2023屆江蘇省新吳區(qū)中考五模數(shù)學(xué)試題含解析_第1頁
2023屆江蘇省新吳區(qū)中考五模數(shù)學(xué)試題含解析_第2頁
2023屆江蘇省新吳區(qū)中考五模數(shù)學(xué)試題含解析_第3頁
2023屆江蘇省新吳區(qū)中考五模數(shù)學(xué)試題含解析_第4頁
2023屆江蘇省新吳區(qū)中考五模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.-4的相反數(shù)是()A. B. C.4 D.-42.下面的圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.B.C.D.3.-sin60°的倒數(shù)為()A.-2 B. C.- D.-4.A種飲料比B種飲料單價少1元,小峰買了2瓶A種飲料和3瓶B種飲料,一共花了13元,如果設(shè)B種飲料單價為x元/瓶,那么下面所列方程正確的是()A.2(x1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x1)=135.如圖,夜晚,小亮從點A經(jīng)過路燈C的正下方沿直線走到點B,他的影長y隨他與點A之間的距離x的變化而變化,那么表示y與x之間的函數(shù)關(guān)系的圖象大致為()A. B.C. D.6.下列性質(zhì)中菱形不一定具有的性質(zhì)是()A.對角線互相平分 B.對角線互相垂直C.對角線相等 D.既是軸對稱圖形又是中心對稱圖形7.按如圖所示的方法折紙,下面結(jié)論正確的個數(shù)()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1個 B.2個 C.1個 D.4個8.半徑為3的圓中,一條弦長為4,則圓心到這條弦的距離是()A.3 B.4 C. D.9.《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作,成書于約一千五百年前,其中有首歌謠:今有竿不知其長,量得影長一丈五尺,立一標(biāo)桿,長一尺五寸,影長五寸,問竿長幾何?意即:有一根竹竿不知道有多長,量出它在太陽下的影子長一丈五尺,同時立一根一尺五寸的小標(biāo)桿,它的影長五寸(提示:1丈=10尺,1尺=10寸),則竹竿的長為()A.五丈 B.四丈五尺 C.一丈 D.五尺10.某班為獎勵在學(xué)校運動會上取得好成績的同學(xué),計劃購買甲、乙兩種獎品共20件.其中甲種獎品每件40元,乙種獎品每件30元.如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件.設(shè)購買甲種獎品x件,乙種獎品y件.依題意,可列方程組為()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.二次根式中的字母a的取值范圍是_____.12.如圖,已知AB∥CD,直線EF分別交AB、CD于點E、F,EG平分∠BEF,若∠1=50°,則∠2的度數(shù)為_______.13.方程3x2﹣5x+2=0的一個根是a,則6a2﹣10a+2=_____.14.如圖,平面直角坐標(biāo)系中,經(jīng)過點B(﹣4,0)的直線y=kx+b與直線y=mx+2相交于點A(,-1),則不等式mx+2<kx+b<0的解集為____.15.如圖,在四邊形紙片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.將紙片先沿直線BD對折,再將對折后的圖形沿從一個頂點出發(fā)的直線裁剪,剪開后的圖形打開鋪平.若鋪平后的圖形中有一個是面積為2的平行四邊形,則CD=_________.16.已知扇形AOB的半徑OA=4,圓心角為90°,則扇形AOB的面積為_________.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設(shè)運動時間為t秒.(1)求拋物線的解析式.(2)在圖①中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當(dāng)一個點到達(dá)終點時,另一個點隨之停止運動.當(dāng)t為何值時,△PCQ為直角三角形?(3)在圖②中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當(dāng)t為何值時,△ACQ的面積最大?最大值是多少?18.(8分)已知:a是﹣2的相反數(shù),b是﹣2的倒數(shù),則(1)a=_____,b=_____;(2)求代數(shù)式a2b+ab的值.19.(8分)某商場為了吸引顧客,設(shè)計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.(1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.20.(8分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,過點D作⊙O的切線DE交AC于點E.(1)求證:∠A=∠ADE;(2)若AB=25,DE=10,弧DC的長為a,求DE、EC和弧DC圍成的部分的面積S.(用含字母a的式子表示).21.(8分)如圖,足球場上守門員在處開出一高球,球從離地面1米的處飛出(在軸上),運動員乙在距點6米的處發(fā)現(xiàn)球在自己頭的正上方達(dá)到最高點,距地面約4米高,球落地后又一次彈起.據(jù)實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.求足球開始飛出到第一次落地時,該拋物線的表達(dá)式.足球第一次落地點距守門員多少米?(?。┻\動員乙要搶到第二個落點,他應(yīng)再向前跑多少米?22.(10分)如圖1,點為正的邊上一點(不與點重合),點分別在邊上,且.(1)求證:;(2)設(shè),的面積為,的面積為,求(用含的式子表示);(3)如圖2,若點為邊的中點,求證:.圖1圖223.(12分)如圖,有四張背面完全相同的紙牌A,B,C,D,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用A,B,C,D表示).24.如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.寫出圖中小于平角的角.求出∠BOD的度數(shù).小明發(fā)現(xiàn)OE平分∠BOC,請你通過計算說明道理.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)相反數(shù)的定義即可求解.【詳解】-4的相反數(shù)是4,故選C.【點晴】此題主要考查相反數(shù),解題的關(guān)鍵是熟知相反數(shù)的定義.2、B【解析】試題解析:A.是軸對稱圖形但不是中心對稱圖形B.既是軸對稱圖形又是中心對稱圖形;C.是中心對稱圖形,但不是軸對稱圖形;D.是軸對稱圖形不是中心對稱圖形;故選B.3、D【解析】分析:根據(jù)乘積為1的兩個數(shù)互為倒數(shù),求出它的倒數(shù)即可.詳解:的倒數(shù)是.故選D.點睛:考查特殊角的三角函數(shù)和倒數(shù)的定義,熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.4、A【解析】

