2023屆內(nèi)蒙古包頭市第二中學(xué)中考試題猜想數(shù)學(xué)試卷含解析_第1頁(yè)
2023屆內(nèi)蒙古包頭市第二中學(xué)中考試題猜想數(shù)學(xué)試卷含解析_第2頁(yè)
2023屆內(nèi)蒙古包頭市第二中學(xué)中考試題猜想數(shù)學(xué)試卷含解析_第3頁(yè)
2023屆內(nèi)蒙古包頭市第二中學(xué)中考試題猜想數(shù)學(xué)試卷含解析_第4頁(yè)
2023屆內(nèi)蒙古包頭市第二中學(xué)中考試題猜想數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),則下列結(jié)論:①3a+b<0;②-1≤a≤-23;③對(duì)于任意實(shí)數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)2.古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個(gè)大于1的“正方形數(shù)”都可以看作兩個(gè)相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+313.某班要從9名百米跑成績(jī)各不相同的同學(xué)中選4名參加4×100米接力賽,而這9名同學(xué)只知道自己的成績(jī),要想讓他們知道自己是否入選,老師只需公布他們成績(jī)的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差4.長(zhǎng)春市奧林匹克公園即將于2018年年底建成,它的總投資額約為2500000000元,2500000000這個(gè)數(shù)用科學(xué)記數(shù)法表示為()A.0.25×1010B.2.5×1010C.2.5×109D.25×1085.的相反數(shù)是()A. B.﹣ C.﹣ D.6.方程5x+2y=-9與下列方程構(gòu)成的方程組的解為的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-87.如果邊長(zhǎng)相等的正五邊形和正方形的一邊重合,那么∠1的度數(shù)是()A.30° B.15° C.18° D.20°8.計(jì)算(2017﹣π)0﹣(﹣)﹣1+tan30°的結(jié)果是()A.5 B.﹣2 C.2 D.﹣19.運(yùn)用乘法公式計(jì)算(4+x)(4﹣x)的結(jié)果是()A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x210.正三角形繞其中心旋轉(zhuǎn)一定角度后,與自身重合,旋轉(zhuǎn)角至少為()A.30° B.60° C.120° D.180°二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.觀察下列各等式:……根據(jù)以上規(guī)律可知第11行左起第一個(gè)數(shù)是__.12.若是關(guān)于的完全平方式,則__________.13.觀察圖形,根據(jù)圖形面積的關(guān)系,不需要連其他的線,便可以得到一個(gè)用來(lái)分解因式的公式,這個(gè)公式是________________14.在形狀為等腰三角形、圓、矩形、菱形、直角梯形的5張紙片中隨機(jī)抽取一張,抽到中心對(duì)稱圖形的概率是________.15.已知x1,x2是方程x2-3x-1=0的兩根,則=______.16.若a:b=1:3,b:c=2:5,則a:c=_____.三、解答題(共8題,共72分)17.(8分)無(wú)錫市新區(qū)某桶裝水經(jīng)營(yíng)部每天的房租、人員工資等固定成本為250元,每桶水的進(jìn)價(jià)是5元,規(guī)定銷售單價(jià)不得高于12元/桶,也不得低于7元/桶,調(diào)查發(fā)現(xiàn)日均銷售量p(桶)與銷售單價(jià)x(元)的函數(shù)圖象如圖所示.(1)求日均銷售量p(桶)與銷售單價(jià)x(元)的函數(shù)關(guān)系;(2)若該經(jīng)營(yíng)部希望日均獲利1350元,那么銷售單價(jià)是多少?18.(8分)如圖,在菱形ABCD中,點(diǎn)P在對(duì)角線AC上,且PA=PD,⊙O是△PAD的外接圓.(1)求證:AB是⊙O的切線;(2)若AC=8,tan∠BAC=,求⊙O的半徑.19.(8分)如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)的圖象交于A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,已知OA=,tan∠AOC=(1)求a,k的值及點(diǎn)B的坐標(biāo);(2)觀察圖象,請(qǐng)直接寫出不等式ax﹣1≥的解集;(3)在y軸上存在一點(diǎn)P,使得△PDC與△ODC相似,請(qǐng)你求出P點(diǎn)的坐標(biāo).20.(8分)如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖像交于點(diǎn)A(1,m),與x軸交于點(diǎn)B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖像于點(diǎn)M,交AB于點(diǎn)N,連接BM.(1)求m的值和反比例函數(shù)的表達(dá)式;(2)直線y=n沿y軸方向平移,當(dāng)n為何值時(shí),△BMN的面積最大?21.(8分)解方程:1+22.(10分)某電器超市銷售每臺(tái)進(jìn)價(jià)分別為200元,170元的A,B兩種型號(hào)的電風(fēng)扇,表中是近兩周的銷售情況:銷售時(shí)段銷售數(shù)量銷售收入A種型號(hào)B種型號(hào)第一周3臺(tái)5臺(tái)1800元第二周4臺(tái)10臺(tái)3100元(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入-進(jìn)貨成本)(1)求A,B兩種型號(hào)的電風(fēng)扇的銷售單價(jià).(2)若超市準(zhǔn)備用不多于5400元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái),則A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?(3)在(2)的條件下,超市銷售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.23.(12分)如圖,為了測(cè)量山頂鐵塔AE的高,小明在27m高的樓CD底部D測(cè)得塔頂A的仰角為45°,在樓頂C測(cè)得塔頂A的仰角36°52′.已知山高BE為56m,樓的底部D與山腳在同一水平線上,求該鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)24.(1)計(jì)算:;(2)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

