版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年河南省新鄉(xiāng)市普通高校對(duì)口單招數(shù)學(xué)自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(10題)1.已知拋物線方程為y2=8x,則它的焦點(diǎn)到準(zhǔn)線的距離是()A.8B.4C.2D.6
2.已知logN10=,則N的值是()A.
B.
C.100
D.不確定
3.若函數(shù)f(x-)=x2+,則f(x+1)等于()A.(x+1)2+
B.(x-)2+
C.(x+1)2+2
D.(x+1)2+1
4.若x2-ax+b<0的解集為(1,2),則a+b=()A.5B.-5C.1D.-1
5.執(zhí)行如圖所示的程序,若輸人的實(shí)數(shù)x=4,則輸出結(jié)果為()A.4B.3C.2D.1/4
6.以坐標(biāo)軸為對(duì)稱軸,離心率為,半長(zhǎng)軸為3的橢圓方程是()A.
B.或
C.
D.或
7.已知的值()A.
B.
C.
D.
8.若函數(shù)f(x)=x2+mx+1有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是()A.(-1,1)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-l)∪(l,+∞)
9.若是兩條不重合的直線表示平面,給出下列正確的個(gè)數(shù)()(1)(2)(3)(4)A.lB.2C.3D.4
10.已知,則sin2α-cos2α的值為()A.-1/8B.-3/8C.1/8D.3/8
二、填空題(10題)11.
12.如圖所示,某人向圓內(nèi)投鏢,如果他每次都投入圓內(nèi),那么他投中正方形區(qū)域的概率為____。
13.log216+cosπ+271/3=
。
14.已知△ABC中,∠A,∠B,∠C所對(duì)邊為a,b,c,C=30°,a=c=2.則b=____.
15.某校有老師200名,男學(xué)生1200名,女學(xué)生1000名,現(xiàn)用分層抽樣的方法從所有師生中抽取一個(gè)容量為240的樣本,則從女生中抽取的人數(shù)為______.
16.五位同學(xué)站成一排,其中甲既不站在排頭也不站在排尾的排法有_____種.
17.已知正實(shí)數(shù)a,b滿足a+2b=4,則ab的最大值是____________.
18.
19.
20.
三、計(jì)算題(5題)21.有語(yǔ)文書3本,數(shù)學(xué)書4本,英語(yǔ)書5本,書都各不相同,要把這些書隨機(jī)排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語(yǔ)書不挨著排的概率P。
22.解不等式4<|1-3x|<7
23.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
24.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒(méi)有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
25.在等差數(shù)列{an}中,前n項(xiàng)和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項(xiàng)公式an.
四、簡(jiǎn)答題(10題)26.等比數(shù)列{an}的前n項(xiàng)和Sn,已知S1,S3,S2成等差數(shù)列(1)求數(shù)列{an}的公比q(2)當(dāng)a1-a3=3時(shí),求Sn
27.如圖,四棱錐P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求證:BC丄平面PAC。(2)求點(diǎn)B到平面PCD的距離。
28.解不等式組
29.求k為何值時(shí),二次函數(shù)的圖像與x軸(1)有2個(gè)不同的交點(diǎn)(2)只有1個(gè)交點(diǎn)(3)沒(méi)有交點(diǎn)
30.化簡(jiǎn)
31.已知雙曲線C的方程為,離心率,頂點(diǎn)到漸近線的距離為,求雙曲線C的方程
32.已知a是第二象限內(nèi)的角,簡(jiǎn)化
33.已知求tan(a-2b)的值
34.已知雙曲線C:的右焦點(diǎn)為,且點(diǎn)到C的一條漸近線的距離為.(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)設(shè)P為雙曲線C上一點(diǎn),若|PF1|=,求點(diǎn)P到C的左焦點(diǎn)的距離.
35.求證
五、解答題(10題)36.A.90B.100C.145D.190
37.已知遞增等比數(shù)列{an}滿足:a2+a3+a4=14,且a3+1是a2,a4的等差中項(xiàng).(1)求數(shù)列{an}的通項(xiàng)公式;(2)若數(shù)列{an}的前n項(xiàng)和為Sn,求使Sn<63成立的正整數(shù)n的最大值.
38.
