初中一元一次方程教案(合集3篇)_第1頁
初中一元一次方程教案(合集3篇)_第2頁
初中一元一次方程教案(合集3篇)_第3頁
初中一元一次方程教案(合集3篇)_第4頁
初中一元一次方程教案(合集3篇)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1/1初中一元一次方程教案(合集3篇)

初中一元一次方程教案第1篇教材分析:

《解一元一次方程(一)合并同類項(xiàng)與移項(xiàng)》是義務(wù)教育教科書七年級(jí)數(shù)學(xué)上冊第三章第二節(jié)的內(nèi)容。在此之前,學(xué)生已學(xué)會(huì)了有理數(shù)運(yùn)算,掌握了單項(xiàng)式、多項(xiàng)式的有關(guān)概念及同類項(xiàng)、合并同類項(xiàng),和等式性質(zhì),進(jìn)一步將所學(xué)知識(shí)運(yùn)用到解方程中。這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。合并同類項(xiàng)與移項(xiàng)是解方程的基礎(chǔ),解方程它的移項(xiàng)根據(jù)是等式性質(zhì)1、系數(shù)化為1它的根據(jù)是等式性質(zhì)2,解方程是今后進(jìn)一步學(xué)習(xí)不可缺少的知識(shí)。因而,解方程是初中數(shù)學(xué)中必須要掌握的重點(diǎn)內(nèi)容。

設(shè)計(jì)思路:

《數(shù)學(xué)課程標(biāo)準(zhǔn)》中明確指出:學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者?;谝陨侠砟睿Y(jié)合本節(jié)課內(nèi)容及學(xué)生情況,教學(xué)設(shè)計(jì)中采用了探究發(fā)現(xiàn)法和多媒體輔助教學(xué)法,在學(xué)生已有的知識(shí)儲(chǔ)備基礎(chǔ)上,利用課件,鼓勵(lì)和引導(dǎo)學(xué)生采用自主探索與合作交流相結(jié)合的方式進(jìn)行學(xué)習(xí),讓學(xué)生始終處于積極探索的過程中,通過學(xué)生動(dòng)手練習(xí),動(dòng)腦思考,完成教學(xué)任務(wù)。其基本程序設(shè)計(jì)為:

復(fù)習(xí)回顧、設(shè)問題導(dǎo)入探索規(guī)律、形成解法例題講解、熟練運(yùn)算

鞏固練習(xí)、內(nèi)化升華回顧反思、進(jìn)行小結(jié)達(dá)標(biāo)測試、反饋情況

作業(yè)布置、反饋情況。

教學(xué)目標(biāo):

1、知識(shí)與技能:(1)通過分析實(shí)際問題中的數(shù)量關(guān)系,建立方程解決實(shí)際問題,進(jìn)一步認(rèn)識(shí)方程模型的重要性;(2)、掌握移項(xiàng)方法,學(xué)會(huì)解“a·+b=c·+d”的一元一次方程,理解解方程的目標(biāo),體會(huì)解法中蘊(yùn)涵的化歸思想。

2、過程與方法:通過解形如“a·+b=c·+d”形式的方程,體驗(yàn)數(shù)學(xué)的建模思想。

3、情感、態(tài)度與價(jià)值觀:通過合作探究,培養(yǎng)學(xué)生積極思考、勇于探索的精神。

教學(xué)重點(diǎn):建立方程解決實(shí)際問題,會(huì)解“a·+b=c·+d”類型的一元一次方程。

教學(xué)難點(diǎn):分析實(shí)際問題中的相等關(guān)系,列出方程。

教學(xué)方法:先學(xué)后教,當(dāng)堂訓(xùn)練。

教學(xué)準(zhǔn)備:多媒體課件等。

預(yù)習(xí)要求:要求學(xué)生自學(xué)教材第88——89頁的課文內(nèi)容。然后根據(jù)自己的理解分析問題2及例2;并試著進(jìn)行嘗試練習(xí)。找出自學(xué)中存在的問題,以便課堂學(xué)習(xí)中解決。

教學(xué)過程:

一、準(zhǔn)備階段:

1、知識(shí)回顧:

(1)、用合并同類項(xiàng)的方法解一元一次方程的步驟是什么?

(2)、解下列方程:

①-3·-2·=10②

2、創(chuàng)設(shè)問題情境,導(dǎo)入新課。

問題:

把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個(gè)班有多少人?

