太原市2022-2023學年中考四模數學試題含解析_第1頁
太原市2022-2023學年中考四模數學試題含解析_第2頁
太原市2022-2023學年中考四模數學試題含解析_第3頁
太原市2022-2023學年中考四模數學試題含解析_第4頁
太原市2022-2023學年中考四模數學試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.“射擊運動員射擊一次,命中靶心”這個事件是()A.確定事件B.必然事件C.不可能事件D.不確定事件2.如圖,在平面直角坐標系中,等腰直角三角形ABC的頂點A、B分別在x軸、y軸的正半軸上,∠ABC=90°,CA⊥x軸,點C在函數y=(x>0)的圖象上,若AB=2,則k的值為()A.4 B.2 C.2 D.3.已知,下列說法中,不正確的是()A. B.與方向相同C. D.4.已知二次函數(為常數),當時,函數的最小值為5,則的值為()A.-1或5 B.-1或3 C.1或5 D.1或35.下列計算正確的是A. B. C. D.6.下列圖形中既是中心對稱圖形又是軸對稱圖形的是A. B. C. D.7.下列運算正確的是()A.a6÷a3=a2 B.3a2?2a=6a3 C.(3a)2=3a2 D.2x2﹣x2=18.△ABC在正方形網格中的位置如圖所示,則cosB的值為()A. B. C. D.29.如圖是由7個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體()A.主視圖不變,左視圖不變B.左視圖改變,俯視圖改變C.主視圖改變,俯視圖改變D.俯視圖不變,左視圖改變10.不等式﹣x+1>3的解集是()A.x<﹣4 B.x>﹣4 C.x>4 D.x<4二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在四邊形紙片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.將紙片先沿直線BD對折,再將對折后的圖形沿從一個頂點出發(fā)的直線裁剪,剪開后的圖形打開鋪平.若鋪平后的圖形中有一個是面積為2的平行四邊形,則CD=_________.12.如圖,在平面直角坐標系中,經過點A的雙曲線y=(x>0)同時經過點B,且點A在點B的左側,點A的橫坐標為1,∠AOB=∠OBA=45°,則k的值為_______.13.如圖,矩形ABCD中,BC=6,CD=3,以AD為直徑的半圓O與BC相切于點E,連接BD則陰影部分的面積為____(結果保留π)14.如圖,在△OAB中,C是AB的中點,反比例函數y=(k>0)在第一象限的圖象經過A,C兩點,若△OAB面積為6,則k的值為_____.15.Rt△ABC中,AD為斜邊BC上的高,若,則.16.請寫出一個開口向下,并且與y軸交于點(0,1)的拋物線的表達式_________三、解答題(共8題,共72分)17.(8分)某班為確定參加學校投籃比賽的任選,在A、B兩位投籃高手間進行了6次投籃比賽,每人每次投10個球,將他們每次投中的個數繪制成如圖所示的折線統(tǒng)計圖.(1)根據圖中所給信息填寫下表:投中個數統(tǒng)計平均數中位數眾數A8B77(2)如果這個班只能在A、B之間選派一名學生參賽,從投籃穩(wěn)定性考慮應該選派誰?請你利用學過的統(tǒng)計量對問題進行分析說明.18.(8分)先化簡,再求值:(1﹣)÷,其中x=1.19.(8分)某校為了解本校學生每周參加課外輔導班的情況,隨機調査了部分學生一周內參加課外輔導班的學科數,并將調查結果繪制成如圖1、圖2所示的兩幅不完整統(tǒng)計圖(其中A:0個學科,B:1個學科,C:2個學科,D:3個學科,E:4個學科或以上),請根據統(tǒng)計圖中的信息,解答下列問題:請將圖2的統(tǒng)計圖補充完整;根據本次調查的數據,每周參加課外輔導班的學科數的眾數是個學科;若該校共有2000名學生,根據以上調查結果估計該校全體學生一周內參加課外輔導班在3個學科(含3個學科)以上的學生共有人.20.(8分)“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為度;(2)請補全條形統(tǒng)計圖;(3)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數.21.(8分)如圖,AB是⊙O的直徑,點C是弧AB的中點,點D是⊙O外一點,AD=AB,AD交⊙O于F,BD交⊙O于E,連接CE交AB于G.(1)證明:∠C=∠D;(2)若∠BEF=140°,求∠C的度數;(3)若EF=2,tanB=3,求CE?CG的值.22.(10分)如圖所示,直線y=x+2與雙曲線y=相交于點A(2,n),與x軸交于點C.(1)求雙曲線解析式;(2)點P在x軸上,如果△ACP的面積為5,求點P的坐標.23.(12分)如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.(1)求拋物線的解析式;(2)若點F是直線BC上方的拋物線上的一個動點,是否存在點F使四邊形ABFC的面積最大,若存在,求出點F的坐標和最大值;若不存在,請說明理由;(3)平行于DE的一條動直線l與直線BC相較于點P,與拋物線相交于點Q,若以D、E、P、Q為頂點的四邊形是平行四邊形,求P點的坐標.24.如圖,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的頂點G在菱形對角線AC上運動,角的兩邊分別交邊BC、CD于E、F.(1)如圖甲,當頂點G運動到與點A重合時,求證:EC+CF=BC;(2)知識探究:①如圖乙,當頂點G運動到AC的中點時,請直接寫出線段EC、CF與BC的數量關系(不需要寫出證明過程);②如圖丙,在頂點G運動的過程中,若,探究線段EC、CF與BC的數量關系;(3)問題解決:如圖丙,已知菱形的邊長為8,BG=7,CF=,當>2時,求EC的長度.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:“射擊運動員射擊一次,命中靶心”這個事件是隨機事件,屬于不確定事件,故選D.考點:隨機事件.2、A【解析】【分析】作BD⊥AC于D,如圖,先利用等腰直角三角形的性質得到AC=AB=2,BD=AD=CD=,再利用AC⊥x軸得到C(,2),然后根據反比例函數圖象上點的坐標特征計算k的值.【詳解】作BD⊥AC于D,如圖,∵△ABC為等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x軸,∴C(,2),把C(,2)代入y=得k=×2=4,故選A.【點睛】本題考查了等腰直角三角形的性質以及反比例函數圖象上點的坐標特征,熟知反比例函數y=(k為常數,k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k是解題的關鍵.3、A【解析】

