2023屆江蘇省揚州市部分區(qū)、縣達標名校中考數(shù)學考試模擬沖刺卷含解析_第1頁
2023屆江蘇省揚州市部分區(qū)、縣達標名校中考數(shù)學考試模擬沖刺卷含解析_第2頁
2023屆江蘇省揚州市部分區(qū)、縣達標名校中考數(shù)學考試模擬沖刺卷含解析_第3頁
2023屆江蘇省揚州市部分區(qū)、縣達標名校中考數(shù)學考試模擬沖刺卷含解析_第4頁
2023屆江蘇省揚州市部分區(qū)、縣達標名校中考數(shù)學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,按照三視圖確定該幾何體的側面積是(單位:cm)()A.24πcm2 B.48πcm2 C.60πcm2 D.80πcm22.已知函數(shù)y=(k-1)x2-4x+4的圖象與x軸只有一個交點,則k的取值范圍是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或13.已知函數(shù)的圖象與x軸有交點.則的取值范圍是()A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠34.如圖,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P點是BD的中點,若AD=6,則CP的長為()A.3.5 B.3 C.4 D.4.55.如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為直線x=,且經(jīng)過點(2,0),下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(,y2)是拋物線上的兩點,則y1<y2.其中說法正確的有()A.②③④ B.①②③ C.①④ D.①②④6.如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個動點,且AE=FD,連接BE、CF、BD,CF與BD交于點H,連接DH,下列結論正確的是()①△ABG∽△FDG②HD平分∠EHG③AG⊥BE④S△HDG:S△HBG=tan∠DAG⑤線段DH的最小值是2﹣2A.①②⑤ B.①③④⑤ C.①②④⑤ D.①②③④7.某校航模小分隊年齡情況如表所示,則這12名隊員年齡的眾數(shù)、中位數(shù)分別是()年齡(歲)1213141516人數(shù)12252A.2,14歲 B.2,15歲 C.19歲,20歲 D.15歲,15歲8.下列美麗的圖案中,不是軸對稱圖形的是()A. B. C. D.9.如圖是一個由4個相同的長方體組成的立體圖形,它的主視圖是()A.B.C.D.10.對于一組統(tǒng)計數(shù)據(jù):1,6,2,3,3,下列說法錯誤的是()A.平均數(shù)是3 B.中位數(shù)是3 C.眾數(shù)是3 D.方差是2.511.數(shù)據(jù)”1,2,1,3,1”的眾數(shù)是()A.1B.1.5C.1.6D.312.在聯(lián)歡會上,甲、乙、丙3人分別站在不在同一直線上的三點A、B、C上,他們在玩搶凳子的游戲,要在他們中間放一個木凳,誰先搶到凳子誰獲勝,為使游戲公平,凳子應放的最恰當?shù)奈恢檬恰鰽BC的()A.三條高的交點 B.重心 C.內心 D.外心二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如果將拋物線平移,使平移后的拋物線頂點坐標為,那么所得新拋物線的表達式是__________.14.如圖,是由形狀相同的正六邊形和正三角形鑲嵌而成的一組有規(guī)律的圖案,則第n個圖案中陰影小三角形的個數(shù)是.15.如圖,在正方形網(wǎng)格中,線段A′B′可以看作是線段AB經(jīng)過若干次圖形的變化(平移、旋轉、軸對稱)得到的,寫出一種由線段AB得到線段A′B′的過程______16.某個“清涼小屋”自動售貨機出售A、B、C三種飲料.A、B、C三種飲料的單價分別是2元/瓶、3元/瓶、5元/瓶.工作日期間,每天上貨量是固定的,且能全部售出,其中,A飲科的數(shù)量(單位:瓶)是B飲料數(shù)量的2倍,B飲料的數(shù)量(單位:瓶)是C飲料數(shù)量的2倍.某個周六,A、B、C三種飲料的上貨量分別比一個工作日的上貨量增加了50%、60%、50%,且全部售出.但是由于軟件bug,發(fā)生了一起錯單(即消費者按某種飲料一瓶的價格投幣,但是取得了另一種飲料1瓶),結果這個周六的銷售收入比一個工作日的銷售收入多了503元.則這個“清涼小屋”自動售貨機一個工作日的銷售收入是_____元.17.若不等式組x<4x<m的解集是x<4,則m18.如圖,在矩形ABCD中,E是AD上一點,把△ABE沿直線BE翻折,點A正好落在BC邊上的點F處,如果四邊形CDEF和矩形ABCD相似,那么四邊形CDEF和矩形ABCD面積比是__.