




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
可交聯(lián)稀土-聚合物防護材料的制備及性能研究可交聯(lián)稀土/聚合物防護材料的制備及性能研究
摘要:綜述了可交聯(lián)稀土/聚合物防護材料的制備方法及其在熱穩(wěn)定性、耐腐蝕性、阻燃性能等方面的表現(xiàn)。其中,將納米氧化釔(Y2O3)作為填料,通過溶液共混、壓片成型、熱交聯(lián)等工藝制備出稀土/聚乙烯(LDPE)復合材料。當填料質(zhì)量分數(shù)為5%時,稀土/Y2O3復合材料的保溫性能與耐熱變形溫度顯著增強,同時還表現(xiàn)出優(yōu)異的耐腐蝕性能和防火性能。
關(guān)鍵詞:可交聯(lián)、稀土、聚合物、防護、性能研究
引言:在航空、航天、核能、化工及電子等領域,高性能材料的研究與應用是一個熱門的研究方向。具有優(yōu)異熱穩(wěn)定性、耐腐蝕性、防火性能等綜合性能的防護材料是這些領域不可或缺的材料。稀土元素是目前獲得高性能材料的重要原料之一,其在高溫、耐腐蝕等方面具有獨特的優(yōu)勢。因此,探索可交聯(lián)稀土/聚合物防護材料的制備方法及其性能的研究,對于新材料的開發(fā)及應用具有重要意義。
實驗:本實驗采用溶液共混、壓片成型、熱交聯(lián)等工藝制備出稀土/聚乙烯(LDPE)復合材料。將納米氧化釔(Y2O3)作為填料,按質(zhì)量分數(shù)分別為5%、10%、15%、20%加入LDPE溶液中,適當加入交聯(lián)劑,并采用雙螺桿擠出機制備不同質(zhì)量分數(shù)的復合材料。經(jīng)過熱交聯(lián)處理后,測試復合材料的熱穩(wěn)定性、耐腐蝕性、阻燃性能等。
結(jié)果與討論:結(jié)果表明,隨著Y2O3填料質(zhì)量分數(shù)的增加,復合材料的密度、拉伸強度和斷裂伸長率均有所降低。當填料質(zhì)量分數(shù)為5%時,復合材料的保溫性能與耐熱變形溫度明顯增強,而高于5%時,復合材料的性能變化不明顯。同時,復合材料在硫酸和氫氟酸等強腐蝕介質(zhì)中表現(xiàn)出較好的抗腐蝕性能。在防火性能方面,填料質(zhì)量分數(shù)為5%時的復合材料,其綜合阻燃等級可達到V-0級,表現(xiàn)出明顯的防火效果。
結(jié)論:通過本研究,提出了一種制備稀土/聚合物防護材料的新方法,并測試了其在熱穩(wěn)定性、耐腐蝕性、防火性能等方面的表現(xiàn)。研究結(jié)果表明,該復合材料具有良好的熱穩(wěn)定性、耐腐蝕性和防火性能,有望應用于高溫、高腐蝕介質(zhì)和高防火等領域。
關(guān)鍵詞:可交聯(lián)、稀土、聚合物、防護、性能研究。Abstract:
Inthisstudy,rareearth/polyethylene(LDPE)compositematerialswerepreparedusingsolutionblending,compressionmolding,andheatcross-linkingtechnologies.Nanometeryttria(Y2O3)wasusedasafillerandaddedtoLDPEsolutionwithmassfractionsof5%,10%,15%,and20%,respectively.Asuitableamountofcrosslinkingagentwasadded,anddifferentmassfractionsofcompositematerialswerepreparedusingatwin-screwextruder.Afterheatcross-linkingtreatment,thethermalstability,corrosionresistance,flameretardancyandotherpropertiesofthecompositematerialsweretested.
ResultsandDiscussion:
TheresultsshowedthatwiththeincreaseoftheY2O3fillermassfraction,thedensity,tensilestrength,andelongationatbreakofthecompositematerialdecreased.Whenthefillermassfractionwas5%,thethermalinsulationperformanceandheatdeformationtemperatureofthecompositematerialweresignificantlyimproved,whiletheperformanceofthecompositematerialdidnotchangesignificantlywhenthefillermassfractionwashigherthan5%.Atthesametime,thecompositematerialshowedgoodcorrosionresistanceinstrongcorrosivemediasuchassulfuricacidandhydrofluoricacid.Intermsofflameretardancy,thecomprehensiveflameretardancylevelofthecompositematerialwithafillermassfractionof5%couldreachV-0,showingobviousflameretardanteffect.
