河南省洛陽(yáng)市第一高中2023屆高三(最后沖刺)數(shù)學(xué)試卷含解析_第1頁(yè)
河南省洛陽(yáng)市第一高中2023屆高三(最后沖刺)數(shù)學(xué)試卷含解析_第2頁(yè)
河南省洛陽(yáng)市第一高中2023屆高三(最后沖刺)數(shù)學(xué)試卷含解析_第3頁(yè)
河南省洛陽(yáng)市第一高中2023屆高三(最后沖刺)數(shù)學(xué)試卷含解析_第4頁(yè)
河南省洛陽(yáng)市第一高中2023屆高三(最后沖刺)數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,,,則()A. B. C. D.2.若,則()A. B. C. D.3.已知雙曲線:(,)的右焦點(diǎn)與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長(zhǎng)為,則雙曲線的離心率為()A.2 B. C. D.34.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則()A.21 B.22 C.11 D.125.已知,,,,則()A. B. C. D.6.己知集合,,則()A. B. C. D.7.二項(xiàng)式展開(kāi)式中,項(xiàng)的系數(shù)為()A. B. C. D.8.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.9.等比數(shù)列的前項(xiàng)和為,若,,,,則()A. B. C. D.10.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個(gè)面所在的平面與直線相交的平面?zhèn)€數(shù)分別記為,則下列結(jié)論正確的是()A. B. C. D.11.中國(guó)古代中的“禮、樂(lè)、射、御、書(shū)、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂(lè)”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書(shū)”,指各種歷史文化知識(shí);“數(shù)”,指數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開(kāi)展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門(mén)課程相鄰排課,則“六藝”課程講座不同的排課順序共有()A.12種 B.24種 C.36種 D.48種12.函數(shù)的大致圖象是A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點(diǎn)為,其準(zhǔn)線與坐標(biāo)軸交于點(diǎn),過(guò)的直線與拋物線交于兩點(diǎn),若,則直線的斜率________.14.運(yùn)行下面的算法偽代碼,輸出的結(jié)果為_(kāi)____.15.某中學(xué)數(shù)學(xué)競(jìng)賽培訓(xùn)班共有10人,分為甲、乙兩個(gè)小組,在一次階段測(cè)試中兩個(gè)小組成績(jī)的莖葉圖如圖所示,若甲組5名同學(xué)成績(jī)的平均數(shù)為81,乙組5名同學(xué)成績(jī)的中位數(shù)為73,則x-y的值為_(kāi)_______.16.若雙曲線的離心率為,則雙曲線的漸近線方程為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),為的導(dǎo)數(shù),函數(shù)在處取得最小值.(1)求證:;(2)若時(shí),恒成立,求的取值范圍.18.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)當(dāng)時(shí),求實(shí)數(shù)的取值范圍.19.(12分)已知函數(shù),且曲線在處的切線方程為.(1)求的極值點(diǎn)與極值.(2)當(dāng),時(shí),證明:.20.(12分)在中,角的對(duì)邊分別為,且.(1)求角的大?。唬?)已知外接圓半徑,求的周長(zhǎng).21.(12分)已知.(1)若的解集為,求的值;(2)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.22.(10分)設(shè)函數(shù).(1)若,求實(shí)數(shù)的取值范圍;(2)證明:,恒成立.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

求得集合中函數(shù)的值域,由此求得,進(jìn)而求得.【詳解】由,得,所以,所以.故選:A【點(diǎn)睛】本小題主要考查函數(shù)值域的求法,考查集合補(bǔ)集、交集的概念和運(yùn)算,屬于基礎(chǔ)題.2、D【解析】

直接利用二倍角余弦公式與弦化切即可得到結(jié)果.【詳解】∵,∴,故選D【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變變換,同角三角函數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.3、A【解析】

由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因?yàn)閳A被雙曲線的一條漸近線截得的弦長(zhǎng)為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點(diǎn)睛】本題考查雙曲線離心率的問(wèn)題,涉及到直線與圓的位置關(guān)系,考查學(xué)生的運(yùn)算能力,是一道容易題.4、A【解析】

由題意知成等差數(shù)列,結(jié)合等差中項(xiàng),列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項(xiàng).對(duì)于等差數(shù)列,一般用首項(xiàng)和公差將已知量表示出來(lái),繼而求出首項(xiàng)和公差.但是這種基本量法計(jì)算量相對(duì)比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計(jì)算量大大減少.5、D【解析】

令,求,利用導(dǎo)數(shù)判斷函數(shù)為單調(diào)遞增,從而可得,設(shè),利用導(dǎo)數(shù)證出為單調(diào)遞減函數(shù),從而證出,即可得到答案.【詳解】時(shí),令,求導(dǎo),,故單調(diào)遞增:∴,當(dāng),設(shè),,又,,即,故.故選:D【點(diǎn)睛】本題考查了作差法比較大小,考查了構(gòu)造函數(shù)法,利用導(dǎo)數(shù)判斷式子的大小,屬于中檔題.6、C【解析】

先化簡(jiǎn),再求.【詳解】因?yàn)?,又因?yàn)?,所以,故選:C.【點(diǎn)睛】本題主要考查一元二次不等式的解法、集合的運(yùn)算,還考查了運(yùn)算求解能力,屬于基礎(chǔ)題.7、D【解析】

寫(xiě)出二項(xiàng)式的通項(xiàng)公式,再分析的系數(shù)求解即可.【詳解】二項(xiàng)式展開(kāi)式的通項(xiàng)為,令,得,故項(xiàng)的系數(shù)為.故選:D【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的運(yùn)算,屬于基礎(chǔ)題.8、A【解析】

由題先畫(huà)出基本圖形,結(jié)合向量加法和點(diǎn)乘運(yùn)算化簡(jiǎn)可得,結(jié)合的范圍即可求解【詳解】如圖,其中,所以.故選:A【點(diǎn)睛】本題考查向量的線性運(yùn)算在幾何中的應(yīng)用,數(shù)形結(jié)合思想,屬于中檔題9、D【解析】試題分析:由于在等比數(shù)列中,由可得:,又因?yàn)?,所以有:是方程的二?shí)根,又,,所以,故解得:,從而公比;那么,故選D.考點(diǎn):等比數(shù)列.10、A【解析】

根據(jù)題意,畫(huà)出幾何位置圖形,由圖形的位置關(guān)系分別求得的值,即可比較各選項(xiàng).【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個(gè)面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個(gè)面所在平面均相交,∴,∴結(jié)合四個(gè)選項(xiàng)可知,只有正確.故選:A.【點(diǎn)睛】本題考查了空間幾何體中直線與平面位置關(guān)系的判斷與綜合應(yīng)用,對(duì)空間想象能力要求較高,屬于中檔題.11、C【解析】

根據(jù)“數(shù)”排在第三節(jié),則“射”和“御”兩門(mén)課程相鄰有3類(lèi)排法,再考慮兩者的順序,有種,剩余的3門(mén)全排列,即可求解.【詳解】由題意,“數(shù)”排在第三節(jié),則“射”和“御”兩門(mén)課程相鄰時(shí),可排在第1節(jié)和第2節(jié)或第4節(jié)和第5節(jié)或第5節(jié)和第6節(jié),有3種,再考慮兩者的順序,有種,剩余的3門(mén)全排列,安排在剩下的3個(gè)位置,有種,所以“六藝”課程講座不同的排課順序共有種不同的排法.故選:C.【點(diǎn)睛】本題主要考查了排列、組合的應(yīng)用,其中解答中認(rèn)真審題,根據(jù)題設(shè)條件,先排列有限制條件的元素是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于基礎(chǔ)題.12、A【解析】

利用函數(shù)的對(duì)稱性及函數(shù)值的符號(hào)即可作出判斷.【詳解】由題意可知函數(shù)為奇函數(shù),可排除B選項(xiàng);當(dāng)時(shí),,可排除D選項(xiàng);當(dāng)時(shí),,當(dāng)時(shí),,即,可排除C選項(xiàng),故選:A【點(diǎn)睛】本題考查了函數(shù)圖象的判斷,函數(shù)對(duì)稱性的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求出拋物線焦點(diǎn)坐標(biāo),由,結(jié)合向量的坐標(biāo)運(yùn)算得,直線方程為,代入拋物線方程后應(yīng)用韋達(dá)定理得,,從而可求得,得斜率.【詳解】由得,即聯(lián)立得解得或,∴.故答案為:.【點(diǎn)睛】本題考查直線與拋物線相交,考查向量的線性運(yùn)算的坐標(biāo)表示.直線方程與拋物線方程聯(lián)立后消元,應(yīng)用韋達(dá)定理是解決直線與拋物線相交問(wèn)題的常用方法.14、【解析】

模擬程序的運(yùn)行過(guò)程知該程序運(yùn)行后計(jì)算并輸出的值,用裂項(xiàng)相消法求和即可.【詳解】模擬程序的運(yùn)行過(guò)程知,該程序運(yùn)行后執(zhí)行:.故答案為:【點(diǎn)睛】本題考查算法語(yǔ)句中的循環(huán)語(yǔ)句和裂項(xiàng)相消法求和;掌握循環(huán)體執(zhí)行的次數(shù)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.15、【解析】

根據(jù)莖葉圖中的數(shù)據(jù),結(jié)合平均數(shù)與中位數(shù)的概念,求出x、y的值.【詳解】根據(jù)莖葉圖中的數(shù)據(jù),得:甲班5名同學(xué)成績(jī)的平均數(shù)為,解得;又乙班5名同學(xué)的中位數(shù)為73,則;.故答案為:.【點(diǎn)睛】本題考查莖葉圖及根據(jù)莖葉圖計(jì)算中位數(shù)、平均數(shù),考查數(shù)據(jù)分析能力,屬于簡(jiǎn)單題.16、【解析】

利用,得到的關(guān)系式,然后代入雙曲線的漸近線方程即可求解.【詳解】因?yàn)殡p曲線的離心率為,所以,即,因?yàn)殡p曲線的漸近線方程為,所以雙曲線的漸近線方程為.故答案為:【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì);考查運(yùn)算求解能力;熟練掌握雙曲線的幾何性質(zhì)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2).【解析】

(1)對(duì)求導(dǎo),令,求導(dǎo)研究單調(diào)性,分析可得存在使得,即,即得證;(2)分,兩種情況討論,當(dāng)時(shí),轉(zhuǎn)化利用均值不等式即得證;當(dāng),有兩個(gè)不同的零點(diǎn),,分析可得的最小值為,分,討論即得解.【詳解】(1)由題意,令,則,知為的增函數(shù),因?yàn)?,,所以,存在使得,即.所以,?dāng)時(shí),為減函數(shù),當(dāng)時(shí),為增函數(shù),故當(dāng)時(shí),取得最小值,也就是取得最小值.故,于是有,即,所以有,證畢.(2)由(1)知,的最小值為,①當(dāng),即時(shí),為的增函數(shù),所以,,由(1)中,得,即.故滿足題意.②當(dāng),即時(shí),有兩個(gè)不同的零點(diǎn),,且,即,若時(shí),為減函數(shù),(*)若時(shí),為增函數(shù),所以的最小值為.注意到時(shí),,且此時(shí),(?。┊?dāng)時(shí),,所以,即,又,而,所以,即.由于在下,恒有,所以.(ⅱ)當(dāng)時(shí),,所以,所以由(*)知時(shí),為減函數(shù),所以,不滿足時(shí),恒成立,故舍去.故滿足條件.綜上所述:的取值范圍是.【點(diǎn)睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合,考查了利用導(dǎo)數(shù)研究函數(shù)的最值和不等式的恒成立問(wèn)題,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,分類(lèi)討論,數(shù)學(xué)運(yùn)算能力,屬于較難題.18、(1)(2)當(dāng)時(shí),的取值范圍為;當(dāng)時(shí),的取值范圍為.【解析】

(1)當(dāng)時(shí),分類(lèi)討論把不等式化為等價(jià)不等式組,即可求解.(2)由絕對(duì)值的三角不等式,可得,當(dāng)且僅當(dāng)時(shí),取“”,分類(lèi)討論,即可求解.【詳解】(1)當(dāng)時(shí),,不等式可化為或或,解得不等式的解集為.(2)由絕對(duì)值的三角不等式,可得,當(dāng)且僅當(dāng)時(shí),取“”,所以當(dāng)時(shí),的取值范圍為;當(dāng)時(shí),的取值范圍為.【點(diǎn)睛】本題主要考查了含絕對(duì)值的不等式的求解,以及絕對(duì)值三角不等式的應(yīng)用,其中解答中熟記含絕對(duì)值不等式的解法,以及合理應(yīng)用絕對(duì)值的三角不等式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.19、(1)極小值點(diǎn)為,極小值為,無(wú)極大值;(2)證明見(jiàn)解析【解析】

先對(duì)函數(shù)求導(dǎo),結(jié)合已知及導(dǎo)數(shù)的幾何意義可求,結(jié)合單調(diào)性即可求解函數(shù)的極值點(diǎn)及極值;令,問(wèn)題可轉(zhuǎn)化為求解函數(shù)的最值,結(jié)合導(dǎo)數(shù)可求.【詳解】(1)由題得函數(shù)的定義域?yàn)?,由已知得,解得∴,令,得令,得,∴在上單調(diào)遞增.令,得∴在上單調(diào)遞減∴的極小值點(diǎn)為,極小值為,無(wú)極大值.(2)證明:由(1)知,∴,令,即∵,,∴恒成立.∴在上單調(diào)遞增又,∴在上恒成立∴在上恒成立∴,即∴【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的極值問(wèn)題,考查利用導(dǎo)數(shù)證明不等式,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于中檔題.20、(1)(2)3+3【解析】

(1)利用余弦的二倍角公式和同角三角函數(shù)關(guān)系式化簡(jiǎn)整理并結(jié)合范圍0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周長(zhǎng).【詳解】(1),即又(2),∵,∴由余弦定理得a2=b2+c2﹣2bccosA,∴,∵c>0,所以得c=2,∴周長(zhǎng)a+b+c=3+3.【點(diǎn)睛】本題考查三角函數(shù)恒等變換的應(yīng)用,正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.21、(1);(2)【解析】

(1)利用兩邊平方法解含有絕對(duì)值的不等式,再根據(jù)根與系數(shù)的關(guān)系求出的值;(2)利用絕對(duì)值不等式求出的最小值,把不等式化為只含有的不等式,求出不等式解集即可.【詳解】(1)不等式,即兩邊平方整理得由題意知和是方程的兩個(gè)實(shí)數(shù)根即,解得(2)因?yàn)樗砸共坏仁胶愠闪?,只需?dāng)時(shí),,解得,即;當(dāng)時(shí),,解得,即;綜上所述,的取值范圍是【點(diǎn)睛】本題考查了含有絕對(duì)值的不等式解法與應(yīng)用問(wèn)題,也考查了分類(lèi)討論思

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論