系變形得到新的遞推關系,從而可簡化與數列相關的方程,本題屬于難題.9.D【解析】試題分析:由已知可得有兩個不等實根.考點:1、余弦定理;2、函數的極值.【方法點晴】本題考查余弦定理,函數的極值,涉及函數與方程思想思想、數形結合思想和轉化化歸思想,考查邏輯思維能力、等價轉化能力、運算求解能力,綜合性較強,屬于較難題型.首先利用轉化化歸思想將原命題轉化為有兩個不等實根,從而可得.10.C【解析】
幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計算得到答案.【詳解】幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【點睛】本題考查了根據三視圖求表面積,意在考查學生的計算能力和空間想象能力.11.C【解析】
根據題意,分別計算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數,由分步計數原理計算可得答案.【詳解】解:根據題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C.【點睛】本題考查排列組合的應用,涉及分步計數原理問題,屬于基礎題.12.D【解析】
由特稱命題的否定是全稱命題可判斷選項A;可能相交,可判斷B選項;利用正態(tài)分布的性質可判斷選項C;或,利用集合間的包含關系可判斷選項D.【詳解】命題“,”的否定形式是“,”,故A錯誤;,,則可能相交,故B錯誤;若,則,所以,故,所以C錯誤;由,得或,故“”是“”的充分不必要條件,D正確.故選:D.【點睛】本題考查命題的真假判斷,涉及到特稱命題的否定、面面相關的命題、正態(tài)分布、充分條件與必要條件等,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13.60【解析】
根據二項式定理展開式通項,即可求得的系數.【詳解】因為,所以,則所求項的系數為.故答案為:60【點睛】本題考查了二項展開式通項公式的應用,指定項系數的求法,屬于基礎題.14.【解析】
由程序中的變量、各語句的作用,結合流程圖所給的順序,模擬程序的運行,即可得到答案.【詳解】根據題中的程序框圖可得:,執(zhí)行循環(huán)體,,不滿足條件,執(zhí)行循環(huán)體,,此時,滿足條件,退出循環(huán),輸出的值為.故答案為:【點睛】本題主要考查了程序和算法,依次寫出每次循環(huán)得到的,的值是解題的關鍵,屬于基本知識的考查.15.【解析】
求導,研究函數單調性,分析,即得解【詳解】由題意得,,令,解得,令,解得.在上遞減,在遞增.,而,故在區(qū)間上的最小值和最大值分別是.故答案為:【點睛】本題考查了導數在函數最值的求解中的應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題16.1【解析】
作出約束條件表示的可行域,轉化目標函數為,當目標函數經過點時,直線的截距最大,取得最大值,即得解.【詳解】作出約束條件表示的可行域是以為頂點的三角形及其內部,轉化目標函數為當目標函數經過點時,直線的截距最大此時取得最大值1.故答案為:1【點睛】本題考查了線性規(guī)劃問題,考查了學生轉化劃歸,數形結合,數學運算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.,;.【解析】
由,公差,有,,成等比數列,所以,解得.進而求出數列,的通項公式;當時,由,所以,當時,由,,可得,進而求出前項和.【詳解】解:由題意知,,公差,有1,,成等比數列,所以,解得.所以數列的通項公式.數列的公比,其通項公式.當時,由,所以.當時,由,,兩式相減得,所以.故所以的前項和,.又時,,也符合上式,故.【點睛】本題主要考查等差數列和等比數列的概念,通項公式,前項和公式的應用等基礎知識;考查運算求解能力,方程思想,分類討論思想,應用意識,屬于中檔題.18.(1),;(2)證明見解析.【解析】
