版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點(diǎn)G,若AE=3ED,DF=CF,則的值是A. B. C. D.2.如圖,在正方形ABCD和正方形CEFG中,點(diǎn)D在CG上,BC=1,CE=3,連接AF交CG于M點(diǎn),則FM=()A. B. C. D.3.如圖,在邊長為3的等邊三角形ABC中,過點(diǎn)C垂直于BC的直線交∠ABC的平分線于點(diǎn)P,則點(diǎn)P到邊AB所在直線的距離為()A.33 B.32 C.4.如果一個(gè)多邊形的內(nèi)角和是外角和的3倍,則這個(gè)多邊形的邊數(shù)是()A.8 B.9 C.10 D.115.把圖中的五角星圖案,繞著它的中心點(diǎn)O進(jìn)行旋轉(zhuǎn),若旋轉(zhuǎn)后與自身重合,則至少旋轉(zhuǎn)()A.36° B.45° C.72° D.90°6.下列因式分解正確的是()A.x2+9=(x+3)2 B.a(chǎn)2+2a+4=(a+2)2C.a(chǎn)3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)7.某美術(shù)社團(tuán)為練習(xí)素描,他們第一次用120元買了若干本相同的畫冊,第二次用240元在同一家商店買與上一次相同的畫冊,這次商家每本優(yōu)惠4元,結(jié)果比上次多買了20本.求第一次買了多少本畫冊?設(shè)第一次買了x本畫冊,列方程正確的是()A. B.C. D.8.古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個(gè)大于1的“正方形數(shù)”都可以看作兩個(gè)相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+319.從,0,π,,6這5個(gè)數(shù)中隨機(jī)抽取一個(gè)數(shù),抽到有理數(shù)的概率是()A. B. C. D.10.下列各式計(jì)算正確的是()A.(b+2a)(2a﹣b)=b2﹣4a2 B.2a3+a3=3a6C.a(chǎn)3?a=a4 D.(﹣a2b)3=a6b3二、填空題(共7小題,每小題3分,滿分21分)11.觀察如圖中的數(shù)列排放順序,根據(jù)其規(guī)律猜想:第10行第8個(gè)數(shù)應(yīng)該是_____.12.為了了解某班數(shù)學(xué)成績情況,抽樣調(diào)查了13份試卷成績,結(jié)果如下:3個(gè)140分,4個(gè)135分,2個(gè)130分,2個(gè)120分,1個(gè)100分,1個(gè)80分.則這組數(shù)據(jù)的中位數(shù)為______分.13.因式分解=______.14.拋物線y=﹣x2+bx+c的部分圖象如圖所示,若y>0,則x的取值范圍是_____.15.在平面直角坐標(biāo)系中,直線l:y=x﹣1與x軸交于點(diǎn)A1,如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得點(diǎn)A1、A2、A3、…在直線l上,點(diǎn)C1、C2、C3、…在y軸正半軸上,則點(diǎn)Bn的坐標(biāo)是_____.16.如圖所示,點(diǎn)C在反比例函數(shù)的圖象上,過點(diǎn)C的直線與x軸、y軸分別交于點(diǎn)A、B,且,已知的面積為1,則k的值為______.17.不等式組的解集為________.三、解答題(共7小題,滿分69分)18.(10分)如圖,在矩形紙片ABCD中,AB=6,BC=1.把△BCD沿對(duì)角線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)G;E、F分別是C′D和BD上的點(diǎn),線段EF交AD于點(diǎn)H,把△FDE沿EF折疊,使點(diǎn)D落在D′處,點(diǎn)D′恰好與點(diǎn)A重合.(1)求證:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的長.19.(5分)如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點(diǎn)F,點(diǎn)E在AB的延長線上,射線EM經(jīng)過點(diǎn)C,且∠ACE+∠AFO=180°.求證:EM是⊙O的切線;若∠A=∠E,BC=,求陰影部分的面積.(結(jié)果保留和根號(hào)).20.(8分)某市飛翔航模小隊(duì),計(jì)劃購進(jìn)一批無人機(jī).已知3臺(tái)A型無人機(jī)和4臺(tái)B型無人機(jī)共需6400元,4臺(tái)A型無人機(jī)和3臺(tái)B型無人機(jī)共需6200元.(1)求一臺(tái)A型無人機(jī)和一臺(tái)B型無人機(jī)的售價(jià)各是多少元?(2)該航模小隊(duì)一次購進(jìn)兩種型號(hào)的無人機(jī)共50臺(tái),并且B型無人機(jī)的數(shù)量不少于A型無人機(jī)的數(shù)量的2倍.