2022-2023學(xué)年遼寧省營(yíng)口市普通高校對(duì)口單招數(shù)學(xué)自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022-2023學(xué)年遼寧省營(yíng)口市普通高校對(duì)口單招數(shù)學(xué)自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022-2023學(xué)年遼寧省營(yíng)口市普通高校對(duì)口單招數(shù)學(xué)自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022-2023學(xué)年遼寧省營(yíng)口市普通高校對(duì)口單招數(shù)學(xué)自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022-2023學(xué)年遼寧省營(yíng)口市普通高校對(duì)口單招數(shù)學(xué)自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年遼寧省營(yíng)口市普通高校對(duì)口單招數(shù)學(xué)自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(10題)1.不等式-2x2+x+3<0的解集是()A.{x|x<-1}B.{x|x>3/2}C.{x|-1<x<3/2}D.{x|x<-1或x>3/2}

2.A.π

B.C.2π

3.已知a=1.20.1,b=ln2,c=5-1/2,則a,b,c的大小關(guān)系是()A.b>a>cB.a>c>bC.a>b>cD.c>a>b

4.若sinα與cosα同號(hào),則α屬于()A.第一象限角B.第二象限角C.第一、二象限角D.第一、三象限角

5.若函數(shù)y=√1-X,則其定義域?yàn)锳.(-1,+∞)B.[1,+∞]C.(-∞,1]D.(-∞,+∞)

6.如圖所示的程序框圖,當(dāng)輸人x的值為3時(shí),則其輸出的結(jié)果是()A.-1/2B.1C.4/3D.3/4

7.tan150°的值為()A.

B.

C.

D.

8.已知函數(shù)f(x)=sin(2x+3π/2)(x∈R),下面結(jié)論錯(cuò)誤的是()A.函數(shù)f(x)的最小正周期為π

B.函數(shù)f(x)是偶函數(shù)

C.函數(shù)f(x)是圖象關(guān)于直線x=π/4對(duì)稱

D.函數(shù)f(x)在區(qū)間[0,π/2]上是增函數(shù)

9.設(shè)復(fù)數(shù)z=1+i(i為虛數(shù)單位),則2/z+z2=()A.l+iB.l-iC.-l-iD.-l+i

10.已知的值()A.

B.

C.

D.

二、填空題(10題)11.拋物線y2=2x的焦點(diǎn)坐標(biāo)是

12.橢圓x2/4+y2/3=1的短軸長(zhǎng)為___.

13.

14.如圖是一個(gè)算法流程圖,則輸出S的值是____.

15.直線經(jīng)過(guò)點(diǎn)(-1,3),其傾斜角為135°,則直線l的方程為_____.

16.在△ABC中,若acosA=bcosB,則△ABC是

三角形。

17.

18.化簡(jiǎn)

19.不等式(x-4)(x+5)>0的解集是

。

20.方程擴(kuò)4x-3×2x-4=0的根為______.

三、計(jì)算題(5題)21.有語(yǔ)文書3本,數(shù)學(xué)書4本,英語(yǔ)書5本,書都各不相同,要把這些書隨機(jī)排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語(yǔ)書不挨著排的概率P。

22.己知{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若a3=6,S3=12,求公差d.

23.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。

24.有四個(gè)數(shù),前三個(gè)數(shù)成等差數(shù)列,公差為10,后三個(gè)數(shù)成等比數(shù)列,公比為3,求這四個(gè)數(shù).

25.已知函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡(jiǎn)單說(shuō)明理由.

四、簡(jiǎn)答題(10題)26.如圖四面體ABCD中,AB丄平面BCD,BD丄CD.求證:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.

27.化簡(jiǎn)

28.在拋物線y2=12x上有一弦(兩端點(diǎn)在拋物線上的線段)被點(diǎn)M(1,2)平分.(1)求這條弦所在的直線方程;(2)求這條弦的長(zhǎng)度.

29.某中學(xué)試驗(yàn)班有同學(xué)50名,其中女生30人,男生20人,現(xiàn)在從中選取2人取參加校際活動(dòng),求(1)選出的2人都是女生的概率。(2)選出的2人是1男1女的概率。

30.若α,β是二次方程的兩個(gè)實(shí)根,求當(dāng)m取什么值時(shí),取最小值,并求出此最小值

31.一條直線l被兩條直線:4x+y+6=0,3x-5y-6=0截得的線段中點(diǎn)恰好是坐標(biāo)原點(diǎn),求直線l的方程.

32.點(diǎn)A是BCD所在平面外的一點(diǎn),且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。

33.已知函數(shù).(1)求f(x)的定義域;(2)判斷f(x)的奇偶性,并加以證明;(3)a>1時(shí),判斷函數(shù)的單調(diào)性并加以證明。

34.已知A,B分別是橢圓的左右兩個(gè)焦點(diǎn),o為坐標(biāo)的原點(diǎn),點(diǎn)P(-1,)在橢圓上,線段PB與y軸的焦點(diǎn)M為線段PB的中心點(diǎn),求橢圓的標(biāo)準(zhǔn)方程

35.計(jì)算

五、解答題(10題)36.

