




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第二章導(dǎo)熱基本定律及穩(wěn)態(tài)導(dǎo)熱§2-1導(dǎo)熱基本定律一、溫度場(chǎng)(Temperaturefield)
某時(shí)刻空間所有各點(diǎn)溫度分布的總稱(chēng)溫度場(chǎng)是時(shí)間和空間的函數(shù),即:穩(wěn)態(tài)溫度場(chǎng)(Steady-stateconduction)非穩(wěn)態(tài)溫度場(chǎng)(Transientconduction)等溫面與等溫線(xiàn)(1)溫度不同的等溫面或等溫線(xiàn)彼此不能相交●等溫面:同一時(shí)刻、溫度場(chǎng)中所有溫度相同的點(diǎn)連接起來(lái)所構(gòu)成的面●等溫線(xiàn):用一個(gè)平面與各等溫面相交,在這個(gè)平面上得到一個(gè)等溫線(xiàn)簇等溫面與等溫線(xiàn)的特點(diǎn):(2)在連續(xù)的溫度場(chǎng)中,等溫面或等溫線(xiàn)不會(huì)中斷,它們或者是物體中完全封閉的曲面(曲線(xiàn)),或者就終止與物體的邊界上物體的溫度場(chǎng)通常用等溫面或等溫線(xiàn)表示等溫面上沒(méi)有溫差,不會(huì)有熱量傳遞溫度梯度
(Temperaturegradient)不同的等溫面之間,有溫差,有熱量傳遞溫度梯度:沿等溫面法線(xiàn)方向上的溫度增量與法向
距離比值的極限,gradt直角坐標(biāo)系:(Cartesiancoordinates)注:溫度梯度是向量;正向朝著溫度增加的方向熱流密度矢量熱流密度:?jiǎn)挝粫r(shí)間、單位面積上所傳遞的熱量;直角坐標(biāo)系中:熱流密度矢量:等溫面上某點(diǎn),以通過(guò)該點(diǎn)處最大熱流密度的方向?yàn)榉较颉?shù)值上正好等于沿該方向的熱流密度不同方向上的熱流密度的大小不同(Heatflux)qqθθ二、導(dǎo)熱基本定律(Fourier’slaw)1822年,法國(guó)數(shù)學(xué)家傅里葉(Fourier)在實(shí)驗(yàn)研究基礎(chǔ)上,發(fā)現(xiàn)導(dǎo)熱基本規(guī)律——傅里葉定律導(dǎo)熱基本定律:垂直導(dǎo)過(guò)等溫面的熱流密度,正比于該處的溫度梯度,方向與溫度梯度相反熱導(dǎo)率(導(dǎo)熱系數(shù))直角坐標(biāo)系中:注:傅里葉定律只適用于各向同性材料
各向同性材料:熱導(dǎo)率在各個(gè)方向是相同的(Thermalconductivity)有些天然和人造材料,如:石英、木材、疊層塑料板、疊層金屬板,其導(dǎo)熱系數(shù)隨方向而變化——各向異性材料各向異性材料中:三、熱導(dǎo)率(Thermalconductivity)熱導(dǎo)率的數(shù)值:就是物體中單位溫度梯度、單位時(shí)間、通過(guò)單位面積的導(dǎo)熱量
—物質(zhì)的重要熱物性參數(shù)影響熱導(dǎo)率的因素:物質(zhì)的種類(lèi)、材料成分、溫度、濕度、壓力、密度等熱導(dǎo)率的數(shù)值表征物質(zhì)導(dǎo)熱能力大小。實(shí)驗(yàn)測(cè)定不同物質(zhì)熱導(dǎo)率的差異:構(gòu)造差別、導(dǎo)熱機(jī)理不同1、氣體的熱導(dǎo)率氣體的導(dǎo)熱:由于分子的熱運(yùn)動(dòng)和相互碰撞時(shí)發(fā)生的能量傳遞氣體分子運(yùn)動(dòng)理論:常溫常壓下氣體熱導(dǎo)率可表示為:除非壓力很低或很高,在2.67*10-3MPa~2.0*103MPa范圍內(nèi),氣體的熱導(dǎo)率基本不隨壓力變化:氣體分子運(yùn)動(dòng)的均方根速度氣體的溫度升高時(shí):氣體分子運(yùn)動(dòng)速度和定容比熱隨T升高而增大。