設(shè)購進(jìn)A型無人機(jī)x臺(tái),總費(fèi)用為y元.①求y與x的關(guān)系式;②購進(jìn)A型、B型無人機(jī)各多少臺(tái),才能使總費(fèi)用最少?21.(10分)一個(gè)不透明的口袋中裝有2個(gè)紅球、1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球搖勻.先從中任意摸出1個(gè)球,再從余下的3個(gè)球中任意摸出1個(gè)球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.22.(10分)由于持續(xù)高溫和連日無雨,某水庫的蓄水量隨時(shí)間的增加而減少,已知原有蓄水量y1(萬m3)與干旱持續(xù)時(shí)間x(天)的關(guān)系如圖中線段l1所示,針對(duì)這種干旱情況,從第20天開始向水庫注水,注水量y2(萬m3)與時(shí)間(天)的關(guān)系如圖中線段l2所示(不考慮其他因素).(1)求原有蓄水量y1(萬m3)與時(shí)間(天)的函數(shù)關(guān)系式,并求當(dāng)x=20時(shí)的水庫總蓄水量.(2)求當(dāng)0≤x≤60時(shí),水庫的總蓄水量y萬(萬m3)與時(shí)間x(天)的函數(shù)關(guān)系式(注明x的范圍),若總蓄水量不多于900萬m3為嚴(yán)重干旱,直接寫出發(fā)生嚴(yán)重干旱時(shí)x的范圍.23.(12分)如圖,已知AB是圓O的直徑,F(xiàn)是圓O上一點(diǎn),∠BAF的平分線交⊙O于點(diǎn)E,交⊙O的切線BC于點(diǎn)C,過點(diǎn)E作ED⊥AF,交AF的延長線于點(diǎn)D.求證:DE是⊙O的切線;若DE=3,CE=2.①求的值;②若點(diǎn)G為AE上一點(diǎn),求OG+EG最小值.24.(14分)為了進(jìn)一步改善環(huán)境,鄭州市今年增加了綠色自行車的數(shù)量,已知A型號(hào)的自行車比B型號(hào)的自行車的單價(jià)低30元,買8輛A型號(hào)的自行車與買7輛B型號(hào)的自行車所花費(fèi)用相同.
(1)A,B兩種型號(hào)的自行車的單價(jià)分別是多少?
(2)若購買A,B兩種自行車共600輛,且A型號(hào)自行車的數(shù)量不多于B型號(hào)自行車的一半,請你給出一種最省錢的方案,并求出該方案所需要的費(fèi)用.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】
如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.設(shè)DE=a,則AE=3a,利用平行線分線段成比例定理解決問題即可.【詳解】如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.∵四邊形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四邊形ANFD是平行四邊形,∵∠D=90°,∴四邊形ANFD是矩形,∵AE=3DE,設(shè)DE=a,則AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴,故選C.【點(diǎn)睛】本題考查正方形的性質(zhì)、平行線分線段成比例定理、三角形中位線定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造平行線解決問題,學(xué)會(huì)利用參數(shù)解決問題,屬于中考??碱}型.2、C【解析】
由正方形的性質(zhì)知DG=CG-CD=2、AD∥GF,據(jù)此證△ADM∽△FGM得,求出GM的長,再利用勾股定理求解可得答案.【詳解】解:∵四邊形ABCD和四邊形CEFG是正方形,
∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,
∴DG=CG-CD=2,AD∥GF,
則△ADM∽△FGM,∴,即,解得:GM=,∴FM===,故選:C.【點(diǎn)睛】本題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練掌握正方形的性質(zhì)、相似三角形的判定與性質(zhì)及勾股定理等知識(shí)點(diǎn).3、D【解析】試題分析:∵△ABC為等邊三角形,BP平分∠ABC,∴∠PBC=12∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC?tan∠PBC=3考點(diǎn):1.角平分線的性質(zhì);2.等邊三角形的性質(zhì);3.含30度角的直角三角形;4.勾股定理.4、A【解析】分析:根據(jù)多邊形的內(nèi)角和公式及外角的特征計(jì)算.詳解:多邊形的外角和是360°,根據(jù)題意得:
110°?(n-2)=3×360°
解得n=1.