利用拋物線開(kāi)口方向得到a<0,再由拋物線的對(duì)稱軸方程得到b=-2a,則3a+b=a,于是可對(duì)①進(jìn)行判斷;利用2≤c≤3和c=-3a可對(duì)②進(jìn)行判斷;利用二次函數(shù)的性質(zhì)可對(duì)③進(jìn)行判斷;根據(jù)拋物線y=ax2+bx+c與直線y=n-1有兩個(gè)交點(diǎn)可對(duì)④進(jìn)行判斷.【詳解】∵拋物線開(kāi)口向下,∴a<0,而拋物線的對(duì)稱軸為直線x=-b2a∴3a+b=3a-2a=a<0,所以①正確;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-23∵拋物線的頂點(diǎn)坐標(biāo)(1,n),∴x=1時(shí),二次函數(shù)值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正確;∵拋物線的頂點(diǎn)坐標(biāo)(1,n),∴拋物線y=ax2+bx+c與直線y=n-1有兩個(gè)交點(diǎn),∴關(guān)于x的方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根,所以④正確.故選D.【點(diǎn)睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大?。?dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口;一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置:當(dāng)a與b同號(hào)時(shí),對(duì)稱軸在y軸左;當(dāng)a與b異號(hào)時(shí),對(duì)稱軸在y軸右.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn):拋物線與y軸交于(0,c).拋物線與x軸交點(diǎn)個(gè)數(shù)由判別式確定:△=b2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);△=b2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);△=b2-4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn).2、C【解析】

本題考查探究、歸納的數(shù)學(xué)思想方法.題中明確指出:任何一個(gè)大于1的“正方形數(shù)”都可以看作兩個(gè)相鄰“三角形數(shù)”之和.由于“正方形數(shù)”為兩個(gè)“三角形數(shù)”之和,正方形數(shù)可以用代數(shù)式表示為:(n+1)2,兩個(gè)三角形數(shù)分別表示為n(n+1)和(n+1)(n+2),所以由正方形數(shù)可以推得n的值,然后求得三角形數(shù)的值.【詳解】∵A中13不是“正方形數(shù)”;選項(xiàng)B、D中等式右側(cè)并不是兩個(gè)相鄰“三角形數(shù)”之和.故選:C.【點(diǎn)睛】此題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對(duì)于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.3、B【解析】

總共有9名同學(xué),只要確定每個(gè)人與成績(jī)的第五名的成績(jī)的多少即可判斷,然后根據(jù)中位數(shù)定義即可判斷.【詳解】要想知道自己是否入選,老師只需公布第五名的成績(jī),即中位數(shù).故選B.4、C【解析】【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值大于10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值小于1時(shí),n是負(fù)數(shù).【詳解】2500000000的小數(shù)點(diǎn)向左移動(dòng)9位得到2.5,所以2500000000用科學(xué)記數(shù)表示為:2.5×1.故選C.【點(diǎn)睛】本題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.5、B【解析】

