版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年八下數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.某服裝制造廠要在開學前趕制套校服,為了盡快完成任務,廠領導合理調(diào)配加強第一線人力,使每天完成的校服比原計劃多,結果提前天完成任務,問:原計劃每天能完成多少套校服?設原來每天完成校服套,則可列出方程()A. B.C. D.2.以下列各組數(shù)據(jù)中的三個數(shù)作為三角形的邊長,其中能構成直角三角形的是(
)A.2,3,4 B.,, C.1,,2 D.7,8,93.如圖,在矩形OABC中,點B的坐標是(1,3),則AC的長是()A.3 B.2 C. D.44.一元二次方程的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.不能確定5.已知點P(a+l,2a-3)關于x軸的對稱點在第一象限,則a的取值范圍是()A. B. C. D.6.八年級6班的一個互助學習小組組長收集并整理了組員們討論如下問題時所需的條件:如圖所示,在四邊形ABCD中,點E、F分別在邊BC、AD上,____,求證:四邊形AECF是平行四邊形.你能在橫線上填上最少且簡捷的條件使結論成立嗎?條件分別是:①BE=DF;②∠B=∠D;③BAE=∠DCF;④四邊形ABCD是平行四邊形.其中A、B、C、D四位同學所填條件符合題目要求的是()A.①②③④ B.①②③ C.①④ D.④7.化簡的結果是()A.-2 B.2 C. D.48.勾股定理是人類最偉大的科學發(fā)現(xiàn)之一,在我國古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出()A.直角三角形的面積B.最大正方形的面積C.較小兩個正方形重疊部分的面積D.最大正方形與直角三角形的面積和9.下面式子從左邊到右邊的變形是因式分解的是()A.x2﹣x﹣2=x(x﹣1)﹣2 B.x2﹣4x+4=(x﹣2)2C.(x+1)(x﹣1)=x2﹣1 D.x﹣1=x(1﹣)10.若,則代數(shù)式的值是()A.9 B.7 C. D.111.某廠接到加工720件衣服的訂單,預計每天做48件,正好按時完成,后因客戶要求提前5天交貨,設每天應多做x件,則x應滿足的方程為()A. B.C. D.12.如圖,點A、B在反比例函數(shù)y=(k>0,x>0)的圖象上,過點A、B作x軸的垂線,垂足分別為M,N,延長線段AB交x軸于點C,若OM=MN=NC,S△BNC=2,則k的值為()A.4 B.6 C.8 D.12二、填空題(每題4分,共24分)13.已知,則________14.一個多邊形的每一個內(nèi)角都等于它相鄰外角的2倍,則這個多邊形的邊數(shù)是__________.15.畫在比例尺為的圖紙上的某個零件的長是,這個零件的實際長是_______.16.如圖,直線y=-x+m與y=nx+4n的交點的橫坐標為-2,則關于x的不等式-x+m>nx+4n>0的解集為___________.17.如圖,在一次測繪活動中,某同學站在點A處觀測停放于B、C兩處的小船,測得船B在點A北偏東75°方向160米處,船C在點A南偏東15°方向120米處,則船B與船C之間的距離為________米.18.若正比例函數(shù)y=kx的圖象經(jīng)過點(2,4),則k=_____.三、解答題(共78分)19.(8分)如圖,平面直角坐標系中,已知點,若對于平面內(nèi)一點C,當是以AB為腰的等腰三角形時,稱點C時線段AB的“等長點”.請判斷點,點是否是線段AB的“等長點”,并說明理由;若點是線段AB的“等長點”,且,求m和n的值.20.(8分)先化簡,再求值:其中a=1.21.(8分)如圖,正方形網(wǎng)格中,每個小正方形的邊長均為1,每個小正方形的頂點叫格點.(1)在圖①中,線段AB的長度為;若在圖中畫出以C為直角頂點的Rt△ABC,使點C在格點上,請在圖中畫出所有點C;(2)在圖②中,以格點為頂點,請先用無刻度的直尺畫正方形ABCD,使它的面積為13;再畫一條直線PQ(不與正方形對角線重合),使PQ恰好將正方形ABCD的面積二等分(保留作圖痕跡).22.(10分)化簡:(1)(2)23.(10分)先化簡,再求值:(a+)÷,其中a=1.24.(10分)已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠1.(1)若CE=1,求BC的長;(1)求證:AM=DF+ME.25.(12分)四邊形是正方形,是直線上任意一點,于點,于點.當點G在BC邊上時(如圖1),易證DF-BE=EF.(1)當點在延長線上時,在圖2中補全圖形,寫出、、的數(shù)量關系,并證明;(2)當點在延長線上時,在圖3中補全圖形,寫出、、的數(shù)量關系,不用證明.26.已知四邊形中,,垂足為點,.(1)如圖1,求證:;(2)如圖2,點為上一點,連接,,求證:;(3)在(2)的條件下,如圖3,點為上一點,連接,點為的中點,分別連接,,+==,,求線段的長.