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)在平面直角坐標系中,已知點A(2,0),點B(0,2),點O(0,0).△AOB繞著O順時針旋轉,得△A′OB′,點A、B旋轉后的對應點為A′、B′,記旋轉角為α.(I)如圖1,若α=30°,求點B′的坐標;(Ⅱ)如圖2,若0°<α<90°,設直線AA′和直線BB′交于點P,求證:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的點P縱坐標的最小值(直接寫出結果即可).20.(6分)某商場為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場同一日內,每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標金額的和返還相應價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.(1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.21.(6分)如圖,已知△ABC是等邊三角形,點D在AC邊上一點,連接BD,以BD為邊在AB的左側作等邊△DEB,連接AE,求證:AB平分∠EAC.22.(8分)如圖,在△OAB中,OA=OB,C為AB中點,以O為圓心,OC長為半徑作圓,AO與⊙O交于點E,OB與⊙O交于點F和D,連接EF,CF,CF與OA交于點G(1)求證:直線AB是⊙O的切線;(2)求證:△GOC∽△GEF;(3)若AB=4BD,求sinA的值.23.(8分)圖1和圖2中,優(yōu)弧紙片所在⊙O的半徑為2,AB=2,點P為優(yōu)弧上一點(點P不與A,B重合),將圖形沿BP折疊,得到點A的對稱點A′.發(fā)現(xiàn):(1)點O到弦AB的距離是,當BP經(jīng)過點O時,∠ABA′=;(2)當BA′與⊙O相切時,如圖2,求折痕的長.拓展:把上圖中的優(yōu)弧紙片沿直徑MN剪裁,得到半圓形紙片,點P(不與點M,N重合)為半圓上一點,將圓形沿NP折疊,分別得到點M,O的對稱點A′,O′,設∠MNP=α.(1)當α=15°時,過點A′作A′C∥MN,如圖3,判斷A′C與半圓O的位置關系,并說明理由;(2)如圖4,當α=°時,NA′與半圓O相切,當α=°時,點O′落在上.(3)當線段NO′與半圓O只有一個公共點N時,直接寫出β的取值范圍.24.(10分)如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過點D作DE⊥AC,垂足為E.(1)證明:DE為⊙O的切線;(2)連接DC,若BC=4,求弧DC與弦DC所圍成的圖形的面積.25.(10分)在某市組織的大型商業(yè)演出活動中,對團體購買門票實行優(yōu)惠,決定在原定票價基礎上每張降價80元,這樣按原定票價需花費6000元購買的門票張數(shù),現(xiàn)在只花費了4800元.求每張門票原定的票價;根據(jù)實際情況,活動組織單位決定對于個人購票也采取優(yōu)惠措施,原定票價經(jīng)過連續(xù)二次降價后降為324元,求平均每次降價的百分率.26.(12分)小李在學習了定理“直角三角形斜邊上的中線等于斜邊的一半”之后做了如下思考,請你幫他完成如下問題:他認為該定理有逆定理:“如果一個三角形某條邊上的中線等于該邊長的一半,那么這個三角形是直角三角形”應該成立.即如圖①,在中,是邊上的中線,若,求證:.如圖②,已知矩形,如果在矩形外存在一點,使得,求證:.(可以直接用第(1)問的結論)在第(2)問的條件下,如果恰好是等邊三角形,請求出此時矩形的兩條鄰邊與的數(shù)量關系.27.(12分)已知:如圖,在平面直角坐標系中,O為坐標原點,△OAB的頂點A、B的坐標分別是A(0,5),B(3,1),過點B畫BC⊥AB交直線y=-m(m>54)于點C,連結AC,以點A為圓心,AC為半徑畫弧交x軸負半軸于點D,連結AD(1)求證:△ABC≌△AOD.(2)設△ACD的面積為s,求s關于m的函數(shù)關系式.(3)若四邊形ABCD恰有一組對邊平行,求m的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀,確定圓錐的母線長和底面半徑,從而確定其側面積.【詳解】解:由主視圖和左視圖為三角形判斷出是錐體,由俯視圖是圓形可判斷出這個幾何體應該是圓錐;根據(jù)三視圖知:該圓錐的母線長為6cm,底面半徑為8÷1=4cm,故側面積=πrl=π×6×4=14πcm1.故選:A.【點睛】此題考查學生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.2、D【解析】