故選A.點(diǎn)睛:本題主要考查了多邊形內(nèi)角和公式及外角的特征.求多邊形的邊數(shù),可以轉(zhuǎn)化為方程的問題來解決.5、C【解析】分析:五角星能被從中心發(fā)出的射線平分成相等的5部分,再由一個(gè)周角是360°即可求出最小的旋轉(zhuǎn)角度.詳解:五角星可以被中心發(fā)出的射線平分成5部分,那么最小的旋轉(zhuǎn)角度為:360°÷5=72°.故選C.點(diǎn)睛:本題考查了旋轉(zhuǎn)對(duì)稱圖形的概念:把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對(duì)稱圖形,這個(gè)定點(diǎn)叫做旋轉(zhuǎn)對(duì)稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角.6、C【解析】
試題分析:A、B無法進(jìn)行因式分解;C正確;D、原式=(1+2x)(1-2x)故選C,考點(diǎn):因式分解【詳解】請?jiān)诖溯斎朐斀猓?、A【解析】分析:由設(shè)第一次買了x本資料,則設(shè)第二次買了(x+20)本資料,由等量關(guān)系:第二次比第一次每本優(yōu)惠4元,即可得到方程.詳解:設(shè)他上月買了x本筆記本,則這次買了(x+20)本,根據(jù)題意得:.故選A.點(diǎn)睛:本題考查了分式方程的應(yīng)用,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列方程解答即可.8、C【解析】
本題考查探究、歸納的數(shù)學(xué)思想方法.題中明確指出:任何一個(gè)大于1的“正方形數(shù)”都可以看作兩個(gè)相鄰“三角形數(shù)”之和.由于“正方形數(shù)”為兩個(gè)“三角形數(shù)”之和,正方形數(shù)可以用代數(shù)式表示為:(n+1)2,兩個(gè)三角形數(shù)分別表示為n(n+1)和(n+1)(n+2),所以由正方形數(shù)可以推得n的值,然后求得三角形數(shù)的值.【詳解】∵A中13不是“正方形數(shù)”;選項(xiàng)B、D中等式右側(cè)并不是兩個(gè)相鄰“三角形數(shù)”之和.故選:C.【點(diǎn)睛】此題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對(duì)于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.9、C【解析】
根據(jù)有理數(shù)的定義可找出在從,0,π,,6這5個(gè)數(shù)中只有0、、6為有理數(shù),再根據(jù)概率公式即可求出抽到有理數(shù)的概率.【詳解】∵在,0,π,,6這5個(gè)數(shù)中有理數(shù)只有0、、6這3個(gè)數(shù),∴抽到有理數(shù)的概率是,故選C.【點(diǎn)睛】本題考查了概率公式以及有理數(shù),根據(jù)有理數(shù)的定義找出五個(gè)數(shù)中的有理數(shù)的個(gè)數(shù)是解題的關(guān)鍵.10、C【解析】各項(xiàng)計(jì)算得到結(jié)果,即可作出判斷.解:A、原式=4a2﹣b2,不符合題意;B、原式=3a3,不符合題意;C、原式=a4,符合題意;D、原式=﹣a6b3,不符合題意,故選C.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
由n行有n個(gè)數(shù),可得出第10行第8個(gè)數(shù)為第1個(gè)數(shù),結(jié)合奇數(shù)為正偶數(shù)為負(fù),即可求出結(jié)論.【詳解】解:第1行1個(gè)數(shù),第2行2個(gè)數(shù),第3行3個(gè)數(shù),…,∴第9行9個(gè)數(shù),∴第10行第8個(gè)數(shù)為第1+2+3+…+9+8=1個(gè)數(shù).又∵第2n﹣1個(gè)數(shù)為2n﹣1,第2n個(gè)數(shù)為﹣2n,∴第10行第8個(gè)數(shù)應(yīng)該是1.故答案為:1.【點(diǎn)睛】本題考查了規(guī)律型中數(shù)字的變化類,根據(jù)數(shù)的變化找出變化規(guī)律是解題的關(guān)鍵.12、1【解析】