氣體的熱導(dǎo)率隨溫度升高而增大:氣體分子在兩次碰撞間平均自由行程:氣體的密度;:氣體的定容比熱氣體的壓力升高時(shí):氣體的密度增大、平均自由行程減小、而兩者的乘積保持不變。混合氣體熱導(dǎo)率不能用部分求和的方法求;只能靠實(shí)驗(yàn)測(cè)定分子質(zhì)量小的氣體(H2、He)熱導(dǎo)率較大—分子運(yùn)動(dòng)速度高2、液體的熱導(dǎo)率液體的導(dǎo)熱:主要依靠晶格的振動(dòng)晶格:理想的晶體中分子在無(wú)限大空間里排列成周期性點(diǎn)陣,即所謂晶格大多數(shù)液體(分子量M不變):水和甘油等強(qiáng)締合液體,分子量變化,并隨溫度而變化。在不同溫度下,熱導(dǎo)率隨溫度的變化規(guī)律不一樣液體的熱導(dǎo)率隨壓力p的升高而增大3、固體的熱導(dǎo)率純金屬的導(dǎo)熱:依靠自由電子的遷移和晶格的振動(dòng)主要依靠前者金屬導(dǎo)熱與導(dǎo)電機(jī)理一致;良導(dǎo)電體為良導(dǎo)熱體:(1)金屬的熱導(dǎo)率:—晶格振動(dòng)的加強(qiáng)干擾自由電子運(yùn)動(dòng)合金:金屬中摻入任何雜質(zhì)將破壞晶格的完整性,干擾自由電子的運(yùn)動(dòng)金屬的加工過(guò)程也會(huì)造成晶格的缺陷合金的導(dǎo)熱:依靠自由電子的遷移和晶格的振動(dòng);主要依靠后者溫度升高、晶格振動(dòng)加強(qiáng)、導(dǎo)熱增強(qiáng)如常溫下:黃銅:70%Cu,30%Zn非金屬的導(dǎo)熱:依靠晶格的振動(dòng)傳遞熱量;比較小建筑隔熱保溫材料:(2)非金屬的熱導(dǎo)率:大多數(shù)建筑材料和絕熱材料具有多孔或纖維結(jié)構(gòu)多孔材料的熱導(dǎo)率與密度和濕度有關(guān)保溫材料:國(guó)家標(biāo)準(zhǔn)規(guī)定,溫度低于350度時(shí)熱導(dǎo)率小于0.12W/(mK)的材料(絕熱材料)導(dǎo)熱微分方程式導(dǎo)熱微分方程:為了獲得導(dǎo)熱物體溫度場(chǎng)的數(shù)學(xué)表達(dá)式,必須根據(jù)能量守恒定律和傅里葉定律來(lái)建立物體中的溫度場(chǎng)應(yīng)當(dāng)滿(mǎn)足的變化關(guān)系式。定解條件:導(dǎo)熱微分方程是所有導(dǎo)熱物體的溫度場(chǎng)都應(yīng)該滿(mǎn)足的通用方程,對(duì)于各個(gè)具體的問(wèn)題,還必須規(guī)定相應(yīng)的時(shí)間與邊界的條件導(dǎo)熱微分方程式前提與假設(shè):三維導(dǎo)熱物體,有內(nèi)熱源;導(dǎo)熱體與外界沒(méi)有功的交換。內(nèi)熱源,其值為Ф,代表單位時(shí)間內(nèi)單位體積產(chǎn)生或消耗的熱能(產(chǎn)生取正號(hào),消耗為負(fù)號(hào)),單位是W/m3§2-2導(dǎo)熱微分方程式(HeatDiffusionEquation)確定導(dǎo)熱體內(nèi)的溫度分布是導(dǎo)熱理論的首要任務(wù)傅里葉定律:確定熱流密度的大小,應(yīng)知道物體內(nèi)的溫度場(chǎng):理論基礎(chǔ):傅里葉定律+熱力學(xué)第一定律假設(shè):(1)所研究的物體是各向同性的連續(xù)介質(zhì)(2)熱導(dǎo)率、比熱容和密度均為已知(3)物體內(nèi)具有內(nèi)熱源;強(qiáng)度qv[W/m3];內(nèi)熱源均勻分布;qv表示單位體積的導(dǎo)熱