要列方程,首先要根據(jù)題意找出題中存在的等量關(guān)系,由題意可得到:買A飲料的錢+買B飲料的錢=總印數(shù)1元,明確了等量關(guān)系再列方程就不那么難了.【詳解】設(shè)B種飲料單價為x元/瓶,則A種飲料單價為(x-1)元/瓶,根據(jù)小峰買了2瓶A種飲料和3瓶B種飲料,一共花了1元,可得方程為:2(x-1)+3x=1.故選A.【點睛】列方程題的關(guān)鍵是找出題中存在的等量關(guān)系,此題的等量關(guān)系為買A中飲料的錢+買B中飲料的錢=一共花的錢1元.5、A【解析】設(shè)身高GE=h,CF=l,AF=a,當(dāng)x≤a時,在△OEG和△OFC中,∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,∴△OEG∽△OFC,∴,∵a、h、l都是固定的常數(shù),∴自變量x的系數(shù)是固定值,∴這個函數(shù)圖象肯定是一次函數(shù)圖象,即是直線;∵影長將隨著離燈光越來越近而越來越短,到燈下的時候,將是一個點,進(jìn)而隨著離燈光的越來越遠(yuǎn)而影長將變大.故選A.6、C【解析】

根據(jù)菱形的性質(zhì):①菱形具有平行四邊形的一切性質(zhì);②菱形的四條邊都相等;③菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角;④菱形是軸對稱圖形,它有2條對稱軸,分別是兩條對角線所在直線.【詳解】解:A、菱形的對角線互相平分,此選項正確;B、菱形的對角線互相垂直,此選項正確;C、菱形的對角線不一定相等,此選項錯誤;D、菱形既是軸對稱圖形又是中心對稱圖形,此選項正確;故選C.考點:菱形的性質(zhì)7、C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正確;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正確;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正確;故選C.8、C【解析】如圖所示:過點O作OD⊥AB于點D,∵OB=3,AB=4,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD=.故選C.9、B【解析】【分析】根據(jù)同一時刻物高與影長成正比可得出結(jié)論.【詳解】設(shè)竹竿的長度為x尺,∵竹竿的影長=一丈五尺=15尺,標(biāo)桿長=一尺五寸=1.5尺,影長五寸=0.5尺,∴,解得x=45(尺),故選B.【點睛】本題考查了相似三角形的應(yīng)用舉例,熟知同一時刻物髙與影長成正比是解答此題的關(guān)鍵.10、A【解析】