39.己知sin(θ+α)=sin(θ+β),求證:
40.已知函數(shù)f(x)=log21+x/1-x.(1)求f(x)的定義域;(2)討論f(x)的奇偶性;(3)用定義討論f(x)的單調(diào)性.
41.成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上2,5,13后成為等比數(shù)列{bn}中的b3,b4,b5(1)求數(shù)列{bn}的通項(xiàng)公式;(2)數(shù)列{bn}的前n項(xiàng)和為Sn,求證:數(shù)列{Sn+5/4}是等比數(shù)列
42.已知橢圓的中心為原點(diǎn),焦點(diǎn)在x軸上,離心率為,且經(jīng)過(guò)點(diǎn)M(4,1),直線l:y=x+m交橢圓于異于M的不同兩點(diǎn)A,B直線MA,MB與x軸分別交于點(diǎn)E,F(xiàn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求m的取值范圍.
43.
44.已知函數(shù)f(x)=sinx+cosx,x∈R.(1)求函數(shù)f(x)的最小正周期和最大值;(2)函數(shù)y=f(x)的圖象可由y=sinx的圖象經(jīng)過(guò)怎樣的變換得到?
45.已知數(shù)列{an}是等差數(shù)列,且a2=3,a4+a5+a6=27(1)求通項(xiàng)公式an(2)若bn=a2n,求數(shù)列{bn}的前n項(xiàng)和Tn.
六、單選題(0題)46.已知角α的終邊經(jīng)過(guò)點(diǎn)P(2,-1),則(sinα-cosα)/(sinα+cosα)=()A.3B.1/3C.-1/3D.-3
參考答案
1.B拋物線方程為y2=2px=2*4x,焦點(diǎn)坐標(biāo)為(p/2,0)=(2,0),準(zhǔn)線方程為x=-p/2=-2,則焦點(diǎn)到準(zhǔn)線的距離為p/2-(-p/2)=p=4。
2.C由題可知:N1/2=10,所以N=100.
3.C由題可知,f(0)=2=f(-1+1),因此x=-1時(shí),函數(shù)值為2,所以正確答案為C。
4.A一元二次不等式與一元二次方程的應(yīng)用,根與系數(shù)的關(guān)系的應(yīng)用問(wèn)題.即方程x2-ax+b=0的兩根為1,2.由根與系數(shù)關(guān)系得解得a=3.所以a+b=5.
5.C三角函數(shù)的運(yùn)算∵x=4>1,∴y=㏒24=2
6.B由題意可知,焦點(diǎn)在x軸或y軸上,所以標(biāo)準(zhǔn)方程有兩個(gè),而a=3,c/a=1/3,所以c=1,b2=8,因此答案為B。
7.A
8.C一元二次方程的根的判別以及一元二次不等式的解法.由題意知,一元二次方程x2+mx+1=0有兩個(gè)不等實(shí)根,可得△>0,即m2-4>0,解得m>2或m<-2.故選C
9.B若兩條不重合的直線表示平面,由直線和平面之間的關(guān)系可知(1)、(4)正確。
10.B三角函數(shù)的恒等變換,二倍角公式.sin2α-cos2α=-cos2α=2sin2α-1=-3/8
11.5
12.2/π。
13.66。log216+cosπ+271/3=4+(-1)+3=6。
14.三角形的余弦定理.a=c=2,所以A=C=30°,B=120°,所以b2=a2+c2-2accosB=12,所以b=2
15.100分層抽樣方法.各層之比為200:1200:1000=1:6:5推出從女生中抽取的人數(shù)240×5/12=100.
16.72,
17.2基本不等式求最值.由題
18.-3由于cos(x+π/6)的最小值為-1,所以函數(shù)f(x)的最小值為-3.
19.-1
20.a<c<b
21.
22.
23.
24.
25.解:設(shè)首項(xiàng)為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
26.
27.證明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC則BC丄平面PAC(2)設(shè)點(diǎn)B到平面PCD的距離為hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1則△ADC為等邊三角形,且AC=1PA=
PD=PC=2
28.x2-6x+8>0,∴x>4,x<2(1)(2)聯(lián)系(1)(2)得不等式組的解集為
29.∵△(1)當(dāng)△>0時(shí),又兩個(gè)不同交點(diǎn)(2)當(dāng)A=0時(shí),只有一個(gè)交點(diǎn)(3)當(dāng)△<0時(shí),沒(méi)有交點(diǎn)
30.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
31.