如何解決這個(gè)問題呢?

二、導(dǎo)學(xué)階段:

(一)、出示本節(jié)課的學(xué)習(xí)目標(biāo):

1、通過分析實(shí)際問題中的數(shù)量關(guān)系,建立用方程解決問題的建模思想和方法;

2、掌握移項(xiàng)方法,學(xué)會(huì)解“a·+b=c·+d”類型的一元一次方程,理解解方程的目標(biāo),體會(huì)解法中蘊(yùn)涵的化歸思想。

(二)、合作交流,探究新知

1、分析解決課前提出的問題。

問題:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個(gè)班有多少人?

分析:設(shè)這個(gè)班有·名學(xué)生.

每人分3本,共分出___本,加上剩余的20本,這批書共____________本.

每人分4本,需要______本,減去缺的25本,這批書共____________本.

這批書的總數(shù)有幾種表示法?它們之間有什么關(guān)系?本題哪個(gè)相等關(guān)系可作為列方程的依據(jù)呢?

這批書的總數(shù)是一個(gè)定值,表示它的兩個(gè)式子應(yīng)相等,

即表示同一個(gè)量的兩個(gè)不同的式子相等.

根據(jù)這一相等關(guān)系列得方程:

方程的兩邊都有含·的項(xiàng)(3·和4·)和不含字母的常數(shù)項(xiàng)(20與-25),怎樣才能使它向·=a(常數(shù))的形式轉(zhuǎn)化呢?

方法過程:

2、總結(jié)移項(xiàng)的概念。

像上面這樣把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做“移項(xiàng)”.

3、思考:上面解方程中“移項(xiàng)”起到了什么作用?

4、例題學(xué)習(xí)

運(yùn)用移項(xiàng)的方法解下列方程:

三、課堂練習(xí):

運(yùn)用移項(xiàng)的方法解下列方程:

四、課堂小結(jié):

本節(jié)課,我們學(xué)習(xí)了哪些知識(shí)?你還有哪些困惑?

五、達(dá)標(biāo)測試:

運(yùn)用移項(xiàng)的方法解下列方程:(25′×4=100′)

六、預(yù)習(xí)作業(yè):

1、預(yù)習(xí)作業(yè):自學(xué)課本第90頁的課文內(nèi)容及例4,完成第90頁練習(xí)2題;

2、課后作業(yè):(1)

初中一元一次方程教案第2篇一、教材分析:

1、教材所處的地位和作用:

從數(shù)學(xué)科學(xué)本身看,方程是代數(shù)學(xué)的核心內(nèi)容,正是對于它的研究推動(dòng)了整個(gè)代數(shù)學(xué)的發(fā)展,從代數(shù)中關(guān)于方程的分類看,一元一次方程是最簡單的代數(shù)方程,也是所有代數(shù)方程的基礎(chǔ).教科書將本節(jié)內(nèi)容安排在第一節(jié),一方面是對小學(xué)學(xué)段已經(jīng)學(xué)過的有關(guān)算術(shù)方法解題和簡單方程的運(yùn)用的進(jìn)一步發(fā)展,另一方面考慮引入一元一次方程后,可以盡早滲透模型化的思想,使學(xué)生盡早接觸利用一元一次方程解決實(shí)際問題的方法.

《課程標(biāo)準(zhǔn)》對本課時(shí)的要求是通過具體實(shí)例歸納出方程及一元一次方程的概念,根據(jù)相等關(guān)系列出方程.讓學(xué)生在歸納和總結(jié)的過程中,初步建立數(shù)學(xué)模型思想,訓(xùn)練學(xué)生主動(dòng)探究的能力,能結(jié)合情境發(fā)現(xiàn)并提出問題,體會(huì)在解決問題中與他人合作的重要性,獲得解決問題的經(jīng)驗(yàn).

2、教學(xué)目標(biāo):

根據(jù)課標(biāo)的要求和本節(jié)內(nèi)容的特點(diǎn),我從知識(shí)技能、數(shù)學(xué)思考、情感價(jià)值觀三個(gè)方面確定本節(jié)課的目標(biāo):

知識(shí)技能目標(biāo)

①通過對實(shí)際問題的分析,讓學(xué)生體驗(yàn)從算術(shù)方法到代數(shù)方法是一種進(jìn)步,歸納并理解一元一次方程的概念,領(lǐng)悟一元一次方程的意義和作用.

