黑龍江省鶴崗市綏濱一中學2023屆中考數(shù)學猜題卷含解析_第1頁
黑龍江省鶴崗市綏濱一中學2023屆中考數(shù)學猜題卷含解析_第2頁
黑龍江省鶴崗市綏濱一中學2023屆中考數(shù)學猜題卷含解析_第3頁
黑龍江省鶴崗市綏濱一中學2023屆中考數(shù)學猜題卷含解析_第4頁
黑龍江省鶴崗市綏濱一中學2023屆中考數(shù)學猜題卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,已知菱形ABCD的對角線AC.BD的長分別為6cm、8cm,AE⊥BC于點E,則AE的長是()A. B. C. D.2.在Rt△ABC中,∠C=90°,AC=5,AB=13,則sinA的值為()A.512 B.513 C.123.如圖所示,在長方形紙片ABCD中,AB=32cm,把長方形紙片沿AC折疊,點B落在點E處,AE交DC于點F,AF=25cm,則AD的長為()A.16cm B.20cm C.24cm D.28cm4.已知,下列說法中,不正確的是()A. B.與方向相同C. D.5.下列每組數(shù)分別是三根小木棒的長度,用它們能擺成三角形的是()A.3cm,4cm,8cmB.8cm,7cm,15cmC.13cm,12cm,20cmD.5cm,5cm,11cm6.如圖,AB是⊙O的直徑,CD是⊙O的弦,∠ACD=30°,則∠BAD為()A.30° B.50° C.60° D.70°7.sin45°的值等于()A. B.1 C. D.8.如圖,一次函數(shù)y=x﹣1的圖象與反比例函數(shù)的圖象在第一象限相交于點A,與x軸相交于點B,點C在y軸上,若AC=BC,則點C的坐標為()A.(0,1) B.(0,2) C. D.(0,3)9.函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則m的值為()A.0 B.0或2 C.0或2或﹣2 D.2或﹣210.在“大家跳起來”的鄉(xiāng)村學校舞蹈比賽中,某校10名學生參賽成績統(tǒng)計如圖所示.對于這10名學生的參賽成績,下列說法中錯誤的是()A.眾數(shù)是90 B.中位數(shù)是90 C.平均數(shù)是90 D.極差是1511.已知關于x的不等式ax<b的解為x>-2,則下列關于x的不等式中,解為x<2的是()A.a(chǎn)x+2<-b+2 B.–ax-1<b-1 C.a(chǎn)x>b D.12.如圖,△ABC為鈍角三角形,將△ABC繞點A按逆時針方向旋轉(zhuǎn)120°得到△AB′C′,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為()A.45° B.60° C.70° D.90°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,Rt△ABC中,若∠C=90°,BC=4,tanA=,則AB=___.14.已知二次函數(shù)y=ax2+bx(a≠0)的最小值是﹣3,若關于x的一元二次方程ax2+bx+c=0有實數(shù)根,則c的最大值是_____.15.如圖是一組有規(guī)律的圖案,圖案1是由4個組成的,圖案2是由7個組成的,那么圖案5是由個組成的,依此,第n個圖案是由個組成的.16.已知一粒米的質(zhì)量是1.111121千克,這個數(shù)字用科學記數(shù)法表示為__________.17.如圖的三角形紙片中,AB=8cm,BC=6cm,AC=5cm.沿過點B的直線折疊三角形,使點C落在AB邊的點E處,折痕為BD.則△AED的周長為____cm.18.如圖,AB是⊙O的直徑,C是⊙O上的點,過點C作⊙O的切線交AB的延長線于點D.若∠A=32°,則∠D=_____度.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)“垃圾不落地,城市更美麗”.某中學為了了解七年級學生對這一倡議的落實情況,學校安排政教處在七年級學生中隨機抽取了部分學生,并針對學生“是否隨手丟垃圾”這一情況進行了問卷調(diào)查,統(tǒng)計結(jié)果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經(jīng)常隨手丟垃圾三項.要求每位被調(diào)查的學生必須從以上三項中選一項且只能選一項.現(xiàn)將調(diào)查結(jié)果繪制成以下來不辜負不完整的統(tǒng)計圖.請你根據(jù)以上信息,解答下列問題:(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;(2)所抽取學生“是否隨手丟垃圾”情況的眾數(shù)是;(3)若該校七年級共有1500名學生,請你估計該年級學生中“經(jīng)常隨手丟垃圾”的學生約有多少人?談談你的看法?20.