當k+1=0時,函數(shù)為一次函數(shù)必與x軸有一個交點;當k+1≠0時,函數(shù)為二次函數(shù),根據(jù)條件可知其判別式為0,可求得k的值.【詳解】當k-1=0,即k=1時,函數(shù)為y=-4x+4,與x軸只有一個交點;當k-1≠0,即k≠1時,由函數(shù)與x軸只有一個交點可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,綜上可知k的值為1或2,故選D.【點睛】本題主要考查函數(shù)與x軸的交點,掌握二次函數(shù)與x軸只有一個交點的條件是解題的關鍵,解決本題時注意考慮一次函數(shù)和二次函數(shù)兩種情況.3、B【解析】試題分析:若此函數(shù)與x軸有交點,則,Δ≥0,即4-4(k-3)≥0,解得:k≤4,當k=3時,此函數(shù)為一次函數(shù),題目要求仍然成立,故本題選B.考點:函數(shù)圖像與x軸交點的特點.4、B【解析】

解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P點是BD的中點,∴CP=BD=1.故選B.5、D【解析】

根據(jù)圖象得出a<0,a+b=0,c>0,即可判斷①②;把x=2代入拋物線的解析式即可判斷③,根據(jù)(-2,y1),(,y2)到對稱軸的距離即可判斷④.【詳解】∵二次函數(shù)的圖象的開口向下,∴a<0,∵二次函數(shù)的圖象y軸的交點在y軸的正半軸上,∴c>0,∵二次函數(shù)圖象的對稱軸是直線x=,∴a=-b,∴b>0,∴abc<0,故①正確;∵a=-b,∴a+b=0,故②正確;把x=2代入拋物線的解析式得,4a+2b+c=0,故③錯誤;∵,故④正確;故選D..【點睛】本題考查了二次函數(shù)的圖象與系數(shù)的關系的應用,題目比較典型,主要考查學生的理解能力和辨析能力.6、B【解析】

首先證明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性質,等高模型、三邊關系一一判斷即可.【詳解】解:∵四邊形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正確,同理可證:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正確.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正確.取AB的中點O,連接OD、OH.∵正方形的邊長為4,∴AO=OH=×4=1,由勾股定理得,OD=,由三角形的三邊關系得,O、D、H三點共線時,DH最小,DH最小=1-1.無法證明DH平分∠EHG,故②錯誤,故①③④⑤正確.故選B.【點睛】本題考查了相似三角形的判定與性質,全等三角形的判定與性質,正方形的性質,解直角三角形,解題的關鍵是掌握它們的性質進行解題.7、D【解析】

眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).【詳解】解:數(shù)據(jù)1出現(xiàn)了5次,最多,故為眾數(shù)為1;按大小排列第6和第7個數(shù)均是1,所以中位數(shù)是1.故選D.【點睛】本題主要考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項.注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求.如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).8、A【解析】

根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項正確;B、是軸對稱圖形,故本選項錯誤;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選A.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.9、A【解析】由三視圖的定義可知,A是該幾何體的三視圖,B、C、D不是該幾何體的三視圖.故選A.點睛:從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,看不到的線畫虛線.本題從左面看有兩列,左側一列有兩層,右側一列有一層.10、D【解析】

根據(jù)平均數(shù)、中位數(shù)、眾數(shù)和方差的定義逐一求解可得.【詳解】解:A、平均數(shù)為1+6+2+3+35B、重新排列為1、2、3、3、6,則中位數(shù)為3,正確;C、眾數(shù)為3,正確;D、方差為15×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2故選:D.【點睛】本題考查了眾數(shù)、平均數(shù)、中位數(shù)、方差.平均數(shù)平均數(shù)表示一組數(shù)據(jù)的平均程度.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù));方差是用來衡量一組數(shù)據(jù)波動大小的量.11、A【解析】

眾數(shù)指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),根據(jù)眾數(shù)的定義就可以求解.【詳解】在這一組數(shù)據(jù)中1是出現(xiàn)次數(shù)最多的,故眾數(shù)是1.故選:A.【點睛】本題為統(tǒng)計題,考查眾數(shù)的意義.眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.12、D【解析】