②在學(xué)生根據(jù)問題尋找相等關(guān)系、根據(jù)相等關(guān)系列出方程的過程中,培養(yǎng)學(xué)生獲取信息、分析問題、處理問題的能力.

③使學(xué)生經(jīng)歷把實(shí)際問題抽象為數(shù)學(xué)方程的過程,認(rèn)識(shí)到方程是刻畫現(xiàn)實(shí)世界的一種有效的數(shù)學(xué)模型,初步體會(huì)建立數(shù)學(xué)模型的思想.

數(shù)學(xué)思考目標(biāo)

用字母表示未知數(shù),找出相等關(guān)系,將實(shí)際問題抽象為數(shù)學(xué)問題,通過列方程解決.

情感價(jià)值目標(biāo):

讓學(xué)生體會(huì)到從算式到方程是數(shù)學(xué)的進(jìn)步,滲透化未知為已知的重要數(shù)學(xué)思想.體驗(yàn)數(shù)學(xué)與日常生活密切相關(guān),認(rèn)識(shí)到許多實(shí)際問題可以用數(shù)學(xué)方法解決,激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情.

3、重點(diǎn)、難點(diǎn):

結(jié)合以上目標(biāo),我在認(rèn)真研究教材的基礎(chǔ)上,立足學(xué)生發(fā)展的宗旨,確定了本節(jié)課的教學(xué)重難點(diǎn).

教學(xué)重點(diǎn):知道什么是方程、一元一次方程,找相等關(guān)系列方程.

教學(xué)難點(diǎn):思維習(xí)慣的轉(zhuǎn)變,分析數(shù)量關(guān)系,找相等關(guān)系。

二、教學(xué)策略:

如何突出重點(diǎn),突破難點(diǎn),從而達(dá)到教學(xué)目標(biāo)的實(shí)現(xiàn)呢?在教學(xué)過程我運(yùn)用了如下教法與手段:

生活引路,感知概念背景;

比較方法,明確意義;

感受過程,形成核心概念;

運(yùn)用新知,鞏固方法;

歸納總結(jié),鞏固發(fā)展.

本節(jié)課利用多媒體教學(xué)平臺(tái),從學(xué)生熟悉的實(shí)際問題開始,將實(shí)際問題“數(shù)學(xué)化”建立方程模型.采用教師引導(dǎo),學(xué)生自主探索、觀察、歸納的教學(xué)方式。

三、學(xué)情分析:

根據(jù)本節(jié)課的內(nèi)容特點(diǎn)及學(xué)生的心理特征,在學(xué)法上,極力倡導(dǎo)了新課程的自主探究、合作交流的學(xué)習(xí)方法.通過對學(xué)生原有知識(shí)水平的分析,創(chuàng)設(shè)情境,使數(shù)學(xué)回到生活,鼓勵(lì)學(xué)生思考,探索情境中的所包含的數(shù)量關(guān)系,學(xué)生在經(jīng)歷“建立方程模型”這一數(shù)學(xué)化的過程后,理解學(xué)習(xí)方程和一元一次方程的意義,培養(yǎng)學(xué)生抽象概括等能力.

四、教學(xué)過程:

本節(jié)課的教學(xué)過程我設(shè)計(jì)了以下六個(gè)環(huán)節(jié):

(一)情景引入

采用教材中的情景

在這個(gè)環(huán)節(jié)中我提出了三個(gè)問題:

問題1:從上圖中你能獲得哪些信息?

問題2:你會(huì)用算術(shù)方法求嗎?

問題3:你會(huì)用方程的方法解決這個(gè)問題嗎?

(二)學(xué)習(xí)新知

在這個(gè)環(huán)節(jié)中,我首先提出一個(gè)問題:“如果設(shè)中山市到深圳市的路程為·千米,怎樣用式子表示中山市與東莞市的距離以及中山市與惠州市的距離?”,這樣,學(xué)生就會(huì)主動(dòng)結(jié)合圖形,根據(jù)在《整式的加減》中學(xué)到的知識(shí)解決問題.

通過上述思考過程,學(xué)生已經(jīng)初步了解到尋找已知量與未知量之間存在的相等關(guān)系是利用方程解決實(shí)際問題的關(guān)鍵所在.

然后我結(jié)合上面的過程簡單歸納列方程解決實(shí)際問題的步驟并給出方程的概念.

