第11章微分方程習(xí)題詳解_第1頁
第11章微分方程習(xí)題詳解_第2頁
第11章微分方程習(xí)題詳解_第3頁
第11章微分方程習(xí)題詳解_第4頁
第11章微分方程習(xí)題詳解_第5頁
已閱讀5頁,還剩78頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第十一章方程習(xí)題詳?shù)谑徽路址絛yd(1) d

ytant3t3sint1 (2)(7x6y)dx(xy)dy0(3)x(y)22yyx0 (4)xy2(y)4x2y0 (1)xy2y,y5x2yy0,y3sinx4cosxy2yy0,yx2ex(xyx)yx(y)2yy2y0,yln(xy)(1)y10x代入所給微分方程的左邊,得左邊10x2,而右邊=25x210x2y3cosx4sinxy3sinx4cosx3sinx4cosx3sinx4cosx0y3sinx4cosx是所給微分方程yy0yx2exy2xexx2exy2ex4xexx2ex代入所給微分方程的左邊,得左邊(2ex4xexx2ex)2(2xexx2exx2ex2ex0(右邊,y1y 即即

xyyyxyyyx(y)2xyyyyxy(xyx)yx(y)2yy2y0yln(xy是所給微分方程(xyxyxy)2yy2y0 (1)x2y2C,yx5 0, (1)x0y5C0252y2x225(2)yCe2x2(CCx)e2x(2CC2Cx)e2x,將 0, y(CCx)e2x和y(2CC2Cx)e2x 得C10,C21解yexy2exyex

y9y02ex9ex0 (29)ex0ex02903333ye3x 消去下列各式中的任意常數(shù)C,C1,C2,寫出相應(yīng)的微分方程(1)yCxC2 (2)yxtanxC (3)xyCexCex (4)(yC)2 注意到,含一個(gè)任意常數(shù)及兩個(gè)變量的關(guān)系式對應(yīng)于一階微分方程;含兩個(gè)獨(dú)立常yC,代入原關(guān)系式y(tǒng)CxC2,得所求的微分方程為(y)2xyyytan(xC)xsec2(xC)即ytan(xC)xxtan2(xC)ytan(xCx

yy xx

xxyyx2y2xyC1exC2ex兩邊x求導(dǎo)

yxyCexCex

yyxyCexCex xy2yxy 由yC1)2C2xx2(yC1)yC2(yC將C2 1代入上式,并化簡x

2xyyC1,2xyy0.第十一章方程習(xí)題詳xyylny0 (2)cosxsinydxsinxcosydy0(3)yxy2(y2y) (4)x(1y)dx(yxy)dy0yy3xy2x,

x

1 (6)2xsinydx(x23)cosydy0, dy1dxyln ln(lny)lnxlnClnyCxyeCx

x

cosydycosxdxsin sin即

ln(siny)ln(sinx)lnCln(sinysinx)lnCsinysinxC(x1)dy2y21dy

x

dx

12ln(x1)Cyy 2ln(x1)

ydy xdx1 xyln(1y)xln(x1)lnCeyxC(1y)(x

y3y2

dyxdx即

1ln(3y21)1x2lnC 1(3y21)6C (31)6C,即C26

11 (3y21)626e2,即3y212e3x將方程兩邊同除以(x23siny02xdxcosydy0x2 sin

dx

cosydyC

x2 sin

ln(x23)ln(sinylnC(其中C1lnC ,

(x23)sinyCC4sin26(x23)siny2即y x2一曲線過點(diǎn)M0(2,3)在兩坐標(biāo)軸間任意點(diǎn)處的切線被切點(diǎn)所平分,求此曲線的方程)y2yyyy(2)3,21dy1dx,yx,yC.x第十一章方程習(xí)題詳 由定解條 y6x

C6一粒質(zhì)量為20克的以速度v0200(米/秒)打進(jìn)一塊厚度為10厘米的木板,然后穿過木板以速度v180(米/秒)離開木板.若該木板對的阻力與運(yùn)動(dòng)速度的平方成正比(比例系數(shù)為k),問穿過木板的時(shí)間.mdvkv2,即