為使游戲公平,要使凳子到三個人的距離相等,于是利用線段垂直平分線上的點到線段兩端的距離相等可知,要放在三邊中垂線的交點上.【詳解】∵三角形的三條垂直平分線的交點到中間的凳子的距離相等,∴凳子應放在△ABC的三條垂直平分線的交點最適當.故選D.【點睛】本題主要考查了線段垂直平分線的性質的應用;利用所學的數(shù)學知識解決實際問題是一種能力,要注意培養(yǎng).想到要使凳子到三個人的距離相等是正確解答本題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】

平移不改變拋物線的開口方向與開口大小,即解析式的二次項系數(shù)不變,根據(jù)拋物線的頂點式可求拋物線解析式.【詳解】∵原拋物線解析式為y=1x1,頂點坐標是(0,0),平移后拋物線頂點坐標為(1,1),∴平移后的拋物線的表達式為:y=1(x﹣1)1+1.故答案為:y=1(x﹣1)1+1.【點睛】本題考查了拋物線的平移與解析式變化的關系.關鍵是明確拋物線的平移實質上是頂點的平移,能用頂點式表示平移后的拋物線解析式.14、4n﹣1.【解析】由圖可知:第一個圖案有陰影小三角形1個,第二圖案有陰影小三角形1+4=6個,第三個圖案有陰影小三角形1+8=11個,···那么第n個就有陰影小三角形1+4(n﹣1)=4n﹣1個.15、將線段AB繞點B逆時針旋轉90°,在向右平移2個單位長度【解析】

根據(jù)圖形的旋轉和平移性質即可解題.【詳解】解:將線段AB繞點B逆時針旋轉90°,在向右平移2個單位長度即可得到A′B′、【點睛】本題考查了旋轉和平移,屬于簡單題,熟悉旋轉和平移的概念是解題關鍵.16、950【解析】

設工作日期間C飲料數(shù)量為x瓶,則B飲料數(shù)量為2x瓶,A飲料數(shù)量為4x瓶,得到工作日期間一天的銷售收入為:8x+6x+5x=19x元,和周六銷售銷售收入為:12x+9.6x+7.5x=29.1x元,再結合題意得到10.1x﹣(5﹣3)=503,計算即可得到答案.【詳解】解:設工作日期間C飲料數(shù)量為x瓶,則B飲料數(shù)量為2x瓶,A飲料數(shù)量為4x瓶,工作日期間一天的銷售收入為:8x+6x+5x=19x元,周六C飲料數(shù)量為1.5x瓶,則B飲料數(shù)量為3.2x瓶,A飲料數(shù)量為6x瓶,周六銷售銷售收入為:12x+9.6x+7.5x=29.1x元,周六銷售收入與工作日期間一天銷售收入的差為:29.1x﹣19x=10.1x元,由于發(fā)生一起錯單,收入的差為503元,因此,503加減一瓶飲料的差價一定是10.1的整數(shù)倍,所以這起錯單發(fā)生在B、C飲料上(B、C一瓶的差價為2元),且是消費者付B飲料的錢,取走的是C飲料;于是有:10.1x﹣(5﹣3)=503解得:x=50工作日期間一天的銷售收入為:19×50=950元,故答案為:950.【點睛】本題考查一元一次方程的實際應用,解題的關鍵是由題意得到等量關系.17、m≥1.【解析】∵不等式組x<4x<m的解集是x∴m≥1,故答案為m≥1.18、【解析】由題意易得四邊形ABFE是正方形,設AB=1,CF=x,則有BC=x+1,CD=1,∵四邊形CDEF和矩形ABCD相似,∴CD:BC=FC:CD,即1:(x+1)=x:1,∴x=或x=(舍去),∴=,故答案為.【點睛】本題考查了折疊的性質,相似多邊形的性質等,熟練掌握相似多邊形的面積比等于相似比的平方是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)B'的坐標為(,3);(1)見解析;(3)﹣1.【解析】