(6分)如圖是8×8的正方形網(wǎng)格,A、B兩點均在格點(即小正方形的頂點)上,試在下面三個圖中,分別畫出一個以A,B,C,D為頂點的格點菱形(包括正方形),要求所畫的三個菱形互不全等.21.(6分)凱里市某文具店某種型號的計算器每只進價12元,售價20元,多買優(yōu)惠,優(yōu)勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降價0.1元,例如:某人買18只計算器,于是每只降價0.1×(18﹣10)=0.8(元),因此所買的18只計算器都按每只19.2元的價格購買,但是每只計算器的最低售價為16元.(1)求一次至少購買多少只計算器,才能以最低價購買?(2)求寫出該文具店一次銷售x(x>10)只時,所獲利潤y(元)與x(只)之間的函數(shù)關系式,并寫出自變量x的取值范圍;(3)一天,甲顧客購買了46只,乙顧客購買了50只,店主發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,請你說明發(fā)生這一現(xiàn)象的原因;當10<x≤50時,為了獲得最大利潤,店家一次應賣多少只?這時的售價是多少?22.(8分)某商場,為了吸引顧客,在“白色情人節(jié)”當天舉辦了商品有獎酬賓活動,凡購物滿200元者,有兩種獎勵方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎的機會.已知在搖獎機內(nèi)裝有2個紅球和2個白球,除顏色外其它都相同,搖獎者必須從搖獎機內(nèi)一次連續(xù)搖出兩個球,根據(jù)球的顏色(如表)決定送禮金券的多少.球兩紅一紅一白兩白禮金券(元)182418(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.(2)如果一名顧客當天在本店購物滿200元,若只考慮獲得最多的禮品券,請你幫助分析選擇哪種方案較為實惠.23.(8分)為了抓住梵凈山文化藝術節(jié)的商機,某商店決定購進A、B兩種藝術節(jié)紀念品.若購進A種紀念品8件,B種紀念品3件,需要950元;若購進A種紀念品5件,B種紀念品6件,需要800元.(1)求購進A、B兩種紀念品每件各需多少元?(2)若該商店決定購進這兩種紀念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進貨方案?(3)若銷售每件A種紀念品可獲利潤20元,每件B種紀念品可獲利潤30元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?24.(10分)如圖,AB是⊙O的直徑,D為⊙O上一點,過弧BD上一點T作⊙O的切線TC,且TC⊥AD于點C.(1)若∠DAB=50°,求∠ATC的度數(shù);(2)若⊙O半徑為2,TC=3,求AD的長.25.(10分)為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計.現(xiàn)從該校隨機抽取名學生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學生只能選擇其中一項).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:求n的值;若該校學生共有1200人,試估計該校喜愛看電視的學生人數(shù);若調(diào)查到喜愛體育活動的4名學生中有3名男生和1名女生,現(xiàn)從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.26.(12分)已知:a是﹣2的相反數(shù),b是﹣2的倒數(shù),則(1)a=_____,b=_____;(2)求代數(shù)式a2b+ab的值.27.(12分)已知:如圖1,拋物線的頂點為M,平行于x軸的直線與該拋物線交于點A,B(點A在點B左側(cè)),根據(jù)對稱性△AMB恒為等腰三角形,我們規(guī)定:當△AMB為直角三角形時,就稱△AMB為該拋物線的“完美三角形”.(1)①如圖2,求出拋物線的“完美三角形”斜邊AB的長;②拋物線與的“完美三角形”的斜邊長的數(shù)量關系是;(2)若拋物線的“完美三角形”的斜邊長為4,求a的值;(3)若拋物線的“完美三角形”斜邊長為n,且的最大值為-1,求m,n的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)菱形的性質(zhì)得出BO、CO的長,在RT△BOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.【詳解】∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=,AO⊥BO,∴.∴.又∵,∴BC·AE=24,即.故選D.點睛:此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.2、C【解析】