解決實(shí)際問題的步驟:(1)用字母表示問題中的未知數(shù);(2)根據(jù)問題中的相等關(guān)系,列出方程.(17世紀(jì)的法國數(shù)學(xué)家迪卡爾最早使用·,y,z等字母表示未知數(shù),而我國古代則用“天元、地元、人元、物元”等表示未知數(shù),而且要比西方早1000多年,這說明我們中華民族是一個(gè)充滿智慧和才干的偉大民族.)

在這里我介紹了字母表示未知數(shù)的文化背景,其目的就是在文化層面上讓學(xué)生進(jìn)一步理解數(shù)學(xué)、喜愛數(shù)學(xué),展示數(shù)學(xué)的文化魅力,這正是培養(yǎng)學(xué)生情感價(jià)值觀的體現(xiàn).

方程的概念:含有未知數(shù)的等式叫方程.小學(xué)里已經(jīng)給出了方程的概念,這里可適當(dāng)處理.

在這里我開始向?qū)W生滲透列方程解決實(shí)際問題的思考程序.

(三)討論交流

討論1:比較列算式和列方程兩種方法的特點(diǎn).

列算式:只用已知數(shù),表示計(jì)算程序,依據(jù)是間題中的數(shù)量關(guān)系;

列方程:可用未知數(shù),表示相等關(guān)系,依據(jù)是問題中的等量關(guān)系。

通過討論,學(xué)生體會(huì)到了:用算術(shù)方法解題時(shí),列出的算式只能用已知數(shù),而列方程時(shí),方程中既含有已知數(shù),又含有用字母表示的未知數(shù),這就是說,在方程中未知數(shù)(字母)可以和已知數(shù)一起表示問題中的數(shù)量關(guān)系.

而且隨著學(xué)習(xí)的深入,學(xué)生會(huì)逐步體會(huì)到從算式到方程是數(shù)學(xué)的進(jìn)步。

緊接著的思考讓全班學(xué)生參與學(xué)習(xí)的過程,從而進(jìn)一步地拓寬了學(xué)生的思維.

討論2:對于上面的問題,你還能列出其他方程嗎?如果能,你依據(jù)的是哪個(gè)相等關(guān)系?

在這個(gè)討論活動(dòng)中,我采取了先小組合作交流后全班交流.

通過交流后,學(xué)生中出現(xiàn)如下結(jié)果:

從學(xué)生的分析所得,這兩種設(shè)未知數(shù)的方法就是在以后學(xué)習(xí)中將遇到的直接設(shè)元和間接設(shè)元兩種設(shè)元.

要求出路程,只要解出方程中的·即可,我們在以后幾節(jié)課中再來學(xué)習(xí).

在這個(gè)環(huán)節(jié)里,問題的開放有利于培養(yǎng)學(xué)生的發(fā)散思維。這樣安排的目的是使所有的學(xué)生都有獨(dú)立思考的時(shí)間和合作交流的時(shí)間。

(四)初步應(yīng)用

學(xué)生在小學(xué)已經(jīng)學(xué)過簡易方程,通過以下的例題和練習(xí)可以回顧已經(jīng)學(xué)過的知識(shí),并為一元一次方程提供素材。

1、例題:根據(jù)下列問題,設(shè)未知數(shù)并列出方程:

(1)用一根長24㎝的鐵絲圍成一個(gè)正方形,正方形的邊長是多少?

(2)一臺(tái)計(jì)算機(jī)已使用1700小時(shí),預(yù)計(jì)每月再使用150小時(shí),經(jīng)過多少月這臺(tái)計(jì)算機(jī)的使用時(shí)間達(dá)到規(guī)定的檢修時(shí)間2450小時(shí)?

(3)某校女生占全體學(xué)生數(shù)的52%,比男生多80人,這個(gè)學(xué)校有多少學(xué)生?

2、課堂練習(xí):這一組例題和課堂練習(xí)的設(shè)置,其目的是讓學(xué)生更進(jìn)一步加強(qiáng)列方程解決實(shí)際問題的能力。

(五)再探新知

提取例題和練習(xí)中出現(xiàn)的方程請學(xué)生觀察方程它們有什么共同的特點(diǎn)?然后達(dá)成共識(shí):只含有一個(gè)未知數(shù);未知數(shù)的次數(shù)是

在這個(gè)環(huán)節(jié)中,我引導(dǎo)學(xué)生觀察方程特點(diǎn),給出一元一次方程的概念

教師總結(jié):只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,這樣的方程叫做一元一次方程.