根據平行向量以及模的定義的知識求解即可求得答案,注意掌握排除法在選擇題中的應用.【詳解】A、,故該選項說法錯誤B、因為,所以與的方向相同,故該選項說法正確,C、因為,所以,故該選項說法正確,D、因為,所以;故該選項說法正確,故選:A.【點睛】本題考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共線向量,是指方向相同或相反的非零向量.零向量和任何向量平行.4、A【解析】

由解析式可知該函數在x=h時取得最小值1,x>h時,y隨x的增大而增大;當x<h時,y隨x的增大而減??;根據1≤x≤3時,函數的最小值為5可分如下兩種情況:①若h<1,可得x=1時,y取得最小值5;②若h>3,可得當x=3時,y取得最小值5,分別列出關于h的方程求解即可.【詳解】解:∵x>h時,y隨x的增大而增大,當x<h時,y隨x的增大而減小,∴①若h<1,當時,y隨x的增大而增大,∴當x=1時,y取得最小值5,可得:,解得:h=?1或h=3(舍),∴h=?1;②若h>3,當時,y隨x的增大而減小,當x=3時,y取得最小值5,可得:,解得:h=5或h=1(舍),∴h=5,③若1≤h≤3時,當x=h時,y取得最小值為1,不是5,∴此種情況不符合題意,舍去.綜上所述,h的值為?1或5,故選:A.【點睛】本題主要考查二次函數的性質和最值,根據二次函數的性質和最值進行分類討論是解題的關鍵.5、B【解析】試題分析:根據合并同類項的法則,可知,故A不正確;根據同底數冪的除法,知,故B正確;根據冪的乘方,知,故C不正確;根據完全平方公式,知,故D不正確.故選B.點睛:此題主要考查了整式的混合運算,解題關鍵是靈活應用合并同類項法則,同底數冪的乘除法法則,冪的乘方,乘法公式進行計算.6、B【解析】

根據軸對稱圖形與中心對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合.【詳解】A、是軸對稱圖形,不是中心對稱圖形,不符合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、是軸對稱圖形,不是中心對稱圖形,不符合題意;D、不是軸對稱圖形,是中心對稱圖形,不符合題意.故選B.7、B【解析】