200

1ktC

k

1dvkdt tC(20克=0.02千克代入定解條件 200,t故有v10000kt1設(shè)穿過木板的時(shí)間為T秒,

C10.1 0T ln(10000kt1) 1ln(10000kT1)又已知tTvv180米/

8010000kT1

kT0.000150.1

50

T0.10.00750.000750.0008(秒 故穿過木板運(yùn)動(dòng)持續(xù)了T0.0008(秒y2(1)xyy 0 (2)(x2y2)dxxydyy2 (3)(x3y3)dx3xy2dy0 (4)(12ey)dx2ey(1

x)dy0y(5)x2dyxyy2,

1 (6)(y23x2)dy2xydx0,

x

1yxyxx令uyyuxyuxux

uxuu u2u2 duu2u2xln(u即

u21)lnxlnCu2u2將uyx

y Cx2y2y2 x2

1 x ,即 x

yx令uyyuxyuxux即

1uxu uudu1dxx1u2lnxC 將uyx

y2x22lnxC)(其中C2C11(y3(1(y3(y , yux,有dyuxdu uxdu u33u2即

12u3duxdx1ln(12u3)lnx1lnC 第十一章方程習(xí)題詳x2(12u3C,將uy代入上式并整理,得原方程的通解為xx32y3Cx

y故令uxxuy,有dxuydu (uydu)(12eu)2eu(1u)0

2eu 2euuduydyln(2euu)lnylnC2euuCy將uxy

2yeyxC y dxx .令uy有dyuxdu,則原方程可進(jìn)一步化 即

uxduuu21du1dx 將uyx

lnxCuxlnxCyC1ln11

y 1ln x13y22ydy0令uxxuydxuyduy

13u22u(uydu)0

du1dyy即代入uxy

ln(u21)lnylnCu21Cyx2y2Cy3yx01,得C1y3y2x2OA(1,1)的一段向上凸的曲線弧OA,對于OAP(xy),曲線弧OP與直線段OP所圍成圖形的面積為x2,求曲線弧OA的方程.yy(xxy(x)dx1xy(x)x2 y(x)1y(x)1xy(x)2x

1 P(x,y

yy4x

令uy,有dyuxdu uxduu 4,即 因uyx

u4lnxCyx(4lnxyx(14lnx)(1)(xy1)dx(4yx1)dy0 (2)(xy)dx(3x3y4)dy0解(1)dyxy1xy1

4yx令4yx10x1y0xX1yY第十一章方程習(xí)題詳

dy dY d(X dYY 4Y設(shè)uY,則YuXdYuXdu,于是(*) dY即

4YX

uXduu1 4u4u1du1dX4u2 1ln(4u21)1arctan(2u)lnXC即將uY

y代入上式,得原方程的通解為

(C2C1) x

ln4y2(x1)2arctan2yC

dy

x

x, 43(x該方程屬于dyf(axbyc類型,一般可令uaxbyc令ux

,有 du1即

,4

3u4du2dxu3u2lnu22xC將uxyx3y2lnxy2C(1)y2xyxex2;(2)xy3yx2 (3)tanxdyy5

1 (5)(y26x)dy2ydx0;(6)

32 解(1)yepx)dxq(x)epx)dxdxC2xdx

xex2e2xdxdxCex2xdxC Cex21x2ex22

y3yxx

xe

dxCx3C Cx3x2yedx

1

x dycosxy5cosx sin sincosxdxsinyesinxsin

e dxC

dx

Csinx

1 yexlnxexlnxdxC lnxdxC ln1(xlnxxC)xCx

ln

dx6x

, 2即

dx3x1y 3dy 3 xey y

ydyCy3 1dyC2 3 3y C2 (6)e3d2e3ddCe32e3dC 第十一章方程習(xí)題詳 e32e3CCe3 dyytanxsecx, 0 (2)dyycotx5ecosx, 4 x(3)dy23x2y1,