一個(gè)數(shù)的相反數(shù)就是在這個(gè)數(shù)前面添上“﹣”號(hào),由此即可求解.【詳解】解:的相反數(shù)是﹣.故選:B.【點(diǎn)睛】本題考查了相反數(shù)的意義,一個(gè)數(shù)的相反數(shù)就是在這個(gè)數(shù)前面添上“﹣”號(hào):一個(gè)正數(shù)的相反數(shù)是負(fù)數(shù),一個(gè)負(fù)數(shù)的相反數(shù)是正數(shù),1的相反數(shù)是1.6、D【解析】試題分析:將x與y的值代入各項(xiàng)檢驗(yàn)即可得到結(jié)果.解:方程5x+2y=﹣9與下列方程構(gòu)成的方程組的解為的是3x﹣4y=﹣1.故選D.點(diǎn)評(píng):此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數(shù)的值.7、C【解析】

∠1的度數(shù)是正五邊形的內(nèi)角與正方形的內(nèi)角的度數(shù)的差,根據(jù)多邊形的內(nèi)角和定理求得角的度數(shù),進(jìn)而求解.【詳解】∵正五邊形的內(nèi)角的度數(shù)是×(5-2)×180°=108°,正方形的內(nèi)角是90°,

∴∠1=108°-90°=18°.故選C【點(diǎn)睛】本題考查了多邊形的內(nèi)角和定理、正五邊形和正方形的性質(zhì),求得正五邊形的內(nèi)角的度數(shù)是關(guān)鍵.8、A【解析】試題分析:原式=1-(-3)+=1+3+1=5,故選A.9、B【解析】

根據(jù)平方差公式計(jì)算即可得解.【詳解】,故選:B.【點(diǎn)睛】本題主要考查了整式的乘法公式,熟練掌握平方差公式的運(yùn)算是解決本題的關(guān)鍵.10、C【解析】

求出正三角形的中心角即可得解【詳解】正三角形繞其中心旋轉(zhuǎn)一定角度后,與自身重合,旋轉(zhuǎn)角至少為120°,故選C.【點(diǎn)睛】本題考查旋轉(zhuǎn)對(duì)稱圖形的概念:把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對(duì)稱圖形,這個(gè)定點(diǎn)叫做旋轉(zhuǎn)對(duì)稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角,掌握正多邊形的中心角的求解是解題的關(guān)鍵二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、-1.【解析】

觀察規(guī)律即可解題.【詳解】解:第一行=12=1,第二行=22=4,第三行=32=9...∴第n行=n2,第11行=112=121,又∵左起第一個(gè)數(shù)比右側(cè)的數(shù)大一,∴第11行左起第一個(gè)數(shù)是-1.【點(diǎn)睛】本題是一道規(guī)律題,屬于簡(jiǎn)單題,認(rèn)真審題找到規(guī)律是解題關(guān)鍵.12、1或-1【解析】【分析】直接利用完全平方公式的定義得出2(m-3)=±8,進(jìn)而求出答案.詳解:∵x2+2(m-3)x+16是關(guān)于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案為-1或1.點(diǎn)睛:此題主要考查了完全平方公式,正確掌握完全平方公式的基本形式是解題關(guān)鍵.13、【解析】由圖形可得:14、【解析】

在形狀為等腰三角形、圓、矩形、菱形、直角梯形的5張紙片中,中心對(duì)稱圖案的卡片是圓、矩形、菱形,直接利用概率公式求解即可求得答案.【詳解】∵在:等腰三角形、圓、矩形、菱形和直角梯形中屬于中心對(duì)稱圖形的有:圓、矩形和菱形3種,∴從這5張紙片中隨機(jī)抽取一張,抽到中心對(duì)稱圖形的概率為:.故答案為.15、﹣1.【解析】試題解析:∵,是方程的兩根,∴、,∴===﹣1.故答案為﹣1.16、2∶1【解析】分析:已知a、b兩數(shù)的比為1:3,根據(jù)比的基本性質(zhì),a、b兩數(shù)的比1:3=(1×2):(3×2)=2:6;而b、c的比為:2:5=(2×3):(5×3)=6:1;,所以a、c兩數(shù)的比為2:1.詳解:a:b=1:3=(1×2):(3×2)=2:6;

b:c=2:5=(2×3):(5×3)=6:1;,

所以a:c=2:1;