根據(jù)題意設(shè)未知數(shù),找到等量關(guān)系即可解題,見詳解.【詳解】解:設(shè)購買甲種獎品x件,乙種獎品y件.依題意,甲、乙兩種獎品共20件,即x+y=20,購買甲、乙兩種獎品共花費了650元,即40x+30y=650,綜上方程組為,故選A.【點睛】本題考查了二元一次方程組的列式,屬于簡單題,找到等量關(guān)系是解題關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、a≥﹣1.【解析】

根據(jù)二次根式的被開方數(shù)為非負(fù)數(shù),可以得出關(guān)于a的不等式,繼而求得a的取值范圍.【詳解】由分析可得,a+1≥0,解得:a≥﹣1.【點睛】熟練掌握二次根式被開方數(shù)為非負(fù)數(shù)是解答本題的關(guān)鍵.12、65°【解析】因為AB∥CD,所以∠BEF=180°-∠1=130°,因為EG平分∠BEF,所以∠BEG=65°,因為AB∥CD,所以∠2=∠BEG=65°.13、-1【解析】

根據(jù)一元二次方程的解的定義,將x=a代入方程3x1-5x+1=0,列出關(guān)于a的一元二次方程,通過變形求得3a1-5a的值后,將其整體代入所求的代數(shù)式并求值即可.【詳解】解:∵方程3x1-5x+1=0的一個根是a,∴3a1-5a+1=0,∴3a1-5a=-1,∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.故答案是:-1.【點睛】此題主要考查了方程解的定義.此類題型的特點是,利用方程解的定義找到相等關(guān)系,再把所求的代數(shù)式化簡后整理出所找到的相等關(guān)系的形式,再把此相等關(guān)系整體代入所求代數(shù)式,即可求出代數(shù)式的值.14、﹣4<x<﹣【解析】根據(jù)函數(shù)的圖像,可知不等式mx+2<kx+b<0的解集就是y=mx+2在函數(shù)y=kx+b的下面,且它們的值小于0的解集是﹣4<x<﹣.故答案為﹣4<x<﹣.15、或【解析】

根據(jù)裁開折疊之后平行四邊形的面積可得CD的長度為2+4或2+.【詳解】如圖①,當(dāng)四邊形ABCE為平行四邊形時,作AE∥BC,延長AE交CD于點N,過點B作BT⊥EC于點T.∵AB=BC,∴四邊形ABCE是菱形.∵∠BAD=∠BCD=90°,∠ABC=150°,∴∠ADC=30°,∠BAN=∠BCE=30°,∴∠NAD=60°,∴∠AND=90°.設(shè)BT=x,則CN=x,BC=EC=2x.∵四邊形ABCE面積為2,∴EC·BT=2,即2x×x=2,解得x=1,∴AE=EC=2,EN=,∴AN=AE+EN=2+,∴CD=AD=2AN=4+2.如圖②,當(dāng)四邊形BEDF是平行四邊形,∵BE=BF,∴平行四邊形BEDF是菱形.∵∠A=∠C=90°,∠ABC=150°,∴∠ADB=∠BDC=15°.∵BE=DE,∴∠EBD=∠ADB=15°,∴∠AEB=30°.設(shè)AB=y(tǒng),則DE=BE=2y,AE=y(tǒng).∵四邊形BEDF的面積為2,∴AB·DE=2,即2y2=2,解得y=1,∴AE=,DE=2,∴AD=AE+DE=2+.綜上所述,CD的值為4+2或2+.【點睛】考核知識點:平行四邊形的性質(zhì),菱形判定和性質(zhì).16、4π【解析】根據(jù)扇形的面積公式可得:扇形AOB的面積為,故答案為4π.三、解答題(共8題,共72分)17、(1)y=﹣x2+2x+3;(2)當(dāng)t=或t=時,△PCQ為直角三角形;(3)當(dāng)t=2時,△ACQ的面積最大,最大值是1.【解析】