體在單位時(shí)間內(nèi)放出的熱量化學(xué)反應(yīng)熔化過(guò)程一、導(dǎo)熱微分方程式在導(dǎo)熱體中取一微元體熱力學(xué)第一定律:
d時(shí)間內(nèi)微元體中:[導(dǎo)入與導(dǎo)出凈熱量]+[內(nèi)熱源發(fā)熱量]=[熱力學(xué)能的增加]1、導(dǎo)入與導(dǎo)出微元體的凈熱量d時(shí)間內(nèi)、沿x軸方向、經(jīng)x表面導(dǎo)入的熱量:d時(shí)間內(nèi)、沿x軸方向、經(jīng)x+dx表面導(dǎo)出的熱量:d時(shí)間內(nèi)、沿x軸方向?qū)肱c導(dǎo)出微元體凈熱量:d時(shí)間內(nèi)、沿z
軸方向?qū)肱c導(dǎo)出微元體凈熱量:d時(shí)間內(nèi)、沿y
軸方向?qū)肱c導(dǎo)出微元體凈熱量:[導(dǎo)入與導(dǎo)出凈熱量]:傅里葉定律:2、微元體中內(nèi)熱源的發(fā)熱量d時(shí)間內(nèi)微元體中內(nèi)熱源的發(fā)熱量:3、微元體熱力學(xué)能的增量d時(shí)間內(nèi)微元體中熱力學(xué)能的增量:由[1]+[2]=[3]:導(dǎo)熱微分方程式、導(dǎo)熱過(guò)程的能量方程導(dǎo)熱微分方程和傅里葉導(dǎo)熱定律的區(qū)別:導(dǎo)熱微分方程:描述物體內(nèi)部溫度隨時(shí)間和空間變化的一般關(guān)系(t,τ,x,y,z)能量守恒定律。傅里葉定律:描述物體內(nèi)部溫度梯度和熱流密度間的關(guān)系(q,t)1、若物性參數(shù)、c和均為常數(shù):熱擴(kuò)散率
反映了導(dǎo)熱過(guò)程中材料的導(dǎo)熱能力()與沿途物質(zhì)儲(chǔ)熱能力(
c)之間的關(guān)系
值大,即值大或
c值小,說(shuō)明物體的某一部分一旦獲得熱量,該熱量能在整個(gè)物體中很快擴(kuò)散熱擴(kuò)散率表征物體被加熱或冷卻時(shí),物體內(nèi)各部分溫度趨向于均勻一致的能力(Thermaldiffusivity)二、導(dǎo)熱微分方程的分析在同樣加熱條件下,物體的熱擴(kuò)散率越大,物體內(nèi)部各處的溫度差別越小。a反應(yīng)導(dǎo)熱過(guò)程動(dòng)態(tài)特性,研究不穩(wěn)態(tài)導(dǎo)熱重要物理量2、若物性參數(shù)為常數(shù)且無(wú)內(nèi)熱源:3、若物性參數(shù)為常數(shù)、無(wú)內(nèi)熱源穩(wěn)態(tài)導(dǎo)熱:圓柱坐標(biāo)系(r,,z)球坐標(biāo)系(r,,)導(dǎo)熱微分方程式的不適應(yīng)范圍:非傅里葉導(dǎo)熱過(guò)程極短時(shí)間(如10)產(chǎn)生極大的熱流密度的熱量傳遞現(xiàn)象,如激光加工過(guò)程。極低溫度(接近于0K)時(shí)的導(dǎo)熱問(wèn)題。導(dǎo)熱過(guò)程的單值性條件導(dǎo)熱微分方程式的理論基礎(chǔ):傅里葉定律+熱力學(xué)第一定律它描寫(xiě)物體的溫度隨時(shí)間和空間變化的關(guān)系;它沒(méi)有涉及具體、特定的導(dǎo)熱過(guò)程。通用表達(dá)式。對(duì)特定的導(dǎo)熱過(guò)程:需要得到滿(mǎn)足該過(guò)程的補(bǔ)充說(shuō)明條件的唯一解單值性條件:確定唯一解的附加補(bǔ)充說(shuō)明條件單值性條件包括四項(xiàng):幾何、物理、時(shí)間、邊界完整數(shù)學(xué)描述:導(dǎo)熱微分方程+單值性條件1、幾何條件如:平壁或圓筒壁;厚度、直徑等說(shuō)明導(dǎo)熱體的幾何形狀和大小2、物理?xiàng)l件如:物性參數(shù)、c和的數(shù)值,是否隨溫度變化;有無(wú)內(nèi)熱源、大