故答案為2:1.點(diǎn)睛:本題主要考查比的基本性質(zhì)的實(shí)際應(yīng)用,如果已知甲乙、乙丙兩數(shù)的比,那么可以根據(jù)比的基本性質(zhì)求出任意兩數(shù)的比.三、解答題(共8題,共72分)17、(1)日均銷售量p(桶)與銷售單價(jià)x(元)的函數(shù)關(guān)系為p=﹣50x+850;(2)該經(jīng)營(yíng)部希望日均獲利1350元,那么銷售單價(jià)是9元.【解析】

(1)設(shè)日均銷售p(桶)與銷售單價(jià)x(元)的函數(shù)關(guān)系為:p=kx+b(k≠0),把(7,500),(12,250)代入,得到關(guān)于k,b的方程組,解方程組即可;(2)設(shè)銷售單價(jià)應(yīng)定為x元,根據(jù)題意得,(x-5)?p-250=1350,由(1)得到p=-50x+850,于是有(x-5)?(-50x+850)-250=1350,然后整理,解方程得到x1=9,x2=13,滿足7≤x≤12的x的值為所求;【詳解】(1)設(shè)日均銷售量p(桶)與銷售單價(jià)x(元)的函數(shù)關(guān)系為p=kx+b,根據(jù)題意得,解得k=﹣50,b=850,所以日均銷售量p(桶)與銷售單價(jià)x(元)的函數(shù)關(guān)系為p=﹣50x+850;(2)根據(jù)題意得一元二次方程(x﹣5)(﹣50x+850)﹣250=1350,解得x1=9,x2=13(不合題意,舍去),∵銷售單價(jià)不得高于12元/桶,也不得低于7元/桶,∴x=13不合題意,答:若該經(jīng)營(yíng)部希望日均獲利1350元,那么銷售單價(jià)是9元.【點(diǎn)睛】本題考查了一元二次方程及一次函數(shù)的應(yīng)用,解題的關(guān)鍵是通過(guò)題目和圖象弄清題意,并列出方程或一次函數(shù),用數(shù)學(xué)知識(shí)解決生活中的實(shí)際問(wèn)題.18、(1)見(jiàn)解析;(2).【解析】分析:(1)連結(jié)OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根據(jù)垂徑定理的推理得OP⊥AD,AE=DE,則∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根據(jù)菱形的性質(zhì)得∠1=∠2,所以∠2+∠OAP=90°,然后根據(jù)切線的判定定理得到直線AB與⊙O相切;(2)連結(jié)BD,交AC于點(diǎn)F,根據(jù)菱形的性質(zhì)得DB與AC互相垂直平分,則AF=4,tan∠DAC=,得到DF=2,根據(jù)勾股定理得到AD==2,求得AE=,設(shè)⊙O的半徑為R,則OE=R﹣,OA=R,根據(jù)勾股定理列方程即可得到結(jié)論.詳解:(1)連結(jié)OP、OA,OP交AD于E,如圖,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.∵四邊形ABCD為菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直線AB與⊙O相切;(2)連結(jié)BD,交AC于點(diǎn)F,如圖,∵四邊形ABCD為菱形,∴DB與AC互相垂直平分.∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,∴DF=2,∴AD==2,∴AE=.在Rt△PAE中,tan∠1==,∴PE=.設(shè)⊙O的半徑為R,則OE=R﹣,OA=R.在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,∴R=,即⊙O的半徑為.點(diǎn)睛:本題考查了切線的判定定理:經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了菱形的性質(zhì)和銳角三角函數(shù)以及勾股定理.19、(1)a=,k=3,B(-,-2)(2)﹣≤x<0或x≥3;(3)(0,)或(0,0)【解析】