(1)根據題中條件求出等差數列的首項和公差,然后根據首項和公差即可求出數列的通項和前項和;(2)根據裂項求和求出,根據的表達式即可證明.【詳解】(1)設的公差為,由題意有,且,所以,;(2)因為,所以,.【點睛】本題主要考查了等差數列基本量的求解,裂項求和法,屬于基礎題.19.(1),證明見解析;(2)【解析】
(1)首先利用賦值法求出的值,進一步利用定義求出數列的通項公式;(2)首先利用疊乘法求出數列的通項公式,進一步利用數列的單調性和基本不等式的應用求出參數的范圍.【詳解】(1)數列滿足,,其前項和為.所以,,則,,,所以猜想得:.證明:由于,所以,則:(常數),所以數列是首項為1,公差為的等差數列.所以,整理得.(2)數列滿足,,所以,則,所以.則,所以,所以,整理得,由于,所以,即.【點睛】本題考查的知識要點:數列的通項公式的求法及應用,疊乘法的應用,函數的單調性在數列中的應用,基本不等式的應用,主要考察學生的運算能力和轉換能力,屬于中檔題型.20.(1)(2)證明見解析【解析】
(1)利用與的關系即可求解.(2)利用裂項求和法即可求解.【詳解】解析:(1)當時,;當,,可得,又∵當時也成立,;(2),【點睛】本題主要考查了與的關系、裂項求和法,屬于基礎題.21.(1);(2)或【解析】
(1)根據的周長為,結合離心率,求出,即可求出方程;(2)設,則,求出直線方程,若斜率不存在,求出坐標,直接驗證是否滿足題意,若斜率存在,求出其方程,與直線方程聯立,求出點坐標,根據和三點共線,將點坐標用表示,坐標代入橢圓方程,即可求解.【詳解】(1)因為橢圓的離心率為,的周長為6,設橢圓的焦距為,則解得,,,所以橢圓方程為.(2)設,則,且,所以的方程為①.若,則的方程為②,由對稱性不妨令點在軸上方,則,,聯立①,②解得即.的方程為,代入橢圓方程得,整理得,或,.,不符合條件.若,則的方程為,即③.聯立①,③可解得所以.因為,設所以,即.又因為位于軸異側,所以.因為三點共線,即應與共線,所以,即,所以,又,所以,解得,所以,所以點的坐標為或.【點睛】本題考查橢圓的標準方程以及應用、直線與橢圓的位置關系,考查分類討論思想和計算求解能力,屬于較難題.22.(Ⅰ)證明見解析(Ⅱ).(Ⅲ)﹣.【解析】
(Ⅰ)由題知,如圖以點為原點,直線分別為軸,建立空間直角坐標系,計算,證明,從而平面PAC,即可得證;(Ⅱ)求解平面PDE的一個法向量,計算,即可得直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年岳麓版九年級生物下冊月考試卷
- 2025年冀教版九年級語文上冊階段測試試卷
- 2025年度大白工程智慧社區(qū)施工合同4篇
- 2025年外研版三年級起點選修3地理下冊階段測試試卷含答案
- 二零二五版漫畫連載作品授權動畫改編合同4篇
- 2025年滬科版七年級生物上冊階段測試試卷
- 2025年滬教版九年級物理下冊階段測試試卷
- 二零二五版門衛(wèi)值班人員突發(fā)事件處理合同3篇
- 揚塵降噪施工方案
- 2025年岳麓版八年級物理上冊階段測試試卷含答案
- 中國的世界遺產智慧樹知到期末考試答案2024年
- 2023年貴州省銅仁市中考數學真題試題含解析
- 世界衛(wèi)生組織生存質量測量表(WHOQOL-BREF)
- 《葉圣陶先生二三事》第1第2課時示范公開課教學PPT課件【統(tǒng)編人教版七年級語文下冊】
- 某送電線路安全健康環(huán)境與文明施工監(jiān)理細則
- GB/T 28885-2012燃氣服務導則
- PEP-3心理教育量表-評估報告
- 控制性詳細規(guī)劃編制項目競爭性磋商招標文件評標辦法、采購需求和技術參數
- 《增值稅及附加稅費申報表(小規(guī)模納稅人適用)》 及其附列資料-江蘇稅務
- 中南民族大學中文成績單
- 危大工程安全管理措施方案
評論
0/150
提交評論