∵13份試卷成績,結(jié)果如下:3個(gè)140分,4個(gè)1分,2個(gè)130分,2個(gè)120分,1個(gè)100分,1個(gè)80分,∴第7個(gè)數(shù)是1分,∴中位數(shù)為1分,故答案為1.13、.【解析】解:==,故答案為:.14、-3<x<1【解析】試題分析:根據(jù)拋物線的對(duì)稱軸為x=﹣1,一個(gè)交點(diǎn)為(1,0),可推出另一交點(diǎn)為(﹣3,0),結(jié)合圖象求出y>0時(shí),x的范圍.解:根據(jù)拋物線的圖象可知:拋物線的對(duì)稱軸為x=﹣1,已知一個(gè)交點(diǎn)為(1,0),根據(jù)對(duì)稱性,則另一交點(diǎn)為(﹣3,0),所以y>0時(shí),x的取值范圍是﹣3<x<1.故答案為﹣3<x<1.考點(diǎn):二次函數(shù)的圖象.15、(2n﹣1,2n﹣1).【解析】
解:∵y=x-1與x軸交于點(diǎn)A1,
∴A1點(diǎn)坐標(biāo)(1,0),
∵四邊形A1B1C1O是正方形,
∴B1坐標(biāo)(1,1),
∵C1A2∥x軸,
∴A2坐標(biāo)(2,1),
∵四邊形A2B2C2C1是正方形,
∴B2坐標(biāo)(2,3),
∵C2A3∥x軸,
∴A3坐標(biāo)(4,3),
∵四邊形A3B3C3C2是正方形,
∴B3(4,7),
∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,
∴Bn坐標(biāo)(2n-1,2n-1).
故答案為(2n-1,2n-1).16、1【解析】
根據(jù)題意可以設(shè)出點(diǎn)A的坐標(biāo),從而以得到點(diǎn)C和點(diǎn)B的坐標(biāo),再根據(jù)的面積為1,即可求得k的值.【詳解】解:設(shè)點(diǎn)A的坐標(biāo)為,過點(diǎn)C的直線與x軸,y軸分別交于點(diǎn)A,B,且,的面積為1,點(diǎn),點(diǎn)B的坐標(biāo)為,,解得,,故答案為:1.【點(diǎn)睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義、一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.17、x>1【解析】
分別求出兩個(gè)不等式的解集,再求其公共解集.【詳解】,解不等式①,得:x>1,解不等式②,得:x>-3,所以不等式組的解集為:x>1,故答案為:x>1.【點(diǎn)睛】本題考查一元一次不等式組的解法,屬于基礎(chǔ)題.求不等式組的解集,要遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.三、解答題(共7小題,滿分69分)18、(1)證明見解析(2)7/24(3)25/6【解析】(1)證明:∵△BDC′由△BDC翻折而成,∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。在△ABG≌△C′DG中,∵∠BAG=∠C,AB=C′D,∠ABG=∠ADC′,∴△ABG≌△C′DG(ASA)。(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD。設(shè)AG=x,則GB=1﹣x,在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(1﹣x)2,解得x=?!唷#?)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD?!郒D=AD=4?!遲an∠ABG=tan∠ADE=?!郋H=HD×=4×。∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位線?!郒F=AB=×6=3?!郋F=EH+HF=。(1)根據(jù)翻折變換的性質(zhì)可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出結(jié)論。(2)由(1)可知GD=GB,故AG+GB=AD,設(shè)AG=x,則GB=1-x,在Rt△ABG中利用勾股定理即可求出AG的長,從而得出tan∠ABG的值。(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根據(jù)tan∠ABG的值即可得出EH的長,同理可得HF是△ABD的中位線,故可得出HF的長,由EF=EH+HF即可得出結(jié)果。19、(1)詳見解析;(2);【解析】