1)過(guò)A作AE⊥x軸,交x軸于點(diǎn)E,在Rt△AOE中,根據(jù)tan∠AOC的值,設(shè)AE=x,得到OE=3x,再由OA的長(zhǎng),利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出A坐標(biāo),將A坐標(biāo)代入一次函數(shù)解析式求出a的值,代入反比例解析式求出k的值,聯(lián)立一次函數(shù)與反比例函數(shù)解析式求出B的坐標(biāo);(2)由A與B交點(diǎn)橫坐標(biāo),根據(jù)函數(shù)圖象確定出所求不等式的解集即可;(3)顯然P與O重合時(shí),滿足△PDC與△ODC相似;當(dāng)PC⊥CD,即∠PCD=時(shí),滿足三角形PDC與三角形CDO相等,利用同角的余角相等得到一對(duì)角相等,再由一對(duì)直角相等得到三角形PCO與三角形CDO相似,由相似得比例,根據(jù)OD,OC的長(zhǎng)求出OP的長(zhǎng),即可確定出P的坐標(biāo).【詳解】解:(1)過(guò)A作AE⊥x軸,交x軸于點(diǎn)E,在Rt△AOE中,OA=,tan∠AOC=,設(shè)AE=x,則OE=3x,根據(jù)勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),將A坐標(biāo)代入一次函數(shù)y=ax﹣1中,得:1=3a﹣1,即a=,將A坐標(biāo)代入反比例解析式得:1=,即k=3,聯(lián)立一次函數(shù)與反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,將x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根據(jù)圖象得:不等式x﹣1≥的解集為﹣≤x<0或x≥3;(3)顯然P與O重合時(shí),△PDC∽△ODC;當(dāng)PC⊥CD,即∠PCD=90°時(shí),∠PCO+∠DCO=90°,∵∠PCD=∠COD=90°,∠PCD=∠CDO,∴△PDC∽△CDO,∵∠PCO+∠CPO=90°,∴∠DCO=∠CPO,∵∠POC=∠COD=90°,∴△PCO∽△CDO,∴=,對(duì)于一次函數(shù)解析式y(tǒng)=x﹣1,令x=0,得到y(tǒng)=﹣1;令y=0,得到x=,∴C(,0),D(0,﹣1),即OC=,OD=1,∴=,即OP=,此時(shí)P坐標(biāo)為(0,),綜上,滿足題意P的坐標(biāo)為(0,)或(0,0).【點(diǎn)睛】此題屬于反比例函數(shù)綜合題,涉及的知識(shí)有:待定系數(shù)法確定函數(shù)解析式,一次函數(shù)與反比例函數(shù)的交點(diǎn)問(wèn)題,坐標(biāo)與圖形性質(zhì),勾股定理,銳角三角函數(shù)定義,相似三角形的判定與性質(zhì),利用了數(shù)形結(jié)合的思想,熟練運(yùn)用數(shù)形結(jié)合思想是解題的關(guān)鍵.20、(1)m=8,反比例函數(shù)的表達(dá)式為y=;(2)當(dāng)n=3時(shí),△BMN的面積最大.【解析】

(1)求出點(diǎn)A的坐標(biāo),利用待定系數(shù)法即可解決問(wèn)題;(2)構(gòu)造二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問(wèn)題.【詳解】解:(1)∵直線y=2x+6經(jīng)過(guò)點(diǎn)A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函數(shù)經(jīng)過(guò)點(diǎn)A(1,8),∴8=,∴k=8,∴反比例函數(shù)的解析式為y=.(2)由題意,點(diǎn)M,N的坐標(biāo)為M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3時(shí),△BMN的面積最大.21、無(wú)解.【解析】

兩邊都乘以x(x-3),去分母,化為整式方程求解即可.【詳解】解:去分母得:x2﹣3x﹣x2=3x﹣18,解得:x=3,經(jīng)檢驗(yàn)x=3是增根,分式方程無(wú)解.【點(diǎn)睛】題考查了分式方程的解法,其基本思路是把方程的兩邊都乘以各分母的最簡(jiǎn)公分母,化為整式方程求解,求出x的值后不要忘記檢驗(yàn).22、(1)A,B兩種型號(hào)電風(fēng)扇的銷售單價(jià)分別為250元/臺(tái)、210元/臺(tái);(2)A種型號(hào)的電風(fēng)扇最多能采購(gòu)10臺(tái);(3)在(2)的條件下超市不能實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo).【解析】

(1)設(shè)A、B兩種型號(hào)電風(fēng)扇的銷售單價(jià)分別為x元、y元,根據(jù)3臺(tái)A型號(hào)5臺(tái)B型號(hào)的電扇收入1800元,4臺(tái)A型號(hào)10臺(tái)B型號(hào)的電扇收入3100元,列方程組求解;(2)設(shè)采購(gòu)A種型號(hào)電風(fēng)扇a臺(tái),則采購(gòu)B種型號(hào)電風(fēng)扇(30-a)臺(tái),根據(jù)金額不多余5400元,列不等式求解;(3)設(shè)利潤(rùn)為1400元,列方程求出a的值為20,不符合(2)的條件,可知

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論