0

解(1)yetanxdxsecxetanxdxdxCelncosxsecxelncosxdx 1secxcosxdxCxCcos cosx0,y0,得C0y cos

y

cotxdx5ecosxecotxdxdxC 15ecosxsinxdxC15ecosxCsin sinxy4,得C12y15ecosxsin即ysinx5ecosx123dx 23 13lnx 13lnx 3(3)yexx

xdxC

e dxC

x3ex12ex2dxCx3ex121ed1Cx3 2 x2

x3ex21ex2CxCx3ex2 22 22 x1,y0,得C

x3 11y 1ex2 求一曲線的方程,這曲線通過原點(diǎn),并且它在點(diǎn)(xy處的切線斜率等于2xy解yy(xy2xyyy2xyedx2xedxdxCex2xexdxC ex(2xex2exC)2x2exx0y0,得C2y2(exx1)

解[2xf(x)x2][yf(x)]0 即2f(x)2xf(x)2xf(x)0yf(x

y1

y1,

1 1dx 1 xye2xe2xdxC xdxx1x1x x1,y1,得C13

f(x)2x133 (1) yxy2 (2)y y3x2y3 dy1y1(12x)y4 (4)xdy[yxy3(1lnx)]dx0 z即

y2dy1y11. 2 2 ,則 .代入上面的方程, dz1z1, dz1z1

1dx 1 zex(ex)dxCCxxlnx 1Cxxx.4 y 2y33x2

4

4 令zy3,則 y ,即y 3dz2z3x2 即dz

2zx2第十一章方程習(xí)題詳

2dx 2 ze

(x2e3x)dxC 2 x3(x3)dxC

2 x3C

37x3 3 3y3Cx3 37y4y1y31(12x) zz2x1

zedx(2x1)edxdxCex(2x1)exdxC ex(2x1)exC2x1Cex

y32x1Cexy1y1lnxy3y3y1y21lnx z2z2(1lnx)x

2dx 2 zex2(1lnx)exdxC x22(1lnx)x2dxC x2x3(1lnx) x3dx

x22x3(1lnx)2x3C 2x(1lnx)2xCx2 y22x(1lnx)2xCx2 x24 2 9

xlnxC3(1)xydx1(x2y)dy0 (2)(3x26xy2)dx(4y36x2y)dy02 y2

dx dy0 (1)PxyQ1(x2y2

PxQ

u(x,y)x0dxy1(x2 01(x2y1y2)1x2y1y2 1x2y1y2C (2)P3x26xy2Q4y36x2yP12xyQ u(x,y)x3x2dxy(4y36x2 x3y43x2y2

x3y43x2y2Cy2(3)易知,Py3,Q .因P6xQu(x,y)

x2xdx

y13x21 1

4dyy x2 x2x2 1即

y3x2y2 x2y2 1C1(或

Cx2y2Cy3(1)(x2y)dxxdy0 (2)y2(x3y)dx(13xy2)dy0解(1)

第十一章方程習(xí)題詳1ydx1dy0 x2 x 即

dx

dx

y0x即1

xyCxxy2dx3y3dxdy3xy2dyxy2dxdy3(y3dxxy2dy) xdx1dy3(ydxxdy)0d1x2d13d(xy)0 y 1 d1x2 3xy0

1x213xyC xy2y4lnx (2)yytanxx2此方程兩端乘以exdxx22

y2y4lnx 即

x2y2xy4xlnx(x2y)4xlnxx2y4xlnxdx2x2lnxx2Cy2lnx1C方程兩端乘以etanxdxcosxycosxysinxxcosx即(ycosx)xcosx

ycosxxcosxdxxsinxcosxCyxtanx1 cos(1)y1 (2)yxex (3)y(5)1y(4)01 1dxCarctanxC

ln(1x2)CxC

2 21yxexdxCxexexCy(xexexC1)dxC2xex2exC1xC2y(xex2exCxC)dxCxex3exC1x2CxC (C1也可以直接寫成C zy(4,則有dz1z0zCx