(1)連接OC,根據(jù)垂直的定義得到∠AOF=90°,根據(jù)三角形的內(nèi)角和得到∠ACE=90°+∠A,根據(jù)等腰三角形的性質(zhì)得到∠OCE=90°,得到OC⊥CE,于是得到結(jié)論;
(2)根據(jù)圓周角定理得到∠ACB=90°,推出∠ACO=∠BCE,得到△BOC是等邊三角形,根據(jù)扇形和三角形的面積公式即可得到結(jié)論.【詳解】:(1)連接OC,
∵OF⊥AB,
∴∠AOF=90°,
∴∠A+∠AFO+90°=180°,
∵∠ACE+∠AFO=180°,
∴∠ACE=90°+∠A,
∵OA=OC,
∴∠A=∠ACO,
∴∠ACE=90°+∠ACO=∠ACO+∠OCE,
∴∠OCE=90°,
∴OC⊥CE,
∴EM是⊙O的切線;
(2)∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠ACO+∠BCO=∠BCE+∠BCO=90°,
∴∠ACO=∠BCE,
∵∠A=∠E,
∴∠A=∠ACO=∠BCE=∠E,
∴∠ABC=∠BCO+∠E=2∠A,
∴∠A=30°,
∴∠BOC=60°,
∴△BOC是等邊三角形,
∴OB=BC=,
∴陰影部分的面積=,【點(diǎn)睛】本題考查了切線的判定,等腰三角形的判定和性質(zhì),扇形的面積計(jì)算,連接OC是解題的關(guān)鍵.20、(1)一臺(tái)A型無人機(jī)售價(jià)800元,一臺(tái)B型無人機(jī)的售價(jià)1000元;(2)①y=﹣200x+50000;②購進(jìn)A型、B型無人機(jī)各16臺(tái)、34臺(tái)時(shí),才能使總費(fèi)用最少.【解析】
(1)根據(jù)3臺(tái)A型無人機(jī)和4臺(tái)B型無人機(jī)共需6400元,4臺(tái)A型無人機(jī)和3臺(tái)B型無人機(jī)共需6200元,可以列出相應(yīng)的方程組,從而可以解答本題;(2)①根據(jù)題意可以得到y(tǒng)與x的函數(shù)關(guān)系式;②根據(jù)①中的函數(shù)關(guān)系式和B型無人機(jī)的數(shù)量不少于A型無人機(jī)的數(shù)量的2倍,可以求得購進(jìn)A型、B型無人機(jī)各多少臺(tái),才能使總費(fèi)用最少.【詳解】解:(1)設(shè)一臺(tái)型無人機(jī)售價(jià)元,一臺(tái)型無人機(jī)的售價(jià)元,,解得,,答:一臺(tái)型無人機(jī)售價(jià)元,一臺(tái)型無人機(jī)的售價(jià)元;(2)①由題意可得,即y與x的函數(shù)關(guān)系式為;②∵B型無人機(jī)的數(shù)量不少于A型無人機(jī)的數(shù)量的2倍,,解得,,,∴當(dāng)時(shí),y取得最小值,此時(shí),答:購進(jìn)型、型無人機(jī)各臺(tái)、臺(tái)時(shí),才能使總費(fèi)用最少.【點(diǎn)睛】本題考查二元一次方程組的應(yīng)用、一次函數(shù)的應(yīng)用、一元一次不等式的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)和方程的知識(shí)解答.21、【解析】分析:列表得出所有等可能的情況數(shù),找出兩次都摸到紅球的情況數(shù),即可求出所求的概率.詳解:列表如下:紅紅白黑紅﹣﹣﹣(紅,紅)(白,紅)(黑,紅)紅(紅,紅)﹣﹣﹣(白,紅)(黑,紅)白(紅,白)(紅,白)﹣﹣﹣(黑,白)黑(紅,黑)(紅,黑)(白,黑)﹣﹣﹣所有等可能的情況有12種,其中兩次都摸到紅球有2種可能,則P(兩次摸到紅球)==.點(diǎn)睛:此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.22、(1)y1=-20x+1200,800;(2)15≤x≤40.【解析】