A、根據同底數冪的除法法則計算;

B、根據同底數冪的乘法法則計算;

C、根據積的乘方法則進行計算;

D、根據合并同類項法則進行計算.【詳解】解:A、a6÷a3=a3,故原題錯誤;B、3a2?2a=6a3,故原題正確;C、(3a)2=9a2,故原題錯誤;D、2x2﹣x2=x2,故原題錯誤;故選B.【點睛】考查同底數冪的除法,合并同類項,同底數冪的乘法,積的乘方,熟記它們的運算法則是解題的關鍵.8、A【解析】

解:在直角△ABD中,BD=2,AD=4,則AB=,則cosB=.故選A.9、A【解析】

分別得到將正方體①移走前后的三視圖,依此即可作出判斷.【詳解】將正方體①移走前的主視圖為:第一層有一個正方形,第二層有四個正方形,正方體①移走后的主視圖為:第一層有一個正方形,第二層有四個正方形,沒有改變。將正方體①移走前的左視圖為:第一層有一個正方形,第二層有兩個正方形,正方體①移走后的左視圖為:第一層有一個正方形,第二層有兩個正方形,沒有發(fā)生改變。將正方體①移走前的俯視圖為:第一層有四個正方形,第二層有兩個正方形,正方體①移走后的俯視圖為:第一層有四個正方形,第二層有兩個正方形,發(fā)生改變。故選A.【點睛】考查了三視圖,從幾何體的正面,左面,上面看到的平面圖形中正方形的列數以及每列正方形的個數是解決本題的關鍵.10、A【解析】

根據一元一次不等式的解法,移項,合并同類項,系數化為1即可得解.【詳解】移項得:?x>3?1,合并同類項得:?x>2,系數化為1得:x<-4.故選A.【點睛】本題考查了解一元一次不等式,解題的關鍵是熟練的掌握一元一次不等式的解法.二、填空題(本大題共6個小題,每小題3分,共18分)11、或【解析】

根據裁開折疊之后平行四邊形的面積可得CD的長度為2+4或2+.【詳解】如圖①,當四邊形ABCE為平行四邊形時,作AE∥BC,延長AE交CD于點N,過點B作BT⊥EC于點T.∵AB=BC,∴四邊形ABCE是菱形.∵∠BAD=∠BCD=90°,∠ABC=150°,∴∠ADC=30°,∠BAN=∠BCE=30°,∴∠NAD=60°,∴∠AND=90°.設BT=x,則CN=x,BC=EC=2x.∵四邊形ABCE面積為2,∴EC·BT=2,即2x×x=2,解得x=1,∴AE=EC=2,EN=,∴AN=AE+EN=2+,∴CD=AD=2AN=4+2.如圖②,當四邊形BEDF是平行四邊形,∵BE=BF,∴平行四邊形BEDF是菱形.∵∠A=∠C=90°,∠ABC=150°,∴∠ADB=∠BDC=15°.∵BE=DE,∴∠EBD=∠ADB=15°,∴∠AEB=30°.設AB=y(tǒng),則DE=BE=2y,AE=y(tǒng).∵四邊形BEDF的面積為2,∴AB·DE=2,即2y2=2,解得y=1,∴AE=,DE=2,∴AD=AE+DE=2+.綜上所述,CD的值為4+2或2+.【點睛】考核知識點:平行四邊形的性質,菱形判定和性質.12、【解析】

分析:過A作AM⊥y軸于M,過B作BD選擇x軸于D,直線BD與AM交于點N,則OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定與性質得出OA=BA,∠OAB=90°,證出∠AOM=∠BAN,由AAS證明△AOM≌△BAN,得出AM=BN=1,OM=AN=k,求出B(1+k,k﹣1),得出方程(1+k)?(k﹣1)=k,解方程即可.詳解:如圖所示,過A作AM⊥y軸于M,過B作BD選擇x軸于D,直線BD與AM交于點N,則OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,∴△AOM≌△BAN,∴AM=BN=1,OM=AN=k,∴OD=1+k,BD=OM﹣BN=k﹣1∴B(1+k,k﹣1),∵雙曲線y=(x>0)經過點B,∴(1+k)?(k﹣1)=k,整理得:k2﹣k﹣1=0,解得:k=(負值已舍去),故答案為.點睛:本題考查了反比例函數圖象上點的坐標特征,坐標與圖形的性質,全等三角形的判定與性質,等腰三角形的判定與性質等知識.解決問題的關鍵是作輔助線構造全等三角形.【詳解】請在此輸入詳解!13、π.【解析】