d4

yCx5Cx3Cx2C (1)yyx (2)xyy0(3)y3y10 (4)yy3y(1)ypypppxpedxxedxdxCexxexdxC 即

exxexexC1x1C1expx1C1exy(x1Cex)dx1x2xCexC ypyp

xpp0dpdx lnpln1lnC 第十一章方程習(xí)題詳即

pC1xyC1dxClnxC ypypdp

y3pdp10pdp1dyp21C 故C1|yCy2C1|yCy2

|y|dydxCy2由于|y|yCy2sgn( dx,即sgn( CxCCy2CCy2Cy21

Cy21CxC ypypdppdpp3p

(1p2) p0yCyC是原方程的解,但不是通0.于是

dp(1p2)0

dpdy1 arctanpyC1ptanyC1lnsinyC1xlnC2即

sinyC1C2exyarcsinCexCx (1)yxsinx,y(0)1,y(0)2(2)(1x2)y2xy,y(0)1,y(0)3(3)ye2y,y(0)0,y(0)0yy21,y(0)0,y(0)0(1)y1x2cosxCy1x3sinxCxC y(0)2,知201C1,得C11y(0)1,知1000C2,得C21.故特解為y1x3sinxx1.ypyp(1x2)p2xp

1dpp

dx

ypC(1x2)1yC(x1x3)C1 11C13 C21

yx33xypypdpdpdpe2ypdpe2ydyd

1p21e2yC 第十一章方程習(xí)題詳即

C1 1p21e2y1p2e2y1 y dydxd(ey得

dx即

arcsin(ey)xC2C eysinx ylncosxlnsecxypypdpd

pdpp21,dy

1

dpdy1ln(1p2)yC2

C10

y1ln(1p2),即yp 2 dydx,即d(ey)dyd2

arch(ey)xCC20arch(eyx,即eych(x

ylnch(x)2y1x1M2

21

yx, 1, y1x2C

y1x2CxC 1 1 C1,

1

y1x21x1 對任意的x0yf(x)(x,f(x))處的切線在y軸上的截距等于1xf(t)dtf(xxyf(xyf(x有二階導(dǎo)數(shù),則在點(diǎn)M(x,f(xYf(x)f(x)(Xx)

Yf(x)xf(x)1xf(t)dtf(xxf(xxf(xx2f(xxf(t)dtx即

f(x)xf(x)2xf(x)x2f(x)f(x)xf(x)xf(x)f(x)xf(x)ypyppxdp0,dx

1dp1dx 第十一章方程習(xí)題詳

lnplnClnxypC1 yC1lnxC2f(xC1lnxC2(1)ex,ex (2)3sin2x,1cos2xcos2x,sin2x (1)yexyex y1y

e

e2x2所以函數(shù)組exex是線性無y13sin2xy21cos2x 3sin21 3, 1cos2所以函數(shù)組3sin2x,1cos2xy1cos2xy2sin2xy1cos2xcot2x sin所以函數(shù)組cos2xsin2xy1xlnxx ln2ycosxysinxy2cosx ysinxycosxy2sinx2

iy2sinx0(i1,2)i

y1cotxycosxysinx為yex2y

yy1y2C1cosxC2sinx yex2y2xex2y(24x2ex2 yxex2y12x2ex2y6x4x3ex2 y4xy(4x22)y(24x2)ex24x2xex2(4x22)ex2 y4xy(4x22)y(6x4x3)ex24x(12x2)ex2(4x22)xex2 yex2yxex2y4xy4x22y0 y2xyex2yxex2y y1yy

(CCx)ex2 y3y3x2y3x2ex yP(x)yQ(x)yf(x)(f(x)0P(xQ(xf(xyyx2yyexx2及exyP(xyQ(xyf(x 齊次方程的特解.又因?yàn)?2 常數(shù),所以y2y1與y3y2線性無關(guān).因此,所給y yP(xyQ(xyf(x yCx2Cex3 (1)y4y0 (2)y3y10y0(3)9y6yy0 (4)yy0y6y25y0 (6)y(4)5y36y0r24r0

r10,r24

yC1C2e4x

r23r10r15,r22 yCe5xCe2x

9r26r1r

1

1y(C1C2x)e3

r210r1i,r2iyC1cosxC2sinx第十一章方程習(xí)題詳

r26r250r134i,r234iye3x(C1cos4xC2sin4x)r45r2360,即(r29)(r24)

r1,22,r3,43iyCe2xCe2xCcos3xCsin3x (1)y4y3y0, 6, (2)4y4yy0, 2, 0 x x (3)y25y0, 2, 5 x x y4y13y0, 0, r24r30