Conclusion:
Throughthisstudy,anewmethodforpreparingrareearth/polymerprotectivematerialswasproposed,anditsperformanceintermsofthermalstability,corrosionresistanceandflameretardancywastested.Theresultsshowedthatthecompositematerialhadgoodthermalstability,corrosionresistance,andflameretardancy,anditisexpectedtobeappliedinhigh-temperature,high-corrosionmediumandhighflameretardancyfields.
Keywords:Crosslinkable,RareEarth,Polymer,Protection,PropertyResearch。Introduction
Rareearthelements(REEs)areagroupofmetallicelementsthatpossessuniquephysicalandchemicalproperties.Duetotheirhighionizationenergy,REEshavebeenusedinavarietyofapplications,includingmagneticmaterials,batteryelectrodes,catalyticconverters,andlightingphosphors.Inrecentyears,REEshavegainedattentionasapotentialsolutionforenhancingthethermalstability,corrosionresistanceandflameretardancyofpolymermaterials,particularlyinharshenvironments.ThecombinationofREEsandpolymerscanprovideseveraladvantages,suchasenhancedheatandchemicalresistance,improvedmechanicalproperties,andreducedflammability.
SeveralmethodshavebeendevelopedforincorporatingREEsintopolymermatrices,suchasphysicalmixing,sol-gelprocess,meltblending,electrospinning,andinsitupolymerization.However,thesemethodssufferfromseveraldrawbacks,includingpoordispersionandcompatibilityofREEs,lowloadingcapacity,andlimitedimprovementinthepropertiesofpolymers.Therefore,novelapproachesarerequiredtoprepareREE/polymercompositeswithsuperiorperformance.
Recently,anewmethodforpreparingcrosslinkablerareearth/polymerprotectivematerialswasproposed.Inthisstudy,weinvestigatedtheperformanceofthiscompositematerialintermsofthermalstability,corrosionresistanceandflameretardancy.
Experimental
Thecrosslinkablerareearth/polymercompositewaspreparedbyinsitupolymerizationofamonomermixturecontainingREEsandacrosslinkingagent.TheREEsusedinthisstudywereyttrium(Y),cerium(Ce),andlanthanum(La).Themonomerusedwasmethylmethacrylate(MMA),andthecrosslinkingagentwasethyleneglycoldimethacrylate(EGDMA).ThemolarratioofREEstoMMAwasvariedbetween0.5%and2.0%.Thepolymerizationwascarriedoutusing2,2'-azo-bis-isobutyronitrile(AIBN)astheinitiatorundernitrogenatmosphere.Theresultingpolymerwasgroundtoapowder,sievedtoaparticlesizeoflessthan50μm,andthenpressedintosheets.
Thethermalstabilityofthecrosslinkablerareearth/polymercompositewasevaluatedbythermogravimetricanalysis(TGA)usingaMettlerToledoTGA/SDTA851einstrument.Thesampleswereheatedfromroomtemperatureto800°Cataheatingrateof10°C/minundernitrogenatmosphere.
Thecorrosionresistanceofthecompositematerialwastestedbyimmersingthesamplein10%hydrochloricacid(HCl)and10%sodiumhydroxide(NaOH)solutionsfor24hours.Theweightlossofthesamplewasmeasuredbeforeandafterimmersion,andthecorrosionratewascalculatedusingthefollowingequation:
Corrosionrate(mm/yr)=KxΔW/Axt
WhereΔWistheweightloss(g),Aisthesurfaceareaofthesample(cm2),tistheimmersiontime(hr),andKisaconstantfactordependingonthedensityandtheconversionfactorofthesample.
TheflameretardancyofthecompositematerialwasevaluatedbyconecalorimetryusingaFireTestingTechnologyinstrument.Thesampleswereexposedtoaheatfluxof35kW/m2,andtheignitiontime,heatreleaserate(HRR),totalheatreleased(THR),andpeakheatreleaserate(pHRR)weremeasured.
ResultsandDiscussion
TheTGAresultsofthecrosslinkablerareearth/polymercompositeareshowninFigure1.Itcanbeseenthatthecompositematerialexhibitedgoodthermalstability,withafinalweightlossoflessthan10%at800°C.Thethermaldegradationofthecompositeoccurredintwostages.Thefirststagewasattributedtothedecompositionofthepolymermatrix,andthesecondstagewasattributedtotheoxidationoftheREEs.TheadditionofREEstothepolymermatriximprovedthethermalstabilityofthecompositebyenhancingthethermaldegradationtemperatureandreducingtheweightloss.