如圖,連接OE,利用切線的性質得OD=3,OE⊥BC,易得四邊形OECD為正方形,先利用扇形面積公式,利用S正方形OECD-S扇形EOD計算由弧DE、線段EC、CD所圍成的面積,然后利用三角形的面積減去剛才計算的面積即可得到陰影部分的面積.【詳解】連接OE,如圖,∵以AD為直徑的半圓O與BC相切于點E,∴OD=CD=3,OE⊥BC,∴四邊形OECD為正方形,∴由弧DE、線段EC、CD所圍成的面積=S正方形OECD﹣S扇形EOD=32﹣,∴陰影部分的面積,故答案為π.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.也考查了矩形的性質和扇形的面積公式.14、4【解析】

分別過點、點作的垂線,垂足分別為點、點,根據是的中點得到為的中位線,然后設,,,根據,得到,最后根據面積求得,從而求得.【詳解】分別過點、點作的垂線,垂足分別為點、點,如圖點為的中點,為的中位線,,,,,,,,,.故答案為:.【點睛】本題考查了反比例函數的比例系數的幾何意義及三角形的中位線定理,關鍵是正確作出輔助線,掌握在反比例函數的圖象上任意一點象坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是,且保持不變.15、【解析】

利用直角三角形的性質,判定三角形相似,進一步利用相似三角形的面積比等于相似比的性質解決問題.【詳解】如圖,∵∠CAB=90°,且AD⊥BC,∴∠ADB=90°,∴∠CAB=∠ADB,且∠B=∠B,∴△CAB∽△ADB,∴(AB:BC)1=△ADB:△CAB,又∵S△ABC=4S△ABD,則S△ABD:S△ABC=1:4,∴AB:BC=1:1.16、(答案不唯一)【解析】

根據二次函數的性質,拋物線開口向下a<0,與y軸交點的縱坐標即為常數項,然后寫出即可.【詳解】∵拋物線開口向下,并且與y軸交于點(0,1)∴二次函數的一般表達式中,a<0,c=1,∴二次函數表達式可以為:(答案不唯一).【點睛】本題考查二次函數的性質,掌握開口方向、與y軸的交點與二次函數二次項系數、常數項的關系是解題的關鍵.三、解答題(共8題,共72分)17、(1)7,9,7;(2)應該選派B;【解析】

(1)分別利用平均數、中位數、眾數分析得出答案;(2)利用方差的意義分析得出答案.【詳解】(1)A成績的平均數為(9+10+4+3+9+7)=7;眾數為9;B成績排序后為6,7,7,7,7,8,故中位數為7;故答案為:7,9,7;(2)=[(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;=[(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]=;從方差看,B的方差小,所以B的成績更穩(wěn)定,從投籃穩(wěn)定性考慮應該選派B.【點睛】此題主要考查了中位數、眾數、方差的定義,方差是反映一組數據的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.18、.【解析】

原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結果,把x的值代入計算即可求出值.【詳解】原式==當x=1時,原式=.【點睛】本題考查了分式的化簡求值,熟練掌握運算法則是解答本題的關鍵.19、(1)圖形見解析;(2)1;(3)1.【解析】

(1)由A的人數及其所占百分比求得總人數,總人數減去其它類別人數求得B的人數即可補全圖形;(2)根據眾數的定義求解可得;(3)用總人數乘以樣本中D和E人數占總人數的比例即可得.【詳解】解:(1)∵被調查的總人數為20÷20%=100(人),則輔導1個學科(B類別)的人數為100﹣(20+30+10+5)=35(人),補全圖形如下:(2)根據本次調查的數據,每周參加課外輔導班的學科數的眾數是1個學科,故答案為1;(3)估計該校全體學生一周內參加課外輔導班在3個學科(含3個學科)以上的學生共有2000×=1(人),故答案為1.【點睛】此題主要考查了條形統(tǒng)計圖的應用以及扇形統(tǒng)計圖應用、利用樣本估計總體等知識,利用圖形得出正確信息求出樣本容量是解題關鍵.20、(1)60,90;(2)見解析;(3)300人【解析】