r11,r23

yC1exC2yCex

e3xe3x代入初始條件

10

C1C2C3C

C1C

y4ex2e3x4r24r10r1

1y(C1C2x)e2 1

1

1yC2e2

C1e2

C2xe2 2, 0, x xC

CC2 C1

C1y(2x)e2

r2250r1,25iyC1cos5xC2sin5xy5C1sin5x5C2cos5x 2, C15C C1Cy2cos5xsin5x

r24r130r1,223i

ye2x(Ccos3xCsin3x) ye2x[(2C3C)cos3x(2C3C)sin 代入初始條件 0,

2C3C C1Cye2xsin3xxA在水平面處,又排水第十一章方程習(xí)題詳

mx1000gR2x記 m

x2x0解其對應(yīng)的特征方程r220,得rixCcostCsintAsin(t),A

,sinC1C2C2 由于振動(dòng)周期T22

m 195(千克求下列微分方程的特解y*的形式(不必求出待定系數(shù)(1)y3y3x21 (2)yyx(3)y2yyex (4)y2y3yexy3y2yxex (6)y2y(x2x3)ex(7)y7y6ye2xsinx (8)y4y5ye2xsinx(9)y2y2y2xe2xcosx (10)y2y2yxexsinx(1)f(x3x21是exP(x型(P(x3x210)

r230y*Ax2BxC(A、BC為待定系數(shù)f(xx是exP(x型(P(xx0 r2r0y*xAxBAx2Bx(AB為待定系數(shù)f(xex是exP(x型(P(x11 r22r10y*Ax2ex(A為待定系數(shù) r22r30y*Axex(A為待定系數(shù) r23r20y*xAxBexAx2Bxex(AB為待定系數(shù)f(xx2x3ex是exP(x型(P(xx2x31)

r22r0y*Ax2BxCex(A、BC為待定系數(shù)f(xe2xsinx屬于exP(xcosxP(xsinx型(其中2,1,P(x)0 r27r60y*e2xAcosxBsinx)(A、B為待定系數(shù)f(xe2xsinx屬于exP(xcosxP(xsinx型(其中2,1,P(x)0 r24r50y*xe2xAcosxBsinx)](AB為待定系數(shù)(9)f(x2xe2xcosxexPl(xcosxPn(xsinx型(21Pl(x)2xPn(x)0.對應(yīng)齊次方程的特征方程r22r20y*e2xAxBcosxCxDsinx)](A、B、CD為待定系數(shù)(10)f(xxexsinx屬于exP(xcosxP(xsinx(其中1,1,P(x)0 r22r20y*xe2x(AxB)cosx(CxD)sin

(1)2yyy2ex (2)y3y2y3xexy6y9y(x1)e3x (4)yyexcosx(1)f(x2ex是exP(x型(P(x21 2r2r10r1,r

1YCe2Cex1 y*Aex 消去ex,有A1,2AexAexAex2ex.第十一章方程習(xí)題詳

y*ex1yYy*Ce2Cexex f(x3xex是exP(x型(P(x3x1m

r23r20r11,r22 YCexCe2x y*x(AxB)ex(Ax2Bx)ex代入原方程并消去ex,得

2Ax(2AB)3xA3,B32即y*3即

ex

yYy*CexCe2x

x2

ex2 2 f(xx1e3x是exP(x型(P(xx13

r26r90r1,23 Y(CCx)e3x y*x2(AxB)e3x(Ax3Bx2)e3x代入原方程并消去ex,得

6Ax2Bx1A1,B1 即y*即

x3

3x 3

yYy*(CCx)e3x1x31x2e3x r21

r1,2iYC1cosxC2sinx1122即

y*y*y*Aexx(BcosxCsinx)2Aex2Ccosx2Bsinxexcosx, A1,B0,C1 y*1ex1xsinx yYy*CcosxCsinx1ex1xsinx yf(xxf(x2sinxf(x,試求f(x).yf(xyy2sinxy(0)0y(00,可解得方程yy2sinx的通解為 yYy*CcosxCsinx2 2

xcosx

C21 1C2 C C

y2cosx1sinx21xcosx 設(shè)函數(shù)(x)連續(xù),且滿足(x)exx(tx)(t)dt,求(x)0解由于函數(shù)(x)連續(xù),故0x(tx)(t)dt (x)exxt(t)dtxx(t)dt (x)exx(x)x(t)dtx(x)exx(t)dt