思考:下列式子中,哪些是一元一次方程?通過思考辨析,使學(xué)生鞏固一元一次方程的概念,把握住概念的本質(zhì).

(六)課堂小結(jié)

讓學(xué)生先歸納,然后教師補(bǔ)充方式進(jìn)行,主要圍繞以下問題:

本節(jié)課學(xué)習(xí)了哪些主要內(nèi)容?一元一次方程的三個(gè)特征是什么?從實(shí)際問題中列出方程的步驟及關(guān)鍵是什么?

五、課堂設(shè)計(jì)理念

本節(jié)課著力體現(xiàn)以下幾個(gè)方面:

1、突出問題的應(yīng)用意識(shí)。在各個(gè)環(huán)節(jié)的安排上都設(shè)計(jì)成一個(gè)個(gè)問題,使學(xué)生能圍繞問題展開討思考、討論,進(jìn)行學(xué)習(xí)。

2、體現(xiàn)學(xué)生的主體意識(shí)。讓學(xué)生通過列算式與列方程的比較,分別歸納出它們的特點(diǎn),從而感受到從算術(shù)方法到代數(shù)方法是數(shù)學(xué)的進(jìn)步;讓學(xué)生通過合作交流,得出問題的不同解法;讓學(xué)生對一節(jié)課的學(xué)習(xí)內(nèi)容、方法、注意點(diǎn)等進(jìn)行歸納。

3、體現(xiàn)學(xué)生思維的層次性。教師首先引導(dǎo)學(xué)生嘗試用算術(shù)方法解決問題,然后再引導(dǎo)學(xué)生列出含未知數(shù)的式了,尋找相等關(guān)系列出方程,在尋找相等關(guān)系、設(shè)未知數(shù)及作業(yè)的布置等環(huán)節(jié)中都注意了學(xué)生思維的層次性。

4、滲透建模思想。把實(shí)際問題中的數(shù)量關(guān)系用方程形式表示出來,就是建立一種數(shù)學(xué)模型,教師有意識(shí)地按設(shè)未知數(shù)、列方程等步驟組織學(xué)生學(xué)習(xí),就是培養(yǎng)學(xué)生由實(shí)際問題抽象出方程模型的能力。

初中一元一次方程教案第3篇一、教學(xué)目標(biāo)

(一).知識(shí)與技能

會(huì)利用合并同類項(xiàng)解一元一次方程.

(二).過程與方法

通過對實(shí)例的分析,體會(huì)一元一次方程作為實(shí)際問題的數(shù)學(xué)模型的作用.

(三).情感態(tài)度與價(jià)值觀

開展探究性學(xué)習(xí),發(fā)展學(xué)習(xí)能力.

二、重、難點(diǎn)與關(guān)鍵

(一).重點(diǎn):會(huì)列一元一次方程解決實(shí)際問題,并會(huì)合并同類項(xiàng)解一元一次方程.

(二).難點(diǎn):會(huì)列一元一次方程解決實(shí)際問題.

(三).關(guān)鍵:抓住實(shí)際問題中的數(shù)量關(guān)系建立方程模型.

三、教學(xué)過程

(一)、復(fù)習(xí)提問

敘述等式的兩條性質(zhì).

解方程:4(·-)

解法1:根據(jù)等式性質(zhì)2,兩邊同除以4,得:

·-=

兩邊都加,得·=.

解法2:利用乘法分配律,去掉括號(hào),得:

4·-=2

兩邊同加,得4·=

兩邊同除以4,得·=.

(二)、新授

公元825年左右,中亞細(xì)亞數(shù)學(xué)家阿爾、花拉子米寫了一本代數(shù)書,重點(diǎn)論述怎樣解方程.這本書的拉丁文譯本取名為《對消與還原》.對消與還原是什么意思呢?讓我們先討論下面內(nèi)容,然后再回答這個(gè)問題.

問題1:某校三年級(jí)共購買計(jì)算機(jī)140臺(tái),去年購買數(shù)量是前年的2倍,今年購買數(shù)量又是去年的2倍,前年這個(gè)學(xué)校購買了多少臺(tái)計(jì)算機(jī)?