32.
33.
34.(1)∵雙曲線C的右焦點(diǎn)為F1(2,0),∴c=2又點(diǎn)F1到C1的一條漸近線的距離為,∴,即以解得b=
35.
36.B
37.(1)設(shè)遞增等比數(shù)列{an}的首項(xiàng)為a1,公比為q,依題意,有2(a3+1)=a2+a4,代入a2+a3+a4=14,得a3=4..由∵<a2+a4=10,由
38.
39.
40.(1)要使函數(shù)f(x)=㏒21+x/1-x有意義,則須1+x/1-x>0解得-1<x<1,所以f(x)的定義域?yàn)閧x|-1<x<1}.(2)因?yàn)閒(x)的定義域?yàn)閧x|-1<x<1},且f(-x)=㏒2(1+x/1-x)-1=-㏒21+x/1-x=-f(x).所以f(x)是定義在(-1,1)上的奇函數(shù).(3)設(shè)-1<x1<x2<1,則f(x1)-f(x2)=log1+x1/1+x2=㏒(1+x1)(1-x2)f(1-x1)(1+x2)∵-1<x1<x2<1
41.(1)設(shè)成等差數(shù)列的三個(gè)正數(shù)分別為a-d,a,a+d依題意,得a-d+a+a+d=15,解得a=5,所以{bn}中的,b3,b4,b5依次為7-d,10,18+d依題意,有(7-d)(18+d)=100,解得d=2或d=-13,又因?yàn)槌傻炔顢?shù)列的三個(gè)數(shù)為正數(shù),所以d=2.故{bn}的第3項(xiàng)為5,公比為2;由b3=b1×22,即5=b1×22,解得b1=f;所以{bn}是以5/4為首項(xiàng),2為公比的等比數(shù)列,其通項(xiàng)公式為bn=5/4×2n-1=5×2n-3.
42.(1)設(shè)橢圓的方程為x2/a2+y2/b2=1因?yàn)閑=,所以a2=4b2,又因?yàn)闄E圓過(guò)點(diǎn)M(4,1),所以16/a2+1/b2=1,解得b2=5,a2=20,故橢圓標(biāo)準(zhǔn)方x2/20+y2/5=1(2)將y=m+x:代入x2/20+y2/5=1并整理得5x2+8mx+4m2-20=0令△=(8m2)-20(4m2-20)>0,解得-5<m<5.又由題意可知直線不過(guò)M(4,1),所以4+m≠1,m≠-3,所以m的取值范圍是(-5,-3)∪(-3,5).
43.
44.(1)函數(shù)f(x)=sinx+cosx=sin(x+π/
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024正式的地區(qū)代理合同范文
- 工程合同功能解析
- 水利工程維修貸款合同
- 2024醫(yī)院藥品供銷合同
- 農(nóng)業(yè)領(lǐng)域合作協(xié)議范本
- 2024年咨詢顧問(wèn)合作簡(jiǎn)單協(xié)議書
- 彩色鋼板工程承包協(xié)議書
- 集裝箱海運(yùn)合同范本
- 2024建筑業(yè)合同范本范文
- 2024個(gè)人房產(chǎn)轉(zhuǎn)讓合同
- 防校園欺凌-課件(共28張PPT)
- 第6章 智能網(wǎng)聯(lián)汽車測(cè)評(píng)技術(shù)
- 單向板結(jié)構(gòu)設(shè)計(jì)
- 《強(qiáng)化學(xué)習(xí)理論與應(yīng)用》環(huán)境
- 普通高等學(xué)校學(xué)生轉(zhuǎn)學(xué)申請(qǐng)表
- 房租、水、電費(fèi)(專用)收據(jù)Excel模板
- 習(xí)近平總書記關(guān)于教育的重要論述研究學(xué)習(xí)通章節(jié)答案期末考試題庫(kù)2023年
- 重癥急性胰腺炎ppt恢復(fù)課件
- 2022江蘇省沿海開發(fā)集團(tuán)限公司招聘23人上岸筆試歷年難、易錯(cuò)點(diǎn)考題附帶參考答案與詳解
- 鄉(xiāng)鎮(zhèn)衛(wèi)生院6S管理內(nèi)容和要求
- 數(shù)學(xué)教育概論 第3版
評(píng)論
0/150
提交評(píng)論