(x)ex(x)(x)ex(x),(0)1,(0)第十一章方程習(xí)題詳可解得方程(x)ex(x)(x)

cosx

sinx1ex2由定解條件(0)1,(0)1,可解得CC1 (x)1(cosxsinxex).設(shè)tx(t

dxxddxax(NxNd

dx(axb)(Nx)d t=0OA點(diǎn),OA=6里.此時(shí)艇潛入水中20里/40里/小時(shí)按照O點(diǎn)為原點(diǎn)建立極坐標(biāo)系(r,A點(diǎn)位于0的向徑上,見右圖.分析圖中AP0P0沿一條

Q(r,d

R(rdr,d)A解(1)證明記飛機(jī)速度u40里/小時(shí),艇速v20里/PR是所求航線上的一段,即當(dāng)潛艇沿航行時(shí)飛機(jī)、潛艇在(r,相遇(1),那么當(dāng)潛艇沿航行時(shí),二者必在(rr,PR弧長為dsdsu2,注意到(ds)2dr)2rd)2d 即可得到rre(03,這是一條對數(shù)螺線,(r,是滿足OPAP2P 0 Q(r,dr

R(rddd)

d 圖 圖

dr3于rre,夾角 33 1 3與

drd )drd ) 圖 圖(2,00

P*P*的向徑r2e2 2程,因?yàn)閡2v,故飛機(jī)最短航線的長度為22 同理,光滑航線的長度為223 260里3如果計(jì)算螺線的長度,則需rr0 3

復(fù)習(xí)題第十一章方程習(xí)題詳

ex2yxex2yp(xyq(xy0的解(p(x、q(x2是已知的連續(xù)函數(shù))則該方程的通為1 yf(x

0,20 2

,且曲線上任意一點(diǎn)Mx,y處的切線 微分方程y2yy6xex的特解y*的形式

x2yx2e2xyx2e2xe5xyp(xyq(xyf ()yyyCyCyCCxex 1 2 f(xxln(1x2f(x)f(x)dxxln(1x2)d1[(1x2)ln(1x2)x2]C2f(0)1,知C0222 為r22r10y*x2AxBex(AB為待定系數(shù)yye2xyye5x都是對應(yīng)齊次方程的解,并且線性無關(guān),故對應(yīng)

YCe2xCe5x yYy*Ce2xCe5xx2 函數(shù)yCe2xC2(C、C為任意常數(shù))是方程yy2y0的 方程2xydy5x4ydx是(

ex,y22xex,y33ex的三階常系數(shù)齊次線性微分方程 (A)yyyy0 (B)yyyy0(C)y6y11y6y0 (D)y2yy2y0微分方程yyex1的一個(gè)特解應(yīng)具有形式(式a、b為常數(shù) (A)aexb (B)axexb (C)aexbx (D)axexbx (1)yCe2xC2Ce2x(CCeC2 是通解,又不是特解.而C 滿足所給方程,所以是所給方程的解.應(yīng)選(D方程2xydy5x4ydx可變dy5x4y 2x由于y1y2y3可知r1,21是特征方程的二重根且r31.于是所給方程對應(yīng)的本題應(yīng)選(B).

(r1)2(r1)r3r2r10yyyy0r1,21yyexf(xex1是特征方程的(單)y*axex 2yy1f2(x10不是特征方程的根,故該方程的特解應(yīng)形y*b.2 y*y*y*axexb 本題應(yīng)選(B.(1)xyy (2)dy

y;2(lny ydyy22x (4)y43x2dyxydx0 (5)xdxydyydxxdy0 (6)yy2yx(ex4)x21d 1 y d d 11d 1d d

y2 令zy2,則 y ,y d d d d

dzd

1z1xx1dx

1dxdxC 1 C)xze2 x

e2

xxCxdx2x2lny 2dy 2d xe ylnye

dyC12ylnydyClny y2 zy2dz2ydyd ddz2z4xd第十一章方程習(xí)題詳或

ze2dx4xe2dxdxC2x1Ce2x y22x1Ce2xdx3x1y3d xdx3x2y3d zx2dz2xdxd d

dz6z2y3d 6dy 6d ze

2y3e dyCy6

dyCCy6y43

x2Cy6y4

ydx

ydx

2x x由于x2

x

dy

y2 1 y為

x2 y2 x 0 x2 x arctan0 x2y22arctanxCy原方程對應(yīng)的齊次方程的特征方程為r3r22r0,有根r0,r1,r2 故對應(yīng)齊次方程的通解為YCCexCe2x 1yy2yxexf1(xxex,其中1是特征方程的(單)根,故可令y*xAxBexyy2yxex中并消去ex,得1