分析:設(shè)前年這個(gè)學(xué)校購買了·臺(tái)計(jì)算機(jī),已知去年購買數(shù)量是前年的2倍,那么去年購買2·臺(tái),又知今年購買數(shù)量是去年的2倍,則今年購買了22·(即4·)臺(tái).

題目中的相等關(guān)系為:三年共購買計(jì)算機(jī)140臺(tái),即

前年購買量+去年購買量+今年購買量=140

列方程:·+2·+4·=140

如何解這個(gè)方程呢?

2·表示2·,4·表示4·,·表示1·.

根據(jù)分配律,·+2·+4·=(1+2+4)·=7·.

這樣就可以把含·的項(xiàng)合并為一項(xiàng),合并時(shí)要注意·的系數(shù)是1,不是

下面的框圖表示了解這個(gè)方程的具體過程:

·+2·+4·=140

合并

7·=140

系數(shù)化為1

·=20

由上可知,前年這個(gè)學(xué)校購買了20臺(tái)計(jì)算機(jī).

上面解方程中合并起了化簡作用,把含有未知數(shù)的項(xiàng)合并為一項(xiàng),從而達(dá)到把方程轉(zhuǎn)化為a·=b的形式,其中a、b是常數(shù).

例:某班學(xué)生共60分,外出參加種樹活動(dòng),根據(jù)任何的不同,要分成三個(gè)小組且使甲、乙、丙三個(gè)小組人數(shù)之比是2:3:5,求各小組人數(shù).

分析:這里甲、乙、丙三個(gè)小組人數(shù)之比是2:3:5,就是說把總數(shù)60人分成10份,甲組人數(shù)占2份,乙組人數(shù)占3份,丙組人數(shù)占5份,如果知道每一份是多少,那么甲、乙、丙各組人數(shù)都可以求得,所以本題應(yīng)設(shè)每一份為·人.

問:本題中相等關(guān)系是什么?

答:甲組人數(shù)+乙組人數(shù)+丙組人數(shù)

解:設(shè)每一份為·人,則甲組人數(shù)為2·人,乙組人數(shù)為3·人,丙組為5·人,列方程:

2·+3·+5·=60

合并,得10·=60

系數(shù)化為1,得·=6

所以2·=12,3·=18,5·=30

答:甲組12人,乙組18人,丙組30人.

請同學(xué)們檢驗(yàn)一下,答案是否合理,即這三組人數(shù)的比是否是2:3:5,且這三組人數(shù)之和是否等于

(三)、鞏固練習(xí)

課本第89頁練習(xí).

(1)·

(2)可以先合并,也可以先把方程兩邊同乘以

具體解法如下:

解法1:合并,得(+)·=7

即2·=7

系數(shù)化為1,得·=

解法2:兩邊同乘以2,得·+3·=14

合并,得4·=14

系數(shù)化為1,得·=

(3)合并,得·=10

系數(shù)化為1,得·=-4

補(bǔ)充練習(xí).

(1)足球的表面是由若干個(gè)黑色五邊形和白色六邊形皮塊圍成的,黑白皮塊的數(shù)目比為3:5,一個(gè)足球的表面一共有32個(gè)皮塊,黑色皮塊和白色皮塊各有多少?

(2)某學(xué)生讀一本書,第一天讀了全書的多2頁,第二天讀了全書的少1頁,還剩23頁沒讀,問全書共有多少頁?(設(shè)未知數(shù),列方程,不求解)

解:(1)設(shè)每份為·個(gè),則黑色皮塊有3·個(gè),白色皮塊有5·個(gè).

列方程3·+2·=32

合并,得8·=32

系數(shù)化為1,得·=4

黑色皮塊為43=12(個(gè)),白色皮塊有54=20(個(gè)).

(2)設(shè)全書共有·頁,那么第一天讀了(·+2)頁,第二天讀了(·-1)頁.

本問題的相等關(guān)系是:第一天讀的量+第二天讀的量+還剩23頁=全書頁數(shù).

列方程:·+2+·-1+23=·.

四、課堂小結(jié)

初學(xué)用代數(shù)方法解應(yīng)用題,感到不習(xí)慣,但一定要克服困難,掌握這種方法,掌握列一元一次方程解決實(shí)際問題的一般步驟,其中找等量關(guān)系是關(guān)鍵也是難點(diǎn),本節(jié)課的兩個(gè)問題的相等關(guān)系都是:總量=各部分量的和.這是一個(gè)基本的相等關(guān)系.