小和分布;是否各向同性說(shuō)明導(dǎo)熱體的物理特征3、時(shí)間條件穩(wěn)態(tài)導(dǎo)熱過(guò)程不需要時(shí)間條件—與時(shí)間無(wú)關(guān)說(shuō)明在時(shí)間上導(dǎo)熱過(guò)程進(jìn)行的特點(diǎn)對(duì)非穩(wěn)態(tài)導(dǎo)熱過(guò)程應(yīng)給出過(guò)程開(kāi)始時(shí)刻導(dǎo)熱體內(nèi)的溫度分布時(shí)間條件又稱(chēng)為初始條件(Initialconditions)4、邊界條件說(shuō)明導(dǎo)熱體邊界上過(guò)程進(jìn)行的特點(diǎn)反映過(guò)程與周?chē)h(huán)境相互作用的條件(1)第一類(lèi)邊界條件s—邊界面;tw=f(x,y,z)—邊界面上的溫度已知任一瞬間導(dǎo)熱體邊界上溫度值:穩(wěn)態(tài)導(dǎo)熱:tw=const非穩(wěn)態(tài)導(dǎo)熱:tw=f()oxtw1tw2例:(Boundaryconditions)(2)第二類(lèi)邊界條件根據(jù)傅里葉定律:已知物體邊界上熱流密度的分布及變化規(guī)律:第二類(lèi)邊界條件相當(dāng)于已知任何時(shí)刻物體邊界面
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 鄉(xiāng)村和城鎮(zhèn)試題及答案
- 物流包裝試題及答案
- 安徽省A10聯(lián)盟2024-2025學(xué)年高二下學(xué)期5月學(xué)情調(diào)研考地理(B)試卷(含答案)
- 2025年黑龍江省哈爾濱市中考模擬試題數(shù)學(xué)試卷(含簡(jiǎn)單答案)
- 2025船舶交易合同范本下載
- 2025屆高考物理大一輪復(fù)習(xí)課件 第十一章 第64課時(shí) 專(zhuān)題強(qiáng)化:復(fù)合場(chǎng)中的擺線(xiàn)問(wèn)題 動(dòng)量定理在磁場(chǎng)中的應(yīng)用
- 2025屆高考物理大一輪復(fù)習(xí)課件 第十一章 第60課時(shí) 專(zhuān)題強(qiáng)化:用“動(dòng)態(tài)圓”思想分析臨界問(wèn)題
- 初中語(yǔ)文 中考專(zhuān)區(qū) 二輪專(zhuān)題 議論文閱讀 課件
- 2024年中考物理復(fù)習(xí)專(zhuān)題 計(jì)算與推導(dǎo)題初中物理 中考專(zhuān)區(qū) 復(fù)習(xí)
- 2025授權(quán)創(chuàng)作合同范本示例
- 廣東省深圳市2025年中考模擬歷史試題四套附參考答案
- 粵語(yǔ)知識(shí)測(cè)試題及答案
- 2025年北京市東城區(qū)初三語(yǔ)文一模作文《根基》寫(xiě)作指導(dǎo)+范文
- 2025年中考英語(yǔ)熱點(diǎn)話(huà)題寫(xiě)作《AI、deepseek、豆包》
- 2025年果蔬清洗機(jī)市場(chǎng)分析現(xiàn)狀
- 太陽(yáng)能光伏發(fā)電系統(tǒng)多目標(biāo)容量?jī)?yōu)化配置技術(shù)研究
- 中央2024年中國(guó)合格評(píng)定國(guó)家認(rèn)可中心招聘筆試歷年參考題庫(kù)附帶答案詳解
- 2025年高考化學(xué)考試易錯(cuò)題易錯(cuò)類(lèi)型18物質(zhì)的分離、提純與鑒別(7大易錯(cuò)點(diǎn))(學(xué)生版+解析)
- 內(nèi)蒙古榮信化工有限公司招聘筆試題庫(kù)2025
- 美容外科概論試題及答案
- 加工風(fēng)管合同樣本
評(píng)論
0/150
提交評(píng)論