參考答案一、選擇題(每題4分,共48分)1、C【解析】
由實際每天完成的校服比原計劃多得到實際每天完成校服x(1+20%)套,再根據(jù)提前4天完成任務即可列出方程.【詳解】∵原來每天完成校服套,實際每天完成的校服比原計劃多,∴實際每天完成校服x(1+20%)套,由題意得,故選:C.【點睛】此題考查分式方程的實際應用,正確理解題意是解題的關鍵.2、C【解析】A、22+32≠42,故不是直角三角形,A不符合題意;B、()2+()2≠()2,故不是直角三角形,B不符合題意;C、12+()2=22,故是直角三角形,C符合題意;D、72+82≠92,故不是直角三角形,D不符合題意;故選C.3、C【解析】
根據(jù)勾股定理求出OB,根據(jù)矩形的性質(zhì)得出AC=OB,即可得出答案.【詳解】解:連接OB,過B作BM⊥x軸于M,∵點B的坐標是(1,3),∴OM=1,BM=3,由勾股定理得:OB=∵四邊形OABC是矩形,∴AC=OB,∴AC=,故選:C.【點睛】本題考查了點的坐標、矩形的性質(zhì)、勾股定理等知識點,能根據(jù)矩形的性質(zhì)得出AC=OB是解此題的關鍵.4、B【解析】
根據(jù)根的判別式判斷即可.【詳解】∵,∴該方程有兩個相等的實數(shù)根,故選:B.【點睛】此題考查一元二次方程的根的判別式,熟記根的三種情況是解題的關鍵.5、B【解析】關于x軸對稱的點的坐標,一元一次不等式組的應用.【分析】根據(jù)“關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù)”,再根據(jù)各象限內(nèi)的點的坐標的特點列出不等式組求解即可:∵點P(a+1,2a-3)關于x軸的對稱點在第一象限,∴點P在第四象限.∴.解不等式①得,a>-1,解不等式②得,a<,所以,不等式組的解集是-1<a<.故選B.6、C【解析】
由平行四邊形的判定可求解.【詳解】解:當添加①④時,可得四邊形AECF是平行四邊形,理由如下:∵四邊形ABCD是平行四邊形∴AD=BC,AD∥BC∵BE=DF∴AD﹣DF=BC﹣BE∴AF=EC,且AF∥CE∴四邊形AECF是平行四邊形.故選C.【點睛】本題主要考查了平行四邊形的判定,平行四邊形的判定方法有:①兩組對邊分別平行的四邊形是平行四邊形;②一組對邊平行且相等的四邊形是平行四邊形;③兩組對邊分別相等的四邊形是平行四邊形;④對角線互相平分的四邊形是平行四邊形;⑤.兩組對角分別相等的四邊形是平行四邊形.7、B【解析】
先將括號內(nèi)的數(shù)化簡,再開根號,根據(jù)開方的結果為正數(shù)可得出答案.【詳解】==2,故選:B.【點睛】本題考查了二次根式的化簡,解此類題目要注意算術平方根為非負數(shù).8、C【解析】
根據(jù)勾股定理得到c1=a1+b1,根據(jù)正方形的面積公式、長方形的面積公式計算即可.【詳解】設直角三角形的斜邊長為c,較長直角邊為b,較短直角邊為a,由勾股定理得,c1=a1+b1,陰影部分的面積=c1-b1-a(c-b)=a1-ac+ab=a(a+b-c),較小兩個正方形重疊部分的長=a-(c-b),寬=a,則較小兩個正方形重疊部分底面積=a(a+b-c),∴知道圖中陰影部分的面積,則一定能求出較小兩個正方形重疊部分的面積,故選C.【點睛】本題考查的是勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a1+b1=c1.9、B【解析】