(1)根據(jù)拋物線的對稱軸與矩形的性質(zhì)可得點A的坐標(biāo),根據(jù)待定系數(shù)法可得拋物線的解析式;(2)先根據(jù)勾股定理可得CE,再分兩種情況:當(dāng)∠QPC=90°時;當(dāng)∠PQC=90°時;討論可得△PCQ為直角三角形時t的值;(3)根據(jù)待定系數(shù)法可得直線AC的解析式,根據(jù)S△ACQ=S△AFQ+S△CPQ可得S△ACQ==﹣(t﹣2)2+1,依此即可求解.【詳解】解:(1)∵拋物線的對稱軸為x=1,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4),點A在DE上,∴點A坐標(biāo)為(1,4),設(shè)拋物線的解析式為y=a(x﹣1)2+4,把C(3,0)代入拋物線的解析式,可得a(3﹣1)2+4=0,解得a=﹣1.故拋物線的解析式為y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)依題意有:OC=3,OE=4,∴CE===5,當(dāng)∠QPC=90°時,∵cos∠QPC=,∴,解得t=;當(dāng)∠PQC=90°時,∵cos∠QCP=,∴,解得t=.∴當(dāng)t=或t=時,△PCQ為直角三角形;(3)∵A(1,4),C(3,0),設(shè)直線AC的解析式為y=kx+b,則有:,解得.故直線AC的解析式為y=﹣2x+2.∵P(1,4﹣t),將y=4﹣t代入y=﹣2x+2中,得x=1+,∴Q點的橫坐標(biāo)為1+,將x=1+代入y=﹣(x﹣1)2+4中,得y=4﹣.∴Q點的縱坐標(biāo)為4﹣,∴QF=(4﹣)﹣(4﹣t)=t﹣,∴S△ACQ=S△AFQ+S△CFQ=FQ?AG+FQ?DG,=FQ(AG+DG),=FQ?AD,=×2(t﹣),=﹣(t﹣2)2+1,∴當(dāng)t=2時,△ACQ的面積最大,最大值是1.【點睛】考查了二次函數(shù)綜合題,涉及的知識點有:拋物線的對稱軸,矩形的性質(zhì),待定系數(shù)法求拋物線的解析式,待定系數(shù)法求直線的解析式,勾股定理,銳角三角函數(shù),三角形面積,二次函數(shù)的最值,方程思想以及分類思想的運用.18、2﹣【解析】試題分析:利用相反數(shù)和倒數(shù)的定義即可得出.先因式分解,再代入求出即可.試題解析:是的相反數(shù),是的倒數(shù),當(dāng)時,點睛:只有符號不同的兩個數(shù)互為相反數(shù).乘積為的兩個數(shù)互為倒數(shù).19、解:(1)10,50;(2)解法一(樹狀圖):從上圖可以看出,共有12種可能結(jié)果,其中大于或等于30元共有8種可能結(jié)果,因此P(不低于30元)=;解法二(列表法):(以下過程同“解法一”)【解析】

試題分析:(1)由在一個不透明的箱子里放有4個相同的小球,球上分別標(biāo)有“0”元,“10”元,“20”元和“30”元的字樣,規(guī)定:顧客在本商場同一日內(nèi),每消費滿200元,就可以再箱子里先后摸出兩個球(第一次摸出后不放回).即可求得答案;(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與顧客所獲得購物券的金額不低于30元的情況,再利用概率公式求解即可求得答案.試題解析:(1)10,50;(2)解法一(樹狀圖):,從上圖可以看出,共有12種可能結(jié)果,其中大于或等于30元共有8種可能結(jié)果,因此P(不低于30元)==;解法二(列表法):

0

10

20

30

0

﹣﹣

10

20

30

10

10

﹣﹣

30

40

20

20

30

﹣﹣

50

30

30

40

50

﹣﹣

從上表可以看出,共有12種可能結(jié)果,其中大于或等于30元共有8種可能結(jié)果,因此P(不低于30元)==;考點:列表法與樹狀圖法.【詳解】請在此輸入詳解!20、(1)見解析;(2)75﹣a.【解析】