合并就是把類型相同的項(xiàng)系數(shù)相加合并為一項(xiàng),也就是逆用乘法分配律,合并時(shí),注意·或-·的系數(shù)分別是1,-1,而不是

五、作業(yè)布置

課本第93頁習(xí)題第1、3(1)、(2)、4、5題.

選用課時(shí)作業(yè)設(shè)計(jì).

合并同類項(xiàng)習(xí)題課(第2課時(shí))

一、解方程.

(1)3·+3-2·=7;(2)·+·=3;

(3)5·-2-7·=8;(4)y-3-5y=;

(5)-=5;(6)·-·

二、解答題.

育紅小學(xué)現(xiàn)有學(xué)生320人,比1995年學(xué)生人數(shù)的少150人,問育紅小學(xué)1995年學(xué)生人數(shù)是多少?

甲、乙兩地相距460千米,A、B兩車分別從甲、乙兩地開出,A車每小時(shí)行駛60千米,B車每小時(shí)行駛48千米.

(1)兩車同時(shí)出發(fā),相向而行,出發(fā)多少小時(shí)兩車相遇?

(2)兩車相向而行,A車提前半小時(shí)出發(fā),則在B車出發(fā)后多少小時(shí)兩車相遇?相遇地點(diǎn)距離甲地多遠(yuǎn)?

甲、乙二人從A地去B地,甲步行每小時(shí)走4千米,乙騎車每小時(shí)比甲多走8千米,甲出發(fā)半小時(shí)后乙出發(fā),恰好二人同時(shí)到達(dá)B地,求A、B兩地之間的距離.

一條環(huán)形跑道長400米,甲練習(xí)騎自行車,平均每分鐘行駛550米;乙練習(xí)長跑,平均每分鐘跑250米,兩人同時(shí)、同地、同向出發(fā),經(jīng)過多少時(shí)間,兩人首次相遇?

答案:

一、(1)·=4(2)·=4(3)·=-5(4)·=-(5)·=30(6)·=11

二、人,設(shè)育紅小學(xué)1995年學(xué)生人數(shù)為·人,列方程320=·

(1)4小時(shí),設(shè)出發(fā)后·小時(shí)相遇,列方程60·+48·

(2)3小時(shí),設(shè)B車開出后·小時(shí)兩車相遇,列方程60+60·+48·

千米,設(shè)A、B兩地間的距離為·千米,-=.

分鐘,設(shè)經(jīng)過·分鐘兩人首次相遇,列方程550·-250·

解一元一次方程

──移項(xiàng)(第3課時(shí))

一、教學(xué)內(nèi)容

課本第89頁至第91頁.

二、教學(xué)目標(biāo)

(一).知識(shí)與技能

理解移項(xiàng)法,并知道移項(xiàng)法的依據(jù),會(huì)用移項(xiàng)法則解方程.

(二).情感態(tài)度與價(jià)值觀

鼓勵(lì)學(xué)生自主探索與合作交流,發(fā)展思維策略,體會(huì)方程的應(yīng)用價(jià)值.

三、重、難點(diǎn)與關(guān)鍵

(一).重點(diǎn):運(yùn)用方程解決實(shí)際問題,會(huì)用移項(xiàng)法則解方程.方程的各項(xiàng)應(yīng)包括前面的符號(hào)

(二).難點(diǎn):對立相等關(guān)系.

(三).關(guān)鍵:理解移項(xiàng)法則的依據(jù),以及尋找問題中的等量關(guān)系.

四、教學(xué)過程(一)、復(fù)習(xí)提問

運(yùn)用方程解決實(shí)際問題的步驟是什么?

解方程:+

(二)、新授

問題2:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本,這個(gè)班有多少學(xué)生?

分析:設(shè)這個(gè)班有·名學(xué)生,根據(jù)第一種分法,分析已知量和未知量間的關(guān)系.

每人分3本,那么共分出多少本?(3·本)

共分出3·本和剩余的20本,可知道什么?

答:這批書共有(3·+20)本.

根據(jù)第二種分法,分析已知量與未知量之間的關(guān)系.

每人分4本,那么需要分出多少本?(4·本)

需要分出4·本和還缺少25本那么這批書共有多少本?

答:這批書共有(4·-25)本.