根據(jù)因式分解的定義即可判斷.【詳解】A.含有加減,不是因式分解;B.是因式分解;C.是整式的運算,不是因式分解;D.含有分式,不是因式分解.故選B【點睛】此題主要考查因式分解的定義:把一個多項式化為幾個整式的乘積形式.10、D【解析】
本題直接可以把代入到原式進行計算,注意把看作整體用括號括起來,再依次替換原式中的a,按照實數(shù)的運算規(guī)律計算.【詳解】代入得:故答案為D【點睛】本題考察了代值求多項式的值,過程中注意把代入的值整體的替換時,務必打好括號,避免出錯.再按照實數(shù)的運算規(guī)律計算.11、D【解析】
本題的關鍵是要弄清因客戶要求工作量提速后的工作效率和工作時間,然后根據(jù)題目給出的關鍵語“提前5天”找到等量關系,然后列出方程.【詳解】因客戶的要求每天的工作效率應該為:(48+x)件,所用的時間為:,根據(jù)“因客戶要求提前5天交貨”,用原有完成時間,減去提前完成時間,可以列出方程:故選:D.【點睛】這道題的等量關系比較明確,直接分析題目中的重點語句即可得知,再利用等量關系列出方程.12、C【解析】∵BN∥AM,MN=NC,∴△CNB∽△CMA,∴S△CNB:S△CMA=()2=()2=,而S△BNC=2,∴S△CMA=1,∵OM=MN=NC,∴OM=MC,∴S△AOM=S△AMC=4,∵S△AOM=|k|,∴|k|=4,∴k=1.點睛:本題主要考查了反比例函數(shù)的比例系數(shù)k的幾何意義以及相似三角形的判定與性質(zhì).從反比例函數(shù)y=(k≠0)的圖象上任取一點向x軸或y軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是|k|,且保持不變.二、填空題(每題4分,共24分)13、【解析】∵,∴8b=3(3a-b),即9a=11b,∴,故答案為.14、1【解析】
設出外角的度數(shù),表示出內(nèi)角的度數(shù),根據(jù)一個內(nèi)角與它相鄰的外角互補列出方程,解方程得到答案.【詳解】設外角為x,則相鄰的內(nèi)角為2x,由題意得,2x+x=180°,解得,x=10°,310÷10°=1,故答案為:1.【點睛】本題考查的是多邊形內(nèi)、外角的知識,理解一個多邊形的一個內(nèi)角與它相鄰外角互補是解題的關鍵.15、640【解析】
首先設這個零件的實際長是xcm,根據(jù)比例尺的定義即可得方程,解此方程即可求得答案,注意單位換算.【詳解】解:設這個零件的實際長是xcm,根據(jù)題意得:,解得:x=640,則這個零件的實際長是640cm.故答案為:640【點睛】此題考查了比例尺的應用.此題比較簡單,注意掌握方程思想的應用.16、【解析】
令時,解得,則與x軸的交點為(﹣4,0),再根據(jù)圖象分析即可判斷.【詳解】令時,解得,故與x軸的交點為(﹣4,0).由函數(shù)圖象可得,當時,函數(shù)的圖象在x軸上方,且其函數(shù)圖象在函數(shù)圖象的下方,故解集是.故答案為:.【點睛】本題考查了一次函數(shù)與一元一次不等式,根據(jù)兩函數(shù)圖象的上下位置關系找出不等式的解集是解題的關鍵.17、1【解析】
根據(jù)已知條件得到∠BAC=90°,AB=160米,AC=120米,由勾股定理即可得到結論.【詳解】解:根據(jù)題意得:∠BAC=90°,AB=160米,AC=120米,
在Rt△ABC中,BC===1米.