37.為了解某地區(qū)的中小學(xué)生的視力情況,擬從該地區(qū)的中小學(xué)生中抽取部分學(xué)生進(jìn)行調(diào)查,事先已了解到該地區(qū)小學(xué)、初中、高中三個(gè)學(xué)段學(xué)生的視力情況有較大差異,而男女生視力情況差異不大,在下面的抽樣方法中,最合理的抽樣方法是().A.簡(jiǎn)單隨機(jī)抽樣B.按性別分層抽樣C.按學(xué)段分層抽樣D.系統(tǒng)抽樣

38.

39.已知函數(shù)(1)求f(x)的最小正周期;(2)求f(x)在區(qū)間[0,2π/3]上的最小值.

40.

41.

42.已知橢圓x2/a2+y2/b2=1(a>b>0)的離心率為,右焦點(diǎn)為(,0),斜率為1的直線L與橢圓G交于A,B兩點(diǎn),以AB為底邊作等腰三角形,頂點(diǎn)為P(-3,2).(1)求橢圓G的方程;(2)求△PAB的面積.

43.已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F1和F2,且|F1F2|=2,點(diǎn)(1,3/2)在該橢圓上.(1)求橢圓C的方程;(2)過(guò)F1的直線L與橢圓C相交于A,B兩點(diǎn),以F2為圓心為半徑的圓與直線L相切,求△AF2B的面積.

44.

45.

六、單選題(0題)46.的展開式中,常數(shù)項(xiàng)是()A.6B.-6C.4D.-4

參考答案

1.D一元二次不等式方程的計(jì)算.-2x2+x+3<0,2x2-x-3>0即(2x-3)(x+1)>0,x>3/2或x<-1.

2.C

3.C對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單

4.D

5.C

6.B程序框圖的運(yùn)算.當(dāng)輸入的值為3時(shí),第一次循環(huán)時(shí),x=3-3=0,所以x=0≤0成立,所以y=0.50=1.輸出:y=1.故答案為1.

7.B三角函數(shù)誘導(dǎo)公式的運(yùn)用.tan150°=tan(180°-30°)=-tan30°=

8.C三角函數(shù)的性質(zhì).f(x)=sin(2x+3π/2)=-cos2x,故其最小正周期為π,故A正確;易知函數(shù)f(x)是偶函數(shù),B正確;由函數(shù)f(x)=-cos2x的圖象可知,函數(shù)f(x)的圖象關(guān)于直線x=π/4不對(duì)稱,C錯(cuò)誤;由函數(shù)f(x)的圖象易知,函數(shù)f(x)在[0,π/2]上是增函數(shù),D正確,

9.A復(fù)數(shù)的計(jì)算.∵Z=1+i,∴2/z+z2=2/1+i(1+i)2===1-i+2i=1+i.

10.A

11.(1/2,0)拋物線y2=2px(p>0)的焦點(diǎn)坐標(biāo)為F(P/2,0)?!邟佄锞€方程為y2=2x,

∴2p=2,得P/2=1/2

∵拋物線開口向右且以原點(diǎn)為頂點(diǎn),

∴拋物線的焦點(diǎn)坐標(biāo)是(1/2,0)。

12.2橢圓的定義.因?yàn)閎2=3,所以b=短軸長(zhǎng)2b=2

13.(3,-4)

14.25程序框圖的運(yùn)算.經(jīng)過(guò)第一次循環(huán)得到的結(jié)果為S=1,n=3,過(guò)第二次循環(huán)得到的結(jié)果為S=4,72=5,經(jīng)過(guò)第三次循環(huán)得到的結(jié)果為S=9,n=7,經(jīng)過(guò)第四次循環(huán)得到的結(jié)果為s=16,n=9經(jīng)過(guò)第五次循環(huán)得到的結(jié)果為s=25,n=11,此時(shí)不滿足判斷框中的條件輸出s的值為25.故答案為25.

15.x+y-2=0

16.等腰或者直角三角形,

17.{x|0<x<1/3}

18.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2

19.{x|x>4或x<-5}方程的根為x=4或x=-5,所以不等式的解集為{x|x>4或x<-5}。

20.2解方程.原方程即為(2x)-3.2x-4=0,解得2x=4或2x=-1(舍去),解得x=2.

21.

22.

23.

24.

25.

26.

27.

28.∵(1)這條弦與拋物線兩交點(diǎn)

29.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510

(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510

選出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897

30.

31.

32.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。

(2)取BC中點(diǎn)O,以O(shè)為原點(diǎn),過(guò)O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,

∴CD⊥平面ABC,∴CD⊥AB,

∵∠BAC=90°,∴AB⊥AC,

∵AC∩CD=C,

∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點(diǎn)O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,

∴AO⊥BC,∴AO⊥平面BDC,

以O(shè)為原點(diǎn),過(guò)O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,

33.(1)-1<x<1(2)奇函數(shù)(3)單調(diào)遞增函數(shù)

34.點(diǎn)M是線段PB的中點(diǎn)又∵

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論