2022年山東省菏澤市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2022年山東省菏澤市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2022年山東省菏澤市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2022年山東省菏澤市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2022年山東省菏澤市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年山東省菏澤市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx

2.A.-3-xln3

B.-3-x/ln3

C.3-x/ln3

D.3-xln3

3.級(jí)數(shù)(k為非零正常數(shù))().A.A.條件收斂B.絕對(duì)收斂C.收斂性與k有關(guān)D.發(fā)散

4.

A.僅有水平漸近線

B.既有水平漸近線,又有鉛直漸近線

C.僅有鉛直漸近線

D.既無(wú)水平漸近線,又無(wú)鉛直漸近線

5.

6.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解

7.下列等式成立的是

A.A.

B.B.

C.C.

D.D.

8.

9.設(shè)z=x3-3x-y,則它在點(diǎn)(1,0)處

A.取得極大值B.取得極小值C.無(wú)極值D.無(wú)法判定

10.

11.設(shè)y=sin2x,則y'=A.A.2cosxB.cos2xC.2cos2xD.cosx

12.

13.下列關(guān)于動(dòng)載荷的敘述不正確的一項(xiàng)是()。

A.動(dòng)載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點(diǎn)的加速度必須考慮,而后者可忽略不計(jì)

B.勻速直線運(yùn)動(dòng)時(shí)的動(dòng)荷因數(shù)為

C.自由落體沖擊時(shí)的動(dòng)荷因數(shù)為

D.增大靜變形是減小沖擊載荷的主要途徑

14.設(shè)Y=e-3x,則dy等于().

A.e-3xdx

B.-e-3xdx

C.-3e-3xdx

D.3e-3xdx

15.

16.A.2/5B.0C.-2/5D.1/2

17.

18.等于().A.A.0

B.

C.

D.∞

19.在下列函數(shù)中,在指定區(qū)間為有界的是()。

A.f(x)=22z∈(一∞,0)

B.f(x)=lnxz∈(0,1)

C.

D.f(x)=x2x∈(0,+∞)

20.

A.

B.

C.

D.

二、填空題(20題)21.

22.23.微分方程y"+y'=0的通解為_(kāi)_____.

24.

25.

26.27.

28.

29.

30.如果函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得f(b)-f(a)=________。

31.設(shè)=3,則a=________。

32.

33.

34.

35.

36.

37.38.39.

40.三、計(jì)算題(20題)41.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

42.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

43.44.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.45.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).46.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則47.48.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

49.

50.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).51.求微分方程的通解.52.求曲線在點(diǎn)(1,3)處的切線方程.53.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

54.

55.求微分方程y"-4y'+4y=e-2x的通解.

56.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

57.證明:58.

59.60.

四、解答題(10題)61.62.

63.

64.

65.

66.設(shè)z=z(x,y)由x2+y3+2z=1確定,求

67.

68.設(shè)平面薄片的方程可以表示為x2+y2≤R2,x≥0,薄片上點(diǎn)(x,y)處的密度,求該薄片的質(zhì)量M.

69.

70.設(shè)

五、高等數(shù)學(xué)(0題)71.

=________.則f(2)=__________。

六、解答題(0題)72.

參考答案

1.B

2.A由復(fù)合函數(shù)鏈?zhǔn)椒▌t可知,因此選A.

3.A

4.A

5.D解析:

6.B本題考查的知識(shí)點(diǎn)為線性常系數(shù)微分方程解的結(jié)構(gòu).

已知y1,y2為二階線性常系數(shù)齊次微分方程y"+p1y'+p2y=0的兩個(gè)解,由解的結(jié)構(gòu)定理可知C1y1+C2y2為所給方程的解,因此應(yīng)排除D.又由解的結(jié)構(gòu)定理可知,當(dāng)y1,y2線性無(wú)關(guān)時(shí),C1y1+C2y2為y"+p1y'+p2y=0的通解,因此應(yīng)該選B.

本題中常見(jiàn)的錯(cuò)誤是選C.這是由于忽略了線性常系數(shù)微分方程解的結(jié)構(gòu)定理中的條件所導(dǎo)致的錯(cuò)誤.解的結(jié)構(gòu)定理中指出:“若y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個(gè)線性無(wú)關(guān)的特解,則C1y1+C2y2為所給微分方程的通解,其中C1,C2為任意常數(shù).”由于所給命題中沒(méi)有指出)y1,y2為線性無(wú)關(guān)的特解,可知C1y1+C2y2不一定為方程的通解.但是由解的結(jié)構(gòu)定理知C1y1+C2y2為方程的解,因此應(yīng)選B.

7.C本題考查了函數(shù)的極限的知識(shí)點(diǎn)

8.D

9.C

10.D

11.C由鏈?zhǔn)椒▌t可得(sin2x)'=cos2x*(2x)'=2cos2x,故選C。

12.A

13.C

14.C

15.D

16.A本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)

17.C

18.A

19.A∵0<2x<1x∈(一∞,0)∴f(x)=2x在區(qū)間(一∞,0)內(nèi)為有界函數(shù)。

20.B本題考查的知識(shí)點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。

21.(12)

22.

23.y=C1+C2e-x,其中C1,C2為任意常數(shù)本題考查的知識(shí)點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.

二階線性常系數(shù)齊次微分方程求解的一般步驟為:先寫(xiě)出特征方程,求出特征根,再寫(xiě)出方程的通解.

微分方程為y"+y'=0.

特征方程為r3+r=0.

特征根r1=0.r2=-1.

因此所給微分方程的通解為

y=C1+C2e-x,

其牛C1,C2為任意常數(shù).

24.x=-3x=-3解析:

25.

26.

27.

本題考查的知識(shí)點(diǎn)為隱函數(shù)的微分.

解法1將所給表達(dá)式兩端關(guān)于x求導(dǎo),可得

從而

解法2將所給表達(dá)式兩端微分,

28.29.0.

本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問(wèn)題.

通常求解的思路為:

30.f"(ξ)(b-a)由題目條件可知函數(shù)f(x)在[a,b]上滿(mǎn)足拉格朗日中值定理的條件,因此必定存在一點(diǎn)ξ∈(a,b),使f(b)-f(a)=f"(ξ)(b-a)。

31.

32.y=f(0)

33.0

34.

本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性齊次微分方程的求解.

35.

36.

37.38.1/2本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

39.

40.發(fā)散

41.

42.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

43.44.由二重積分物理意義知

45.46.由等價(jià)無(wú)窮小量的定義可知

47.

48.

49.

50.

列表:

說(shuō)明

51.52.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

53.函數(shù)的定義域?yàn)?/p>

注意

54.

55.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

56.

57.

58.由一階線性微分方程通解公式有

59.

60.

61.

62.

63.

64.【解析】本題考查的知識(shí)點(diǎn)為求二元隱函數(shù)的偏導(dǎo)數(shù)與全微分.

解法1

解法2利用微分運(yùn)算

【解題指導(dǎo)】

求二元隱函數(shù)的偏導(dǎo)數(shù)有兩種方法:

65.解

66.本題考查的知識(shí)點(diǎn)為求二元隱函數(shù)的偏導(dǎo)數(shù).

若z=z(x,y)由方程F(x,y,z)=0確定,求z對(duì)x,y的偏導(dǎo)數(shù)通常有兩種方法:

一是利用偏導(dǎo)數(shù)公式,當(dāng)需注意F'x,F(xiàn)'yF'z分別表示F(x,y,z)對(duì)x,y,z的偏導(dǎo)數(shù).上面式F(z,y,z)中將z,y,z三

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論