故答案為:1.【點睛】本題考查解直角三角形的應用-方向角問題,會識別方向角是解題的關鍵.18、2【解析】三、解答題(共78分)19、是線段AB的“等長點”,不是線段AB的“等長點”,理由見解析;,或,.【解析】
先求出AB的長與B點坐標,再根據(jù)線段AB的“等長點”的定義判斷即可;分兩種情況討論,利用對稱性和垂直的性質(zhì)即可求出m,n.【詳解】點,,,,,.點,,,是線段AB的“等長點”,點,,,,,不是線段AB的“等長點”;如圖,在中,,,,.分兩種情況:當點D在y軸左側時,,,點是線段AB的“等長點”,,,,;當點D在y軸右側時,,,,點是線段AB的“等長點”,,.綜上所述,,或,.【點睛】本題考查了新定義,銳角三角函數(shù),直角三角形的性質(zhì),等腰三角形的性質(zhì),坐標與圖形性質(zhì)解的關鍵是理解新定義,解的關鍵是畫出圖形,是一道中等難度的中考??碱}.20、,【解析】
先利用平方差公式化簡,可得原式,再代入求解即可.【詳解】解:原式.當時,原式.【點睛】本題考查了分式的化簡求值問題,掌握平方差公式、分式的運算法則是解題的關鍵.21、(1),答案見解析;(2)答案見解析.【解析】
(1)直接利用勾股定理以及勾股定理的逆定理進而分析得出答案;(2)直接利用網(wǎng)格結合正方形的性質(zhì)分析得出答案.【詳解】解:(1)線段AB的長度為:;點C共6個,如圖所示:(2)如圖所示:直線PQ只要過AC、BD交點O,且不與AC,BD重合即可.【點睛】此題主要考查了應用設計與作圖以及勾股定理,正確應用正方形的性質(zhì)是解題關鍵.22、(1);(2).【解析】
(1)根據(jù)平方差公式和提公因式法,對分式進行化簡即可(2)利用完全平方公式和平方差公式,進行化簡,再對括號里面的分式進行通分約分,再把除法轉(zhuǎn)化為乘法,即可解答【詳解】(1)原式或:原式(2)原式【點睛】此題考查分式的化簡求值,掌握運算法則是解題關鍵23、2.【解析】
分析:把a+通分化簡,再把除法轉(zhuǎn)化為乘法,并把分子、分母分解因式約分,化成最簡分式(或整式)后把a=1代入計算.詳解:(a+)÷=[+]?=?=?=,當a=1時,原式==2.點睛:本題考查了分式的化簡求值,熟練掌握分式混合運算的運算法則是解答本題的關鍵,本題也考查了運用平方差公式和完全平方公式分解因式.24、(1)1;(1)見解析.【解析】試題分析:(1)根據(jù)菱形的對邊平行可得AB∥CD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠1=∠ACD,所以∠ACD=∠1,根據(jù)等角對等邊的性質(zhì)可得CM=DM,再根據(jù)等腰三角形三線合一的性質(zhì)可得CE=DE,然后求出CD的長度,即為菱形的邊長BC的長度;
(1)先利用“邊角邊”證明△CEM和△CFM全等,根據(jù)全等三角形對應邊相等可得ME=MF,延長AB交DF于點G,然后證明∠1=∠G,根據(jù)等角對等邊的性質(zhì)可得AM=GM,再利用“角角邊”證明△CDF和△BGF全等,根據(jù)全等三角形對應邊相等可得GF=DF,最后結合圖形GM=GF+MF即可得證.試題解析:(1)∵四邊形ABCD是菱形,
∴AB∥CD,
∴∠1=∠ACD,
∵∠1=∠1,
∴∠ACD=∠1,
∴MC=MD,
∵ME⊥CD,
∴CD=1CE,
∵CE=1,
∴CD=1,
∴BC=CD=1;
(1)AM=DF+ME證明:如圖,∵F為邊BC的中點,
∴BF=CF=BC,
∴CF=CE,
在菱形ABCD中,AC平分∠BCD,
∴∠ACB=∠ACD,
在△CEM和△CFM中,
∵,
∴△CEM≌△CFM(SAS),
∴ME=MF,
延長AB交DF的延長線于點G,
∵AB∥CD,
∴∠G=∠1,
∵∠1=∠1,
∴∠1=∠G,
∴AM=MG,
在△CDF和△BGF中,
∵∴△CDF≌△BGF(AAS),
∴GF=DF,
由圖形可知,GM=GF+MF,
∴AM=DF+ME.25、(1)圖詳見解析,BE=DF+EF,證明詳見解析;(2)圖詳見解析,EF=DF+BE.【解析】