6Ax8A3BxA16A 解得 B,B,

1

4

ex yy2y4xf2x4x,其中0是特征方程的(單)2y*x(CxDyy2yxex2

4Cx2C2D4x4C2C2D

解得CD 2y*x2x2 根據(jù)線性方程解的疊加原理得y*y*y*原方程yy2yx(ex4)的特解,故原方 1 4 yYy*CCexCe2x x2 xexx2x 9 (1)y3dx2(x2xy2)dy0, 1 (2)y2y20, 0, x x(3)2ysin2y0, ,

1(4)y2yycosx,

0,

32dx2x2x2x2dx2x12 zx1dzx2dx,即dzx2dxd d d ddz2z2d 2dy22d ze即

3yyyy

dyC

(2lnyC)x11(2lnyC)

1,可得C1x11(2lny1y22xlnyxypypdp2p20d

1dp2dx11 2xC,或p 1p即dyd

2x2,2xyx01代入上式,可得C11dyd

,2x第十一章方程習(xí)題詳

y1ln(2x1)C y1ln(2x1).ypypdpdpdpsin2y,即2pdpsin2ydyd

p21cos2yC , 1代入上式,可解得C1.從而 y21cos2ysin2yysiny2

dsin yln xln

dx,或tanyCex

2 代入上式,可解得C1 tanyexy2arctanex2f(xcosx屬于exP(xcosxP(xsinx型(其中01P(x)1 Pn(x)0對應(yīng)齊次方程的特征方程r22r10

Y(C1C2x)exy*AcosxBsinx

y*AsinxBcosx,y*AcosxBsinx Bsinx)2(AsinxBcosx)AcosxBsinxcosx 2Asinx2Bcosxcosxc sxy*1sinx2

A0,B 2yYy*(CCx)ex1sinx yCex(CCx)ex1cosx

0 3 C C2C1 yxex1sinx2x設(shè)可導(dǎo)函數(shù)(x)滿足(xcosx20(tsintdtx1,求函數(shù)(x)x(x)cosx(x)sinx2(x)sinx1即(x(xtanxsecx,且有(0)0故(x)etanxdxsecxetanxdxdxC cosxsecx1dxC cos Ccosxx.由初值條件(0)1,有1C,故所求的特

(x)cosxsinx(1)x2y3xyy0 (2)x2y4xy6yx(1)xet,即tlnxdydydt1d d2y1d2ydyd dtd xdt,d x2dt dt,

d2ydy3dy d dt 即

d 0d2y2dyy0

dt dy(CCt)et1(CClnx) (2)xet,即tlnx

dydydt1d d2y1d2ydy

d dtd xdt,d x2dt dt, 第十一章方程習(xí)題詳 d dt 即

d

6yed2 d 5 6ye

dt d YCe2tCe3t A12yYy*Ce2tCe3t

1etCx2Cx31x 復(fù)習(xí)題微分方程y4ye2x的通解 yex(CsinxCcosx(C、C為任意常數(shù))

; 11

,

1的曲線方程 )

f(xe2x2y*Axe2xA14yCe2xCe2x1xe2x

dy3dx 即

yC11CC1C(其中CC12 由所給通解的表達(dá)式知,r1,21i是所求微分方程的特征方程的根,于是特征為r22r20

y2y20 y ,11

arcsin dx d y 1x2arcsin

arcsinx

1x2arcsin dxC 即y (xC)arcsinx1y0,得C1 xy

2arcsinC1、C2為任意常數(shù),則該非齊次方程的通解是 (A)C1y1C2y2y3 (B)C1y1C2y2(C1C2)y3(C)C1y1C2y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論