(1)設A'B'與x軸交于點H,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°,由∠BOB'=α=30°推出BO∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;(1)證明∠BPA'=90即可;(3)作AB的中點M(1,),連接MP,由∠APB=90°,推出點P的軌跡為以點M為圓心,以MP=AB=1為半徑的圓,除去點(1,),所以當PM⊥x軸時,點P縱坐標的最小值為﹣1.【詳解】(Ⅰ)如圖1,設A'B'與x軸交于點H,∵OA=1,OB=1,∠AOB=90°,∴∠ABO=∠B'=30°,∵∠BOB'=α=30°,∴BO∥A'B',∵OB'=OB=1,∴OH=OB'=,B'H=3,∴點B'的坐標為(,3);(Ⅱ)證明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四邊形OBPA'的內角和為360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)點P縱坐標的最小值為.如圖,作AB的中點M(1,),連接MP,∵∠APB=90°,∴點P的軌跡為以點M為圓心,以MP=AB=1為半徑的圓,除去點(1,).∴當PM⊥x軸時,點P縱坐標的最小值為﹣1.【點睛】本題考查的知識點是幾何變換綜合題,解題的關鍵是熟練的掌握幾何變換綜合題.20、解:(1)10,50;(2)解法一(樹狀圖):從上圖可以看出,共有12種可能結果,其中大于或等于30元共有8種可能結果,因此P(不低于30元)=;解法二(列表法):(以下過程同“解法一”)【解析】

試題分析:(1)由在一個不透明的箱子里放有4個相同的小球,球上分別標有“0”元,“10”元,“20”元和“30”元的字樣,規(guī)定:顧客在本商場同一日內,每消費滿200元,就可以再箱子里先后摸出兩個球(第一次摸出后不放回).即可求得答案;(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與顧客所獲得購物券的金額不低于30元的情況,再利用概率公式求解即可求得答案.試題解析:(1)10,50;(2)解法一(樹狀圖):,從上圖可以看出,共有12種可能結果,其中大于或等于30元共有8種可能結果,因此P(不低于30元)==;解法二(列表法):

0

10

20

30

0

﹣﹣

10

20

30

10

10

﹣﹣

30

40

20

20

30

﹣﹣

50

30

30

40

50

﹣﹣

從上表可以看出,共有12種可能結果,其中大于或等于30元共有8種可能結果,因此P(不低于30元)==;考點:列表法與樹狀圖法.【詳解】請在此輸入詳解!21、詳見解析【解析】

由等邊三角形的性質得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,證出∠ABE=∠CBD,證明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出結論.【詳解】證明:∵△ABC,△DEB都是等邊三角形,∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,即∠ABE=∠CBD,在△ABE和△CBD中,∵AB=CB,∠ABE=∠CBD,BE=BD,,∴△ABE≌△CBD(SAS),∴∠BAE=∠BCD=60°,∴∠BAE=∠BAC,∴AB平分∠EAC.【點睛】本題考查了全等三角形的判定與性質,等邊三角形的性質等知識,熟練掌握等邊三角形的性質,證明三角形全等是解題的關鍵.22、(1)見解析;(2)見解析;(3).【解析】

(1)利用等腰三角形的性質,證明OC⊥AB即可;

(2)證明OC∥EG,推出△GOC∽△GEF即可解決問題;

(3)根據(jù)勾股定理和三角函數(shù)解答即可.【詳解】證明:(1)∵OA=OB,AC=BC,∴OC⊥AB,∴⊙O是AB的切線.(2)∵OA=OB,AC=BC,∴∠AOC=∠BOC,∵OE=OF,∴∠OFE=∠OEF,∵∠AOB=∠OFE+∠OEF,∴∠AOC=∠OEF,∴OC∥EF,∴△GOC∽△GEF,∴,∵OD=OC,∴OD?EG=OG?EF.(3)∵AB=4BD,∴BC=2BD,設BD=m,BC=2m,OC=OD=r,在Rt△BOC中,∵OB2=OC2+BC2,即(r+m)2=r2+(2m)2,解得:r=1.5m,OB=2.5m,∴sinA=sinB=.【點睛】考查圓的綜合題,考查切線的判定、等腰三角形的性質、平行線的性質、勾股定理等知識,解題的關鍵是靈活運用所學知識解決問題.23、發(fā)現(xiàn):(1)1,60°;(2)2;拓展:(1)相切,理由詳見解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解析】