(1)根據(jù)圖中的已知點(diǎn)用待定系數(shù)法求出一次函數(shù)解析式(2)設(shè)y2=kx+b,把(20,0)和(60,1000)代入求出解析式,在已知范圍內(nèi)求出解即可.【詳解】解:(1)設(shè)y1=kx+b,把(0,1200)和(60,0)代入得解得,所以y1=-20x+1200,當(dāng)x=20時(shí),y1=-20×20+1200=800,(2)設(shè)y2=kx+b,把(20,0)和(60,1000)代入得則,所以y2=25x-500,當(dāng)0≤x≤20時(shí),y=-20x+1200,當(dāng)20<x≤60時(shí),y=y1+y2=-20x+1200+25x-500=5x+700,由題意解得該不等式組的解集為15≤x≤40所以發(fā)生嚴(yán)重干旱時(shí)x的范圍為15≤x≤40.【點(diǎn)睛】此題重點(diǎn)考察學(xué)生對(duì)一次函數(shù)和一元一次不等式的實(shí)際應(yīng)用能力,掌握一次函數(shù)和一元一次不等式的解法是解題的關(guān)鍵.23、(1)證明見解析(2)①②3【解析】
(1)作輔助線,連接OE.根據(jù)切線的判定定理,只需證DE⊥OE即可;(2)①連接BE.根據(jù)BC、DE兩切線的性質(zhì)證明△ADE∽△BEC;又由角平分線的性質(zhì)、等腰三角形的兩個(gè)底角相等求得△ABE∽△AFD,所以;②連接OF,交AD于H,由①得∠FOE=∠FOA=60°,連接EF,則△AOF、△EOF都是等邊三角形,故四邊形AOEF是菱形,由對(duì)稱性可知GO=GF,過點(diǎn)G作GM⊥OE于M,則GM=EG,OG+EG=GF+GM,根據(jù)兩點(diǎn)之間線段最短,當(dāng)F、G、M三點(diǎn)共線,OG+EG=GF+GM=FM最小,此時(shí)FM=3.故OG+EG最小值是3.【詳解】(1)連接OE∵OA=OE,∴∠AEO=∠EAO∵∠FAE=∠EAO,∴∠FAE=∠AEO∴OE∥AF∵DE⊥A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年糯稻根項(xiàng)目可行性研究報(bào)告
- 2024年電泳漆攪拌機(jī)項(xiàng)目可行性研究報(bào)告
- 2024年浴室柜項(xiàng)目可行性研究報(bào)告
- 2024年氟塑料擠出生產(chǎn)線項(xiàng)目可行性研究報(bào)告
- 課程設(shè)計(jì)全自動(dòng)洗衣機(jī)
- 2024至2030年中國單極復(fù)合接觸器行業(yè)投資前景及策略咨詢研究報(bào)告
- 2024至2030年中國人事管理軟件數(shù)據(jù)監(jiān)測研究報(bào)告
- 2024至2030年中國萬向音樂戰(zhàn)車數(shù)據(jù)監(jiān)測研究報(bào)告
- 課程設(shè)計(jì)搞笑視頻文案
- 雷達(dá)測距儀課程設(shè)計(jì)
- 從傳統(tǒng)生產(chǎn)力到新質(zhì)生產(chǎn)力
- 河北2024年河北北方學(xué)院招聘工作人員31人筆試歷年典型考題及考點(diǎn)附答案解析
- AQ6111-2023個(gè)體防護(hù)裝備安全管理規(guī)范
- 2024年山東省煙臺(tái)市中考數(shù)學(xué)試卷
- 淺談化工技術(shù)經(jīng)濟(jì)與管理現(xiàn)代化
- NB-T11092-2023水電工程深埋隧洞技術(shù)規(guī)范
- 《跟上兔子》繪本三年級(jí)第1季This-Is-My-Family教學(xué)課件
- 管道施工技術(shù)培訓(xùn)
- 七年級(jí)上冊歷史知識(shí)點(diǎn)解析
- 保險(xiǎn)機(jī)構(gòu)法人名單(截至2023年12月末)
- 全國職業(yè)規(guī)劃大賽成長賽道
評(píng)論
0/150
提交評(píng)論