先根據(jù)勾股定理求出BC得長,再根據(jù)銳角三角函數(shù)正弦的定義解答即可.【詳解】如圖,根據(jù)勾股定理得,BC=AB∴sinA=BCAB故選C.【點睛】本題考查了銳角三角函數(shù)的定義及勾股定理,熟知銳角三角函數(shù)正弦的定義是解決問題的關鍵.3、C【解析】

首先根據(jù)平行線的性質(zhì)以及折疊的性質(zhì)證明∠EAC=∠DCA,根據(jù)等角對等邊證明FC=AF,則DF即可求得,然后在直角△ADF中利用勾股定理求解.【詳解】∵長方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵長方形ABCD中,DC=AB=32cm,∴DF=DC-FC=32-25=7cm,在直角△ADF中,AD==24(cm).故選C.【點睛】本題考查了折疊的性質(zhì)以及勾股定理,在折疊的過程中注意到相等的角以及相等的線段是關鍵.4、A【解析】

根據(jù)平行向量以及模的定義的知識求解即可求得答案,注意掌握排除法在選擇題中的應用.【詳解】A、,故該選項說法錯誤B、因為,所以與的方向相同,故該選項說法正確,C、因為,所以,故該選項說法正確,D、因為,所以;故該選項說法正確,故選:A.【點睛】本題考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共線向量,是指方向相同或相反的非零向量.零向量和任何向量平行.5、C【解析】

根據(jù)三角形的三邊關系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進行分析.【詳解】A、3+4<8,不能組成三角形;B、8+7=15,不能組成三角形;C、13+12>20,能夠組成三角形;D、5+5<11,不能組成三角形.故選:C.【點睛】本題考查了三角形的三邊關系,關鍵是靈活運用三角形三邊關系.6、C【解析】試題分析:連接BD,∵∠ACD=30°,∴∠ABD=30°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.故選C.考點:圓周角定理7、D【解析】

根據(jù)特殊角的三角函數(shù)值得出即可.【詳解】解:sin45°=,故選:D.【點睛】本題考查了特殊角的三角函數(shù)的應用,能熟記特殊角的三角函數(shù)值是解此題的關鍵,難度適中.8、B【解析】

根據(jù)方程組求出點A坐標,設C(0,m),根據(jù)AC=BC,列出方程即可解決問題.【詳解】由,解得或,

∴A(2,1),B(1,0),

設C(0,m),

∵BC=AC,

∴AC2=BC2,

即4+(m-1)2=1+m2,

∴m=2,

故答案為(0,2).【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點坐標問題、勾股定理、方程組等知識,解題的關鍵是會利用方程組確定兩個函數(shù)的交點坐標,學會用方程的思想思考問題.9、C【解析】

根據(jù)函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,利用分類討論的方法可以求得m的值,本題得以解決.【詳解】解:∵函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,∴當m=0時,y=2x+1,此時y=0時,x=﹣0.5,該函數(shù)與x軸有一個交點,當m≠0時,函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值為0或2或﹣2,故選:C.【點睛】本題考查拋物線與x軸的交點,解答本題的關鍵是明確題意,利用分類討論的數(shù)學思想解答.10、C【解析】

由統(tǒng)計圖中提供的數(shù)據(jù),根據(jù)眾數(shù)、中位數(shù)、平均數(shù)、極差的定義分別列出算式,求出答案:【詳解】解:∵90出現(xiàn)了5次,出現(xiàn)的次數(shù)最多,∴眾數(shù)是90;∵共有10個數(shù),∴中位數(shù)是第5、6個數(shù)的平均數(shù),∴中位數(shù)是(90+90)÷2=90;∵平均數(shù)是(80×1+85×2+90×5+95×2)÷10=89;極差是:95﹣80=1.∴錯誤的是C.故選C.11、B【解析】∵關于x的不等式ax<b的解為x>-2,∴a<0,且,即,∴(1)解不等式ax+2<-b+2可得:ax<-b,,即x>2;(2)解不等式–ax-1<b-1可得:-ax<b,,即x<2;(3)解不等式ax>b可得:,即x<-2;(4)解不等式可得:,即;∴解集為x<2的是B選項中的不等式.故選B.12、D【解析】已知△ABC繞點A按逆時針方向旋轉(zhuǎn)l20°得到△AB′C′,根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠BAB′=∠CAC′=120°,AB=AB′,根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】

在Rt△ABC中,已知tanA,BC的值,根據(jù)tanA=,可將AC的值求出,再由勾股定理可將斜邊AB的長求出.【詳解】解:Rt△ABC中,∵BC=4,tanA=∴則故答案為1.【點睛】考查解直角三角形以及勾股定理,熟練掌握銳角三角函數(shù)是解題的關鍵.14、3【解析】