發(fā)現(xiàn):(1)利用垂徑定理和勾股定理即可求出點O到AB的距離;利用銳角三角函數(shù)的定義及軸對稱性就可求出∠ABA′.(2)根據(jù)切線的性質得到∠OBA′=90°,從而得到∠ABA′=120°,就可求出∠ABP,進而求出∠OBP=30°.過點O作OG⊥BP,垂足為G,容易求出OG、BG的長,根據(jù)垂徑定理就可求出折痕的長.拓展:(1)過A'、O作A'H⊥MN于點H,OD⊥A'C于點D.用含30°角的直角三角形的性質可得OD=A'H=A'N=MN=2可判定A′C與半圓相切;(2)當NA′與半圓相切時,可知ON⊥A′N,則可知α=45°,當O′在時,連接MO′,則可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;(3)根據(jù)點A′的位置不同得到線段NO′與半圓O只有一個公共點N時α的取值范圍是0°<α<30°或45°≤α<90°.【詳解】發(fā)現(xiàn):(1)過點O作OH⊥AB,垂足為H,如圖1所示,∵⊙O的半徑為2,AB=2,∴OH==在△BOH中,OH=1,BO=2∴∠ABO=30°∵圖形沿BP折疊,得到點A的對稱點A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)過點O作OG⊥BP,垂足為G,如圖2所示.∵BA′與⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的長為2拓展:(1)相切.分別過A'、O作A'H⊥MN于點H,OD⊥A'C于點D.如圖3所示,∵A'C∥MN∴四邊形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H=A'N=MN=2∴A'C與半圓(2)當NA′與半圓O相切時,則ON⊥NA′,∴∠ONA′=2α=90°,∴α=45當O′在上時,連接MO′,則可知NO′=MN,∴∠O′MN=0°∴∠MNO′=60°,∴α=30°,故答案為:45°;30°.(3)∵點P,M不重合,∴α>0,由(2)可知當α增大到30°時,點O′在半圓上,∴當0°<α<30°時點O′在半圓內,線段NO′與半圓只有一個公共點B;當α增大到45°時NA′與半圓相切,即線段NO′與半圓只有一個公共點B.當α繼續(xù)增大時,點P逐漸靠近點N,但是點P,N不重合,∴α<90°,∴當45°≤α<90°線段BO′與半圓只有一個公共點B.綜上所述0°<α<30°或45°≤α<90°.【點睛】本題考查了切線的性質、垂徑定理、勾股定理、三角函數(shù)的定義、30°角所對的直角邊等于斜邊的一半、翻折問題等知識,正確的作出輔助線是解題的關鍵.24、(1)詳見解析;(2).【解析】

(1)連接OD,由平行線的判定定理可得OD∥AC,利用平行線的性質得∠ODE=∠DEA=90°,可得DE為⊙O的切線;

(2)連接CD,求弧DC與弦DC所圍成的圖形的面積利用扇形DOC面積-三角形DOC的面積計算即可.【詳解】解:(1)證明:連接OD,∵OD=OB,∴∠ODB=∠B,∵AC=BC,∴∠A=∠B,∴∠ODB=∠A,∴OD∥AC,∴∠ODE=∠DEA=90°,∴DE為⊙O的切線;(2)連接CD,∵∠A=30°,AC=BC,∴∠BCA=120°,∵BC為直徑,∴∠ADC=90°,∴CD⊥AB,∴∠BCD=60°,∵OD=OC,∴∠DOC=60°,∴△DOC是等邊三角形,∵BC=4,∴OC=DC=2,∴S△DOC=DC×=,∴弧DC與弦DC所圍成的圖形的面積=﹣=﹣.【點睛】本題考查的知識點是等腰三角形的性質、切線的判定與性質以及扇形面積的計算,解題的關鍵是熟練的掌握等腰三角形的性質、切線的判定與性質以及扇形面積的計算.25、(1)1(2)10%.【解析】試題分析:(1)設每張門票的原定票價為x元,則現(xiàn)在每張門票的票價為(x-80)元,根據(jù)“按原定票價需花費6000元購買的門票張數(shù),現(xiàn)在只花費了4800元”建立方程,解方程即可;(2)設平均每次降價的百分率為y,根據(jù)“原定票價經(jīng)過連續(xù)二次降價后降為324元”建立方程,解方程即可.試題解析:(1)設每張門票的原定票價為x元,則現(xiàn)在每張門票的票價為(x-80)元,根據(jù)題意得,解得x=1.經(jīng)檢驗,x=1是原方程的根.答:每張門票的原定票價為1元;(2)設平均每次降價的百分率為y,根據(jù)題意得1(1-y)2=324,解得:y1=0.1,y2=1.9(不合題意,舍去).答:平均每次降價10%.考點:1.一元二次方程的應用;2.分式方程的應用.26、(1)詳見解析;(2)詳見解析;(3)【解析】

(1)利用等腰三角形的性質和三角形內角和即可得出結論;

(2)先判斷出OE=AC,即可得出OE=BD,即可得出結論;

(3)先判斷出△ABE是底角是30°的等腰三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論