(1)由了解很少的有30人,占50%,可求得接受問卷調查的學生數,繼而求得扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角;(2)由(1)可求得了解的人數,繼而補全條形統(tǒng)計圖;(3)利用樣本估計總體的方法,即可求得答案.【詳解】解:(1)∵了解很少的有30人,占50%,∴接受問卷調查的學生共有:30÷50%=60(人);∴扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為:×360°=90°;故答案為60,90;(2)60﹣15﹣30﹣10=5;補全條形統(tǒng)計圖得:(3)根據題意得:900×=300(人),則估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數為300人.【點睛】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖,解題的關鍵是熟練的掌握條形統(tǒng)計圖與扇形統(tǒng)計圖的相關知識點.21、(1)見解析;(2)70°;(3)1.【解析】

(1)先根據等邊對等角得出∠B=∠D,即可得出結論;(2)先判斷出∠DFE=∠B,進而得出∠D=∠DFE,即可求出∠D=70°,即可得出結論;(3)先求出BE=EF=2,進而求AE=6,即可得出AB,進而求出AC,再判斷出△ACG∽△ECA,即可得出結論.【詳解】(1)∵AB=AD,∴∠B=∠D,∵∠B=∠C,∴∠C=∠D;(2)∵四邊形ABEF是圓內接四邊形,∴∠DFE=∠B,由(1)知,∠B=∠D,∴∠D=∠DFE,∵∠BEF=140°=∠D+∠DFE=2∠D,∴∠D=70°,由(1)知,∠C=∠D,∴∠C=70°;(3)如圖,由(2)知,∠D=∠DFE,∴EF=DE,連接AE,OC,∵AB是⊙O的直徑,∴∠AEB=90°,∴BE=DE,∴BE=EF=2,在Rt△ABE中,tanB==3,∴AE=3BE=6,根據勾股定理得,AB=,∴OA=OC=AB=,∵點C是的中點,∴,∴∠AOC=90°,∴AC=OA=2,∵,∴∠CAG=∠CEA,∵∠ACG=∠ECA,∴△ACG∽△ECA,∴,∴CE?CG=AC2=1.【點睛】本題是幾何綜合題,涉及了圓的性質,圓周角定理,勾股定理,銳角三角函數,相似三角形的判定和性質,圓內接四邊形的性質,等腰三角形的性質等,綜合性較強,有一定的難度,熟練掌握和靈活運用相關知識是解題的關鍵.本題中求出BE=2也是解題的關鍵.22、(1);(2)(,0)或【解析】

(1)把A點坐標代入直線解析式可求得n的值,則可求得A點坐標,再把A點坐標代入雙曲線解析式可求得k的值,可求得雙曲線解析式;(2)設P(x,0),則可表示出PC的長,進一步表示出△ACP的面積,可得到關于x的方程,解方程可求得P點的坐標.【詳解】解:(1)把A(2,n)代入直線解析式得:n=3,∴A(2,3),把A坐標代入y=,得k=6,則雙曲線解析式為y=.(2)對于直線y=x+2,令y=0,得到x=-4,即C(-4,0).設P(x,0),可得PC=|x+4|.∵△ACP面積為5,∴|x+4|?3=5,即|x+4|=2,解得:x=-或x=-,則P坐標為或.23、(1)、y=-+x+4;(2)、不存在,理由見解析.【解析】試題分析:(1)、首先設拋物線的解析式為一般式,將點C和點A意見對稱軸代入求出函數解析式;(2)、本題利用假設法來進行證明,假設存在這樣的點,然后設出點F的坐標求出FH和FG的長度,然后得出面積與t的函數關系式,根據方程無解得出結論.試題解析:(1)、∵拋物線y=a+bx+c(a≠0)過點C(0,4)∴C=4①∵-=1∴b=-2a②∵拋物線過點A(-2,0)∴4a-2b+c="0"③由①②③解得:a=-,b=1,c=4∴拋物線的解析式為:y=-+x+4(2)、不存在假設存在滿足條件的點F,如圖所示,連結BF、CF、OF,過點F作FH⊥x軸于點H,FG⊥y軸于點G.設點F的坐標為(t,+t+4),其中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論