這批書的總數(shù)有幾種表示法?它們之間有什么關(guān)系?本題哪個(gè)相等關(guān)系可以作為列方程的依據(jù)?

這批書的總數(shù)是一個(gè)定值(不變量)表示它的兩個(gè)式子應(yīng)相等.

根據(jù)這一相等關(guān)系,列方程:

3·+20=4·-25

本題還可以畫示意圖,幫助我們分析:

從示意圖中容易得到這批書的總數(shù)與分出書、剩下書的關(guān)系是:

這批書的總數(shù)=3·+30

這批書的總數(shù)與需要分出的書的數(shù)量、還缺少書的數(shù)量關(guān)系是:

這批書的總數(shù)=4·-25

根據(jù)兩種分法,這批書的總數(shù)是相等的.

所以,列方程3·+20=4·

注意變化中的不變量,尋找隱含的相等關(guān)系,從本題列方程的過程,可以發(fā)現(xiàn):表示同一個(gè)量的兩個(gè)不同式子相等.

思考:方程3·+20=4·-25的兩邊都含有·的項(xiàng)(3·與4·),也都含有不含字母的常數(shù)項(xiàng)(20與-25)怎樣才能使它轉(zhuǎn)化為·=a(常數(shù))的形式呢?

要使方程右邊不含·的項(xiàng),根據(jù)等式性質(zhì)1,兩邊都減去4·,同樣,把方程兩邊都減去20,方程左邊就不含常數(shù)項(xiàng)20,即

3·+20-4·-20=4·-25-4·-20

即3·-4·=-25-20

將它與原來方程比較,相當(dāng)于把原方程左邊的+20變?yōu)?20后移到方程右邊,把原方程右邊的4·變?yōu)?4·后移到左邊.

像上面那樣,把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做移項(xiàng).

方程中的任何一項(xiàng)都可以在改變符號(hào)后,從方程的一邊移到另一邊,即可以把方程等號(hào)右邊的項(xiàng)改變符號(hào)后移到等號(hào)的左邊,也可以把方程左邊的項(xiàng)改變符號(hào)后移到方程的右邊,注意要先變號(hào)后移項(xiàng),別忘了變號(hào).

下面的框圖表示了解這個(gè)方程的具體過程.

3·+20=4·-25

移項(xiàng)

3·-4·=-25-20

合并

-·=-45

系數(shù)化為1

·=46

由此可知這個(gè)班共有45個(gè)學(xué)生.

思考:上面解方程中移項(xiàng)起了什么作用?

答:移項(xiàng)使方程中含·的項(xiàng)歸到方程的同一邊(左邊),不含·的項(xiàng)即常數(shù)項(xiàng)歸到方程的另一邊(右邊),這樣就可以通過合并把方程轉(zhuǎn)化為·=a形式.

在解方程時(shí),要弄清什么時(shí)候要移項(xiàng),移哪些項(xiàng),目的是什么?

解方程時(shí)經(jīng)常要合并和移項(xiàng),前面提到的古老的代數(shù)書中的對消和還原,指的就是合并和移項(xiàng).

如果把上面的問題2的條件不變,這個(gè)班有多少學(xué)生改為這批書有多少本?你會(huì)解嗎?試試看.

解法1:從原問題的解答中,已求的這個(gè)班有45個(gè)學(xué)生,只要把·=45代入3·+20(或4·-25)就可以求得這批書的總數(shù)為:

345+20=135+20=155(本)

解法2:如果不先求學(xué)生數(shù),直接設(shè)這批書共有·本,又如何布列方程?這時(shí)該用哪個(gè)相等關(guān)系列方程呢?

這批書共有·本,余下20本,共分出(·-20)本,每人分3本,可以分給人,即這個(gè)班共有人.

這批書有·本,每人分4本,還缺少25本,共需要(·+25)本,可以分給人,即這個(gè)班共有人.

這個(gè)班的人數(shù)是一個(gè)定值,表示它的兩個(gè)式子應(yīng)相等,根據(jù)這個(gè)相等關(guān)系列方程.

=(你會(huì)解這個(gè)方程嗎?)

即-=+

移項(xiàng),得-=+

合并,得=

系數(shù)化為1,得·

答:這批書共有155本.

(三)、鞏固練習(xí)

課本第91頁練習(xí).

(1)解:移項(xiàng),得6·-4·=-5+7

合并,得2·=2

系數(shù)化為1,得·

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論