由一元二次方程ax2+bx+c=0有實數(shù)根,可得y=ax2+bx(a≠0)和y=-c有交點,由此即可解答.【詳解】∵一元二次方程ax2+bx+c=0有實數(shù)根,∴拋物線y=ax2+bx(a≠0)和直線y=-c有交點,∴-c≥-3,即c≤3,∴c的最大值為3.故答案為:3.【點睛】本題考查了一元二次方程與二次函數(shù),根據(jù)一元二次方程有實數(shù)根得到拋物線y=ax2+bx(a≠0)和直線y=-c有交點是解決問題的關鍵.15、16,3n+1.【解析】

觀察不難發(fā)現(xiàn),后一個圖案比前一個圖案多3個基礎圖形,然后寫出第5個和第n個圖案的基礎圖形的個數(shù)即可.【詳解】由圖可得,第1個圖案基礎圖形的個數(shù)為4,第2個圖案基礎圖形的個數(shù)為7,7=4+3,第3個圖案基礎圖形的個數(shù)為10,10=4+3×2,…,第5個圖案基礎圖形的個數(shù)為4+3(5?1)=16,第n個圖案基礎圖形的個數(shù)為4+3(n?1)=3n+1.故答案為16,3n+1.【點睛】本題考查了規(guī)律型:圖形的變化類,根據(jù)圖像發(fā)現(xiàn)規(guī)律是解題的關鍵.16、2.1×【解析】

絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×11-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的1的個數(shù)所決定.【詳解】解:1.111121=2.1×11-2.

故答案為:2.1×11-2.【點睛】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×11-n,其中1≤|a|<11,n由原數(shù)左邊起第一個不為零的數(shù)字前面的1的個數(shù)所決定.17、7【解析】

根據(jù)翻折變換的性質(zhì)可得BE=BC,DE=CD,然后求出AE,再求出△ADE的周長=AC+AE.【詳解】∵折疊這個三角形點C落在AB邊上的點E處,折痕為BD,∴BE=BC,DE=CD,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周長=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.故答案為:7.【點睛】本題考查了翻折變換的性質(zhì),翻折前后對應邊相等,對應角相等.18、1【解析】分析:連接OC,根據(jù)圓周角定理得到∠COD=2∠A,根據(jù)切線的性質(zhì)計算即可.詳解:連接OC,由圓周角定理得,∠COD=2∠A=64°,∵CD為⊙O的切線,∴OC⊥CD,∴∠D=90°-∠COD=1°,故答案為:1.點睛:本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)補全圖形見解析;(2)B;(3)估計該年級學生中“經(jīng)常隨手丟垃圾”的學生約有75人,就該年級經(jīng)常隨手丟垃圾的學生人數(shù)看出仍需要加強公共衛(wèi)生教育、宣傳和監(jiān)督.【解析】

(1)根據(jù)被調(diào)查的總?cè)藬?shù)求出C情況的人數(shù)與B情況人數(shù)所占比例即可;(2)根據(jù)眾數(shù)的定義求解即可;(3)該年級學生中“經(jīng)常隨手丟垃圾”的學生=總?cè)藬?shù)×C情況的比值.【詳解】(1)∵被調(diào)查的總?cè)藬?shù)為60÷30%=200人,∴C情況的人數(shù)為200﹣(60+130)=10人,B情況人數(shù)所占比例為×100%=65%,補全圖形如下:(2)由條形圖知,B情況出現(xiàn)次數(shù)最多,所以眾數(shù)為B,故答案為B.(3)1500×5%=75,答:估計該年級學生中“經(jīng)常隨手丟垃圾”的學生約有75人,就該年級經(jīng)常隨手丟垃圾的學生人數(shù)看出仍需要加強公共衛(wèi)生教育、宣傳和監(jiān)督.【點睛】本題考查了眾數(shù)與扇形統(tǒng)計圖與條形統(tǒng)計圖,解題的關鍵是熟練的掌握眾數(shù)與扇形統(tǒng)計圖與條形統(tǒng)計圖的相關知識點.20、見解析【解析】