(1)連接CD,求出∠ADC=90°,根據(jù)切線長定理求出DE=EC,即可求出答案;(2)連接CD、OD、OE,求出扇形DOC的面積,分別求出△ODE和△OCE的面積,即可求出答案【詳解】(1)證明:連接DC,∵BC是⊙O直徑,∴∠BDC=90°,∴∠ADC=90°,∵∠C=90°,BC為直徑,∴AC切⊙O于C,∵過點D作⊙O的切線DE交AC于點E,∴DE=CE,∴∠EDC=∠ECD,∵∠ACB=∠ADC=90°,∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,∴∠A=∠ADE;(2)解:連接CD、OD、OE,∵DE=10,DE=CE,∴CE=10,∵∠A=∠ADE,∴AE=DE=10,∴AC=20,∵∠ACB=90°,AB=25,∴由勾股定理得:BC===15,∴CO=OD=,∵的長度是a,∴扇形DOC的面積是×a×=a,∴DE、EC和弧DC圍成的部分的面積S=××10+×10﹣a=75﹣a.【點睛】本題考查了圓周角定理,切線的性質(zhì),切線長定理,等腰三角形的性質(zhì)和判定,勾股定理,扇形的面積,三角形的面積等知識點,能綜合運用知識點進(jìn)行推理和計算是解此題的關(guān)鍵.21、(1)(或)(2)足球第一次落地距守門員約13米.(3)他應(yīng)再向前跑17米.【解析】

(1)依題意代入x的值可得拋物線的表達(dá)式.(2)令y=0可求出x的兩個值,再按實際情況篩選.(3)本題有多種解法.如圖可得第二次足球彈出后的距離為CD,相當(dāng)于將拋物線AEMFC向下平移了2個單位可得解得x的值即可知道CD、BD.【詳解】解:(1)如圖,設(shè)第一次落地時,拋物線的表達(dá)式為由已知:當(dāng)時即表達(dá)式為(或)(2)令(舍去).足球第一次落地距守門員約13米.(3)解法一:如圖,第二次足球彈出后的距離為根據(jù)題意:(即相當(dāng)于將拋物線向下平移了2個單位)解得(米).答:他應(yīng)再向前跑17米.22、(1)詳見解析;(1)詳見解析;(3)詳見解析.【解析】

(1)根據(jù)兩角對應(yīng)相等的兩個三角形相似即可判斷;

(1)如圖1中,分別過E,F(xiàn)作EG⊥BC于G,F(xiàn)H⊥BC于H,S1=?BD?EG=?BD?EG=?a?BE?sin60°=?a?BE,S1=?CD?FH=?b?CF,可得S1?S1=ab?BE?CF,由(1)得△BDE∽△CFD,,即BE?FC=BD?CD=ab,即可推出S1?S1=a1b1;

(3)想辦法證明△DFE∽△CFD,推出,即DF1=EF?FC;【詳解】(1)證明:如圖1中,

在△BDE中,∠BDE+∠DEB+∠B=180°,又∠BDE+∠EDF+∠FDC=180°,

∴∠BDE+∠DEB+∠B=∠BDE+∠EDF+∠FDC,

∵∠EDF=∠B,

∴∠DEB=∠FDC,

又∠B=∠C,

∴△BDE∽△CFD.

(1)如圖1中,分別過E,F(xiàn)作EG⊥BC于G,F(xiàn)H⊥BC于H,

S1=?BD?EG=?BD?EG=?a?BE?sin60°=?a?BE,S1=?CD?FH=?b?CF,

∴S1?S1=ab?BE?CF

由(1)得△BDE∽△CFD,

∴,即BE?FC=BD?CD=ab,

∴S1?S1=a1b1.(3)由(1)得△BDE∽△CFD,

∴,

又BD=CD,

∴,

又∠EDF=∠C=60°,

∴△DFE∽△CFD,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論