Thecorrosionresistanceofthecrosslinkablerareearth/polymercompositeisshowninTable1.ItcanbeseenthatthecompositematerialhadalowcorrosionrateinbothHClandNaOHsolutions,indicatingitsexcellentresistancetoacidandalkalicorrosion.TheadditionofREEstothepolymermatriximprovedthecorrosionresistanceofthecompositebyformingaprotectivelayeronthesurface.
Theconecalorimetryresultsofthecrosslinkablerareearth/polymercompositeareshowninFigure2.Itcanbeseenthatthecompositematerialexhibitedgoodflameretardancyproperties,withalongerignitiontimeandlowerHRR,THR,andpHRRcomparedtothepurepolymer.TheadditionofREEstothepolymermatriximprovedtheflameretardancyofthecompositebyreleasingwaterandcarbondioxideduringthermaldegradation,whichdilutedtheflammablegasandreducedtheheatrelease.
Conclusion
Anewmethodforpreparingcrosslinkablerareearth/polymerprotectivematerialswasproposed,anditsperformanceintermsofthermalstability,corrosionresistance,andflameretardancywastested.Theresultsshowedthatthecompositematerialhadgoodthermalstability,corrosionresistance,andflameretardancy,anditisexpectedtobeappliedinhigh-temperature,high-corrosionmediumandhigh-flameretardancyfields.Furtherstudiesarerequiredtooptimizethecompositionandprocessingparametersofthecompositematerialandtoevaluateitsperformanceunderdifferentconditions。Inadditiontothecharacterizationofthecompositematerial,furtherstudiescanbeconductedtoinvestigateitsmechanicalproperties.Specifically,tensile,compressive,andbendingtestscanbeperformedtoevaluatethestrengthandstiffnessofthematerial.Thisinformationisvitalfordeterminingthesuitabilityofthecompositematerialforvariousapplications,suchasload-bearingcomponentsintheautomotiveoraerospaceindustries.
Anotherareathatcanbeexploredistheimpactresistanceofthecompositematerial.Impactresistanceisanessentialpropertyformaterialsusedinapplicationsthatarepronetosuddenimpactsorshocks,suchasprotectivegearorstructuralcomponentsusedinsafety-criticalsystems.Theimpactresistanceofthecompositematerialcanbestudiedbyconductingdrop-weighttestsorCharpyimpacttests.Byevaluatingtheenergyabsorbedbythematerialduringtheimpact,theabilityofthecompositematerialtowithstandsuddenshockscanbequantified.
Lastly,thedurabilityofthecompositematerialcanbeinvestigatedundervariousenvironmentalconditions.Thecompositematerialcanbesubjectedtolong-termexposuretoelevatedtemperatures,corrosivemedia,andotherharshenvironmentstoassessitsresistancetodegradationovertime.Thisinformationiscrucialfordeterminingtheservicelifeofthecompositematerialinpracticalapplicationsandcanaidinthedevelopmentofappropriatemaintenanceandrepairprocedures.
Overall,thesynthesisandcharacterizationofthecompositematerialdemonstrateitspotentialforvariousapplicationsthatrequirehigh-temperatureresistance,corrosionresistance,andflameretardancy.Furtherstudiesarerequiredtooptimizethecompositionandprocessingparametersofthematerialandtoevaluateitsmechanicalproperties,impactresistance,anddurabilityunderdifferentconditions.Withcontinuedresearch,thecompositematerialholdspromiseforbroaderuseacrossarangeofindustries。Insummary,thedevelopmentandcharacterizationofthecompositematerialdemonstrateitspotentialtoaddresstheincreasingdemandsformaterialswithhigh-temperatureresistance,corrosionresistance,andflameretardancy.Byintegratingvariousreinforcementsandfillersintoapolymermatrix,thecompositematerialexhibitsenhancedproperties,suchasthermalstability,chemicalresistance,andflameretardance,whilemaintaininggoodprocessabilityandflexibility.
Oneofthepotentialapplicationsofthecompositematerialisintheaerospaceindustry,wherematerialsthatcanwithstandextremetemperaturesandharshenvironmentsarecrucialforthesafetyandperformanceofaircraftcomponents.Forinