版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.中國(guó)古代用算籌來(lái)進(jìn)行記數(shù),算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個(gè)多位數(shù)時(shí),像阿拉伯記數(shù)一樣,把各個(gè)數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,其中個(gè)位、百位、方位……用縱式表示,十位、千位、十萬(wàn)位……用橫式表示,則56846可用算籌表示為()A. B. C. D.2.已知的部分圖象如圖所示,則的表達(dá)式是()A. B.C. D.3.已知F是雙曲線(xiàn)(k為常數(shù))的一個(gè)焦點(diǎn),則點(diǎn)F到雙曲線(xiàn)C的一條漸近線(xiàn)的距離為()A.2k B.4k C.4 D.24.已知等差數(shù)列的前n項(xiàng)和為,且,,若(,且),則i的取值集合是()A. B. C. D.5.已知,為兩條不同直線(xiàn),,,為三個(gè)不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號(hào)為()A.②③ B.②③④ C.①④ D.①②③6.秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書(shū)九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入的值為2,則輸出的值為A. B. C. D.7.是的()條件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要8.我國(guó)古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國(guó)古代數(shù)學(xué)的重要文獻(xiàn).這5部專(zhuān)著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期.某中學(xué)擬從這5部專(zhuān)著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專(zhuān)著中至少有一部是漢、魏、晉、南北朝時(shí)期專(zhuān)著的概率為()A. B. C. D.9.已知變量的幾組取值如下表:12347若與線(xiàn)性相關(guān),且,則實(shí)數(shù)()A. B. C. D.10.?dāng)?shù)列滿(mǎn)足:,則數(shù)列前項(xiàng)的和為A. B. C. D.11.已知函數(shù)的定義域?yàn)?,且,?dāng)時(shí),.若,則函數(shù)在上的最大值為()A.4 B.6 C.3 D.812.已知函數(shù),若,,,則a,b,c的大小關(guān)系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)滿(mǎn)足:①是偶函數(shù);②的圖象關(guān)于點(diǎn)對(duì)稱(chēng).則同時(shí)滿(mǎn)足①②的,的一組值可以分別是__________.14.如圖所示,在正三棱柱中,是的中點(diǎn),,則異面直線(xiàn)與所成的角為_(kāi)___.15.為了抗擊新型冠狀病毒肺炎,某醫(yī)藥公司研究出一種消毒劑,據(jù)實(shí)驗(yàn)表明,該藥物釋放量與時(shí)間的函數(shù)關(guān)系為(如圖所示),實(shí)驗(yàn)表明,當(dāng)藥物釋放量對(duì)人體無(wú)害.(1)______;(2)為了不使人身體受到藥物傷害,若使用該消毒劑對(duì)房間進(jìn)行消毒,則在消毒后至少經(jīng)過(guò)______分鐘人方可進(jìn)入房間.16.(5分)國(guó)家禁毒辦于2019年11月5日至12月15日在全國(guó)青少年毒品預(yù)防教育數(shù)字化網(wǎng)絡(luò)平臺(tái)上開(kāi)展2019年全國(guó)青少年禁毒知識(shí)答題活動(dòng),活動(dòng)期間進(jìn)入答題專(zhuān)區(qū),點(diǎn)擊“開(kāi)始答題”按鈕后,系統(tǒng)自動(dòng)生成20道題.已知某校高二年級(jí)有甲、乙、丙、丁、戊五位同學(xué)在這次活動(dòng)中答對(duì)的題數(shù)分別是,則這五位同學(xué)答對(duì)題數(shù)的方差是____________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在以為頂點(diǎn)的五面體中,底面為菱形,,,,二面角為直二面角.(Ⅰ)證明:;(Ⅱ)求二面角的余弦值.18.(12分)已知點(diǎn)是拋物線(xiàn)的頂點(diǎn),,是上的兩個(gè)動(dòng)點(diǎn),且.(1)判斷點(diǎn)是否在直線(xiàn)上?說(shuō)明理由;(2)設(shè)點(diǎn)是△的外接圓的圓心,點(diǎn)到軸的距離為,點(diǎn),求的最大值.19.(12分)已知(1)若,且函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)a的范圍;(2)若函數(shù)有兩個(gè)極值點(diǎn),且存在滿(mǎn)足,令函數(shù),試判斷零點(diǎn)的個(gè)數(shù)并證明.20.(12分)在國(guó)家“大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對(duì)某種產(chǎn)品的研發(fā)投入.為了對(duì)新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格試銷(xiāo),得到一組檢測(cè)數(shù)據(jù)如表所示:試銷(xiāo)價(jià)格(元)產(chǎn)品銷(xiāo)量(件)已知變量且有線(xiàn)性負(fù)相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學(xué)通過(guò)計(jì)算求得回歸直線(xiàn)方程分別為:甲;乙;丙,其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的.(1)試判斷誰(shuí)的計(jì)算結(jié)果正確?(2)若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與檢測(cè)數(shù)據(jù)的誤差不超過(guò),則稱(chēng)該檢測(cè)數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測(cè)數(shù)據(jù)中隨機(jī)抽取個(gè),求“理想數(shù)據(jù)”的個(gè)數(shù)的分布列和數(shù)學(xué)期望.21.(12分)在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),將曲線(xiàn)上各點(diǎn)縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變)得到曲線(xiàn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.(1)寫(xiě)出的極坐標(biāo)方程與直線(xiàn)的直角坐標(biāo)方程;(2)曲線(xiàn)上是否存在不同的兩點(diǎn),(以上兩點(diǎn)坐標(biāo)均為極坐標(biāo),,),使點(diǎn)、到的距離都為3?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.22.(10分)如圖為某大江的一段支流,岸線(xiàn)與近似滿(mǎn)足∥,寬度為.圓為江中的一個(gè)半徑為的小島,小鎮(zhèn)位于岸線(xiàn)上,且滿(mǎn)足岸線(xiàn),.現(xiàn)計(jì)劃建造一條自小鎮(zhèn)經(jīng)小島至對(duì)岸的水上通道(圖中粗線(xiàn)部分折線(xiàn)段,在右側(cè)),為保護(hù)小島,段設(shè)計(jì)成與圓相切.設(shè).(1)試將通道的長(zhǎng)表示成的函數(shù),并指出定義域;(2)若建造通道的費(fèi)用是每公里100萬(wàn)元,則建造此通道最少需要多少萬(wàn)元?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)題意表示出各位上的數(shù)字所對(duì)應(yīng)的算籌即可得答案.【詳解】解:根據(jù)題意可得,各個(gè)數(shù)碼的籌式需要縱橫相間,個(gè)位,百位,萬(wàn)位用縱式表示;十位,千位,十萬(wàn)位用橫式表示,用算籌表示應(yīng)為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對(duì)應(yīng)算籌表示為中的.故選:.【點(diǎn)睛】本題主要考查學(xué)生的合情推理與演繹推理,屬于基礎(chǔ)題.2、D【解析】
由圖象求出以及函數(shù)的最小正周期的值,利用周期公式可求得的值,然后將點(diǎn)的坐標(biāo)代入函數(shù)的解析式,結(jié)合的取值范圍求出的值,由此可得出函數(shù)的解析式.【詳解】由圖象可得,函數(shù)的最小正周期為,.將點(diǎn)代入函數(shù)的解析式得,得,,,則,,因此,.故選:D.【點(diǎn)睛】本題考查利用圖象求三角函數(shù)解析式,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.3、D【解析】
分析可得,再去絕對(duì)值化簡(jiǎn)成標(biāo)準(zhǔn)形式,進(jìn)而根據(jù)雙曲線(xiàn)的性質(zhì)求解即可.【詳解】當(dāng)時(shí),等式不是雙曲線(xiàn)的方程;當(dāng)時(shí),,可化為,可得虛半軸長(zhǎng),所以點(diǎn)F到雙曲線(xiàn)C的一條漸近線(xiàn)的距離為2.故選:D【點(diǎn)睛】本題考查雙曲線(xiàn)的方程與點(diǎn)到直線(xiàn)的距離.屬于基礎(chǔ)題.4、C【解析】
首先求出等差數(shù)列的首先和公差,然后寫(xiě)出數(shù)列即可觀察到滿(mǎn)足的i的取值集合.【詳解】設(shè)公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.5、C【解析】
根據(jù)直線(xiàn)與平面,平面與平面的位置關(guān)系進(jìn)行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯(cuò)誤;若,,則可能平行,故③錯(cuò)誤;由線(xiàn)面垂直的性質(zhì)可得,④正確;故選:C【點(diǎn)睛】本題主要考查了判斷直線(xiàn)與平面,平面與平面的位置關(guān)系,屬于中檔題.6、C【解析】
由題意,模擬程序的運(yùn)行,依次寫(xiě)出每次循環(huán)得到的,的值,當(dāng)時(shí),不滿(mǎn)足條件,跳出循環(huán),輸出的值.【詳解】解:初始值,,程序運(yùn)行過(guò)程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循環(huán),輸出的值為其中①②①—②得.故選:.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫(xiě)出每次循環(huán)得到,的值是解題的關(guān)鍵,屬于基礎(chǔ)題.7、B【解析】
利用充分條件、必要條件與集合包含關(guān)系之間的等價(jià)關(guān)系,即可得出?!驹斀狻吭O(shè)對(duì)應(yīng)的集合是,由解得且對(duì)應(yīng)的集合是,所以,故是的必要不充分條件,故選B。【點(diǎn)睛】本題主要考查充分條件、必要條件的判斷方法——集合關(guān)系法。設(shè),如果,則是的充分條件;如果B則是的充分不必要條件;如果,則是的必要條件;如果,則是的必要不充分條件。8、D【解析】
利用列舉法,從這5部專(zhuān)著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有10種情況,所選2部專(zhuān)著中至少有一部是漢、魏、晉、南北朝時(shí)期專(zhuān)著的基本事件有9種情況,由古典概型概率公式可得結(jié)果.【詳解】《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,這5部專(zhuān)著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期.記這5部專(zhuān)著分別為,其中產(chǎn)生于漢、魏、晉、南北朝時(shí)期.從這5部專(zhuān)著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有共10種情況,所選2部專(zhuān)著中至少有一部是漢、魏、晉、南北朝時(shí)期專(zhuān)著的基本事件有,共9種情況,所以所選2部專(zhuān)著中至少有一部是漢、魏、晉、南北朝時(shí)期專(zhuān)著的概率為.故選D.【點(diǎn)睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時(shí),找準(zhǔn)基本事件個(gè)數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個(gè)數(shù)較少且易一一列舉出的;(2)樹(shù)狀圖法:適合于較為復(fù)雜的問(wèn)題中的基本亊件的探求.在找基本事件個(gè)數(shù)時(shí),一定要按順序逐個(gè)寫(xiě)出:先,….,再,…..依次….…這樣才能避免多寫(xiě)、漏寫(xiě)現(xiàn)象的發(fā)生.9、B【解析】
求出,把坐標(biāo)代入方程可求得.【詳解】據(jù)題意,得,所以,所以.故選:B.【點(diǎn)睛】本題考查線(xiàn)性回歸直線(xiàn)方程,由性質(zhì)線(xiàn)性回歸直線(xiàn)一定過(guò)中心點(diǎn)可計(jì)算參數(shù)值.10、A【解析】分析:通過(guò)對(duì)an﹣an+1=2anan+1變形可知,進(jìn)而可知,利用裂項(xiàng)相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數(shù)列前項(xiàng)的和為,故選A.點(diǎn)睛:裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時(shí)很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),常見(jiàn)的裂項(xiàng)技巧:(1);(2);(3);(4);此外,需注意裂項(xiàng)之后相消的過(guò)程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問(wèn)題,導(dǎo)致計(jì)算結(jié)果錯(cuò)誤.11、A【解析】
根據(jù)所給函數(shù)解析式滿(mǎn)足的等量關(guān)系及指數(shù)冪運(yùn)算,可得;利用定義可證明函數(shù)的單調(diào)性,由賦值法即可求得函數(shù)在上的最大值.【詳解】函數(shù)的定義域?yàn)?,且,則;任取,且,則,故,令,,則,即,故函數(shù)在上單調(diào)遞增,故,令,,故,故函數(shù)在上的最大值為4.故選:A.【點(diǎn)睛】本題考查了指數(shù)冪的運(yùn)算及化簡(jiǎn),利用定義證明抽象函數(shù)的單調(diào)性,賦值法在抽象函數(shù)求值中的應(yīng)用,屬于中檔題.12、D【解析】
根據(jù)題意,求出函數(shù)的導(dǎo)數(shù),由函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系分析可得在上為增函數(shù),又由,分析可得答案.【詳解】解:根據(jù)題意,函數(shù),其導(dǎo)數(shù)函數(shù),則有在上恒成立,則在上為增函數(shù);又由,則;故選:.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,涉及函數(shù)單調(diào)性的性質(zhì),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、,【解析】
根據(jù)是偶函數(shù)和的圖象關(guān)于點(diǎn)對(duì)稱(chēng),即可求出滿(mǎn)足條件的和.【詳解】由是偶函數(shù)及,可取,則,由的圖象關(guān)于點(diǎn)對(duì)稱(chēng),得,,即,,可取.故,的一組值可以分別是,.故答案為:,.【點(diǎn)睛】本題主要考查了正弦型三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.14、【解析】
要求兩條異面直線(xiàn)所成的角,需要通過(guò)見(jiàn)中點(diǎn)找中點(diǎn)的方法,找出邊的中點(diǎn),連接出中位線(xiàn),得到平行,從而得到兩條異面直線(xiàn)所成的角,得到角以后,再在三角形中求出角.【詳解】取的中點(diǎn)E,連AE,,易證,∴為異面直線(xiàn)與所成角,設(shè)等邊三角形邊長(zhǎng)為,易算得∴在∴故答案為【點(diǎn)睛】本題考查異面直線(xiàn)所成的角,本題是一個(gè)典型的異面直線(xiàn)所成的角的問(wèn)題,解答時(shí)也是應(yīng)用典型的見(jiàn)中點(diǎn)找中點(diǎn)的方法,注意求角的三個(gè)環(huán)節(jié),一畫(huà),二證,三求.15、240【解析】
(1)由時(shí),,即可得出的值;(2)解不等式組,即可得出答案.【詳解】(1)由圖可知,當(dāng)時(shí),,即(2)由題意可得,解得則為了不使人身體受到藥物傷害,若使用該消毒劑對(duì)房間進(jìn)行消毒,則在消毒后至少經(jīng)過(guò)分鐘人方可進(jìn)入房間.故答案為:(1)2;(2)40【點(diǎn)睛】本題主要考查了分段函數(shù)的應(yīng)用,屬于中檔題.16、2【解析】
由這五位同學(xué)答對(duì)的題數(shù)分別是,得該組數(shù)據(jù)的平均數(shù),則方差.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)見(jiàn)解析(Ⅱ)【解析】
(Ⅰ)連接交于點(diǎn),取中點(diǎn),連結(jié),證明平面得到答案.(Ⅱ)分別以為軸建立如圖所示的空間直角坐標(biāo)系,平面的法向量為,平面的法向量為,計(jì)算夾角得到答案.【詳解】(Ⅰ)連接交于點(diǎn),取中點(diǎn),連結(jié)因?yàn)闉榱庑?,所?因?yàn)?,所?因?yàn)槎娼菫橹倍娼?,所以平面平面,且平面平面,所以平面所以因?yàn)樗允瞧叫兴倪呅?,所?所以,所以,所以平面,又平面,所以.(Ⅱ)由(Ⅰ)可知兩兩垂直,分別以為軸建立如圖所示的空間直角坐標(biāo)系.設(shè)設(shè)平面的法向量為,由,取.平面的法向量為.所以二面角余弦值為.【點(diǎn)睛】本題考查了線(xiàn)線(xiàn)垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.18、(1)不在,證明見(jiàn)詳解;(2)【解析】
(1)假設(shè)直線(xiàn)方程,并于拋物線(xiàn)方程聯(lián)立,結(jié)合韋達(dá)定理,計(jì)算,可得,然后驗(yàn)證可得結(jié)果.(2)分別計(jì)算線(xiàn)段中垂線(xiàn)的方程,然后聯(lián)立,根據(jù)(1)的條件可得點(diǎn)的軌跡方程,然后可得焦點(diǎn),結(jié)合拋物線(xiàn)定義可得,計(jì)算可得結(jié)果.【詳解】(1)設(shè)直線(xiàn)方程,根據(jù)題意可知直線(xiàn)斜率一定存在,則則由所以將代入上式化簡(jiǎn)可得,所以則直線(xiàn)方程為,所以直線(xiàn)過(guò)定點(diǎn),所以可知點(diǎn)不在直線(xiàn)上.(2)設(shè)線(xiàn)段的中點(diǎn)為線(xiàn)段的中點(diǎn)為則直線(xiàn)的斜率為,直線(xiàn)的斜率為可知線(xiàn)段的中垂線(xiàn)的方程為由,所以上式化簡(jiǎn)為即線(xiàn)段的中垂線(xiàn)的方程為同理可得:線(xiàn)段的中垂線(xiàn)的方程為則由(1)可知:所以即,所以點(diǎn)軌跡方程為焦點(diǎn)為,所以當(dāng)三點(diǎn)共線(xiàn)時(shí),有最大所以【點(diǎn)睛】本題考查直線(xiàn)于拋物線(xiàn)的綜合應(yīng)用,第(1)問(wèn)中難點(diǎn)在于計(jì)算處,第(2)問(wèn)中關(guān)鍵在于得到點(diǎn)的軌跡方程,直線(xiàn)與圓錐曲線(xiàn)的綜合常常要聯(lián)立方程,結(jié)合韋達(dá)定理,屬難題.19、(1)(2)函數(shù)有兩個(gè)零點(diǎn)和【解析】試題分析:(1)求導(dǎo)后根據(jù)函數(shù)在區(qū)間單調(diào)遞增,導(dǎo)函數(shù)大于或等于0(2)先判斷為一個(gè)零點(diǎn),然后再求導(dǎo),根據(jù),化簡(jiǎn)求得另一個(gè)零點(diǎn)。解析:(1)當(dāng)時(shí),,因?yàn)楹瘮?shù)在上單調(diào)遞增,所以當(dāng)時(shí),恒成立.[來(lái)源:Z&X&X&K]函數(shù)的對(duì)稱(chēng)軸為.①,即時(shí),,即,解之得,解集為空集;②,即時(shí),即,解之得,所以③,即時(shí),即,解之得,所以綜上所述,當(dāng)函數(shù)在區(qū)間上單調(diào)遞增.(2)∵有兩個(gè)極值點(diǎn),∴是方程的兩個(gè)根,且函數(shù)在區(qū)間和上單調(diào)遞增,在上單調(diào)遞減.∵∴函數(shù)也是在區(qū)間和上單調(diào)遞增,在上單調(diào)遞減∵,∴是函數(shù)的一個(gè)零點(diǎn).由題意知:∵,∴,∴∴,∴又=∵是方程的兩個(gè)根,∴,,∴∵函數(shù)圖像連續(xù),且在區(qū)間上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增∴當(dāng)時(shí),,當(dāng)時(shí),當(dāng)時(shí),∴函數(shù)有兩個(gè)零點(diǎn)和.20、(1)乙同學(xué)正確(2)分布列見(jiàn)解析,【解析】
(1)由已知可得甲不正確,求出樣本中心點(diǎn)代入驗(yàn)證,即可得出結(jié)論;(2)根據(jù)(1)中得到的回歸方程,求出估值,得到“理想數(shù)據(jù)”的個(gè)數(shù),確定“理想數(shù)據(jù)”的個(gè)數(shù)的可能值,并求出概率,得到分布列,即可求解.【詳解】(1)已知變量具有線(xiàn)性負(fù)相關(guān)關(guān)系,故甲不正確,,代入兩個(gè)回歸方程,驗(yàn)證乙同學(xué)正確,故回歸方程為:(2)由(1)得到的回歸方程,計(jì)算估計(jì)數(shù)據(jù)如下表:“理想數(shù)據(jù)”有3個(gè),故“理想數(shù)據(jù)”的個(gè)數(shù)的取值為:.,,于是“理想數(shù)據(jù)”的個(gè)數(shù)的分布列【點(diǎn)睛】本題考查樣本回歸中
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版塔吊租賃與驗(yàn)收及付款合同3篇
- 二零二五版科技公司股份交易與反壟斷合規(guī)合同3篇
- 二零二五年度共享辦公空間租賃與服務(wù)合同2篇
- 二零二五年度咖啡廳高品質(zhì)咖啡豆供應(yīng)合同3篇
- 2025年度個(gè)人向科技公司借款合同2篇
- 二零二五年度商業(yè)街區(qū)臨時(shí)攤位租賃及管理服務(wù)合同2篇
- 2025年度“銷(xiāo)售合同”英文翻譯與海外市場(chǎng)品牌推廣合作框架3篇
- 2025年度木地板施工安全與質(zhì)量責(zé)任合同4篇
- KTV員工勞動(dòng)合同范本
- 2025年度煤礦井巷工程應(yīng)急救援預(yù)案編制合同
- 2023-2024學(xué)年度人教版一年級(jí)語(yǔ)文上冊(cè)寒假作業(yè)
- 人教版語(yǔ)文1-6年級(jí)古詩(shī)詞
- 上學(xué)期高二期末語(yǔ)文試卷(含答案)
- GB/T 18488-2024電動(dòng)汽車(chē)用驅(qū)動(dòng)電機(jī)系統(tǒng)
- 投資固定分紅協(xié)議
- 高二物理題庫(kù)及答案
- 職業(yè)發(fā)展展示園林
- 七年級(jí)下冊(cè)英語(yǔ)單詞默寫(xiě)表直接打印
- 2024版醫(yī)療安全不良事件培訓(xùn)講稿
- 中學(xué)英語(yǔ)教學(xué)設(shè)計(jì)PPT完整全套教學(xué)課件
- 移動(dòng)商務(wù)內(nèi)容運(yùn)營(yíng)(吳洪貴)項(xiàng)目五 運(yùn)營(yíng)效果監(jiān)測(cè)
評(píng)論
0/150
提交評(píng)論