(1)根據(jù)題意,補全圖形,DF、BE、EF的數(shù)量關系是:BE=DF+EF,易證△ABE≌△DAF,根據(jù)全等三角形的性質(zhì)可得AF=BE,DF=AE,由此可得BE=AF=AE+EF=DF+EF;(2)根據(jù)題意,補全圖形,DF、BE、EF的數(shù)量關系是:EF=DF+BE;易證△ABE≌△DAF,根據(jù)全等三角形的性質(zhì)可得AF=BE,DF=AE,由此可得EF=AE+AF=DF+BE.【詳解】(1)如圖2,DF、BE、EF的數(shù)量關系是:BE=DF+EF,理由是:∵ABCD是正方形,∴AB=DA,∠BAD=90°.∵BE⊥AG,DF⊥AG,∴∠AEB=∠AFD=90°,又∵∠BAE+∠DAF=90°,∠BAE+∠ABE=90°,∴∠ABE=∠DAF,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS),∴AF=BE,DF=AE,∴BE=AF=AE+EF=DF+EF;(2)如圖3,DF、BE、EF的數(shù)量關系是:EF=DF+BE;理由是:∵ABCD是正方形,∴AB=DA,∠BAD=90°.∵BE⊥AG,DF⊥AG,∴∠AEB=∠AFD=90°,又∵∠BAE+∠DAF=90°,∠BAE+∠ABE=90°,∴∠ABE=∠DAF,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS),∴AF=BE,DF=AE,∴EF=AE+AF=DF+BE.【點睛】本題考查正方形的性質(zhì)即全等三角形的判定與性質(zhì),正確作出圖形,證明△ABE≌△DAF是解決問題的關鍵.26、(1)見解析;(2)見解析;(3)【解析】
(1)如圖1中,作DF⊥BC延長線于點F,垂足為F.證明△ABH≌△DCF(HL),即可解決問題.
(2)如圖2中,設∠BAH=α,則∠B=90°?α;設∠ADE=β則∠CED=2∠ADE+2∠BAH=2α+2β.證明∠ECD=∠EDC即可.
(3)延長CM交DA延長線于點N,連接EN,首先證明△ECD為等邊三角形,延長PD到K使DK=EQ,證明△EQC≌△DKC(SAS),推出∠DCK=∠ECQ,QC=KC,推出∠PCK=∠DCK+∠PCD=30°=∠PCQ,連接PQ.證明△PQC≌△PKC(SAS)推出PQ=PK,可得PK=PD+DK=PD+EQ=5+2=7,作PT⊥QD于T,∠PDT=60°,∠TPD=30°,作CR⊥ED于R,勾股定理解直角三角形求出RC,RQ即可解決問題.【詳解】(1)證明:如圖1中,作DF⊥BC延長線于點F,垂足為F.∵AH⊥BC,
∴∠AHB=∠DFC=90°,
∵AD∥BC,
∴∠ADF+∠AFD=180°,
∴∠ADF=180°?90°=90°,
∴四邊形AHFD為矩形,
∴AH=DF,
∵AH=DF,AB=CD,
∴△ABH≌△DCF(HL)
∴∠B=∠DCF,
∴AB∥CD.
(2)如圖2中,設∠BAH=α,則∠B=90°?α;設∠ADE=β,則∠CED=2∠ADE+2∠BAH=2α+2β.∵AB∥CD,AB=CD,
∴四邊形ABCD為平行四邊形,
∴∠B=∠ADC=90°?α,
∴∠EDC=∠ADC?∠ADE=90°?α?β
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年整車貨物運輸與倉儲租賃合同3篇
- 2024年化妝品代工生產(chǎn)合作合同正范本3篇
- 物流基地課程設計
- 2024年智能醫(yī)療設備研發(fā)生產(chǎn)銷售合同
- 物聯(lián)網(wǎng)施工課程設計論文
- 2024年電力工程設備安裝與調(diào)試服務合同
- 2024年度裝飾公司施工監(jiān)理人員勞動合同范本2篇
- 2024年甲乙雙方石粉購銷合同協(xié)議規(guī)定條件
- 2024年度不動產(chǎn)抵押擔保合同示例2篇
- 物流企業(yè)培訓課程設計
- 球閥設計計算EXCEL
- 廣東海洋大學大數(shù)據(jù)庫課程設計
- (完整版)食堂管理制度及流程
- 某醫(yī)院后備人才梯隊建設方案
- 《2021國標建筑專業(yè)圖集資料》96S821鋼筋混凝土清水池附屬構配件圖集
- CHEETAH高壓制備色譜操作手冊
- 水利基本建設項目竣工財務決算報表編制說明
- 公司勞動工資結構圖(doc 1頁)
- 《AFM簡介實驗》ppt課件
- 客運公司崗位安全生產(chǎn)操作規(guī)程
- 中學學生評教實施方案
評論
0/150
提交評論