根據(jù)菱形的四條邊都相等,兩條對角線互相垂直平分,可以根據(jù)正方形的四邊垂直,將小正方形的邊作為對角線畫菱形;也可以畫出以AB為邊長的正方形,據(jù)此相信你可以畫出圖形了,注意:本題答案不唯一.【詳解】如圖為畫出的菱形:【點睛】本題考查了作圖-復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法;解決此類題目的關鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復雜作圖拆解成基本作圖,逐步操作.本題掌握菱形的定義與性質(zhì)是解題的關鍵.21、(1)1;(3);(3)理由見解析,店家一次應賣45只,最低售價為16.5元,此時利潤最大.【解析】試題分析:(1)設一次購買x只,由于凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降低0.10元,而最低價為每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;(3)由于根據(jù)(1)得到x≤1,又一次銷售x(x>10)只,因此得到自變量x的取值范圍,然后根據(jù)已知條件可以得到y(tǒng)與x的函數(shù)關系式;(3)首先把函數(shù)變?yōu)閥=-0.1x2+9x試題解析:(1)設一次購買x只,則30﹣0.1(x﹣10)=16,解得:x=1.答:一次至少買1只,才能以最低價購買;(3)當10<x≤1時,y=[30﹣0.1(x﹣10)﹣13]x=-0.1x綜上所述:;(3)y=-0.1x2+9x②當45<x≤1時,y隨x的增大而減小,即當賣的只數(shù)越多時,利潤變?。耶攛=46時,y1=303.4,當x=1時,y3=3.∴y1>y3.即出現(xiàn)了賣46只賺的錢比賣1只賺的錢多的現(xiàn)象.當x=45時,最低售價為30﹣0.1(45﹣10)=16.5(元),此時利潤最大.故店家一次應賣45只,最低售價為16.5元,此時利潤最大.考點:二次函數(shù)的應用;二次函數(shù)的最值;最值問題;分段函數(shù);分類討論.22、(1)見解析(2)選擇搖獎【解析】試題分析:(1)畫樹狀圖列出所有等可能結(jié)果,再讓所求的情況數(shù)除以總情況數(shù)即為所求的概率;

(2)算出相應的平均收益,比較大小即可.試題解析:(1)樹狀圖為:∴一共有6種情況,搖出一紅一白的情況共有4種,∴搖出一紅一白的概率=;(2)∵兩紅的概率P=,兩白的概率P=,一紅一白的概率P=,∴搖獎的平均收益是:×18+×24+×18=22,∵22>20,∴選擇搖獎.【點睛】主要考查的是概率的計算,畫樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.23、(1)A種紀念品需要100元,購進一件B種紀念品需要50元(2)共有4種進貨方案(3)當購進A種紀念品50件,B種紀念品50件時,可獲最大利潤,最大利潤是2500元【解析】解:(1)設該商店購進一件A種紀念品需要a元,購進一件B種紀念品需要b元,根據(jù)題意得方程組得:,…2分解方程組得:,∴購進一件A種紀念品需要100元,購進一件B種紀念品需要50元…4分;(2)設該商店購進A種紀念品x個,則購進B種紀念品有(100﹣x)個,∴,…6分解得:50≤x≤53,…7分∵x為正整數(shù),∴共有4種進貨方案…8分;(3)因為B種紀念品利潤較高,故B種數(shù)量越多總利潤越高,因此選擇購A種50件,B種50件.…10分總利潤=50×20+50×30=2500(元)∴當購進A種紀念品50件,B種紀念品50件時,可獲最大利潤,最大利潤是2500元.…12分24、(2)65°;(2)2.【解析】試題分析:(2)連接OT,根據(jù)角平分線的性質(zhì),以及直角三角形的兩個銳角互余,證得CT⊥OT,CT為⊙O的切線;(2)證明四邊形OTCE為矩形,求得OE的長,在直角△OAE中,利用勾股定理即可求解.試題解析:(2)連接OT,∵OA=OT,∴∠OAT=∠OTA,又∵AT平分∠BAD,∴∠DAT=∠OAT,∴∠DAT=∠OTA,∴OT∥AC,又∵CT⊥AC,∴CT⊥OT,∴CT為⊙O的切線;(2)過O作OE⊥AD于E,則E為AD中點,又∵CT⊥AC,∴OE∥CT,∴四邊形OTCE為矩形,∵CT=,∴OE=,又∵OA=2,∴在Rt△OAE中,AE=,∴AD=2AE=2.考點:2.切線的判定與性質(zhì);2.勾股定理;3.圓周角定理.25、(1)50;(2)240;(3).【解析】

用喜愛社會實踐的人數(shù)除以它所占的百分比得到n的值;先計算出樣本中喜愛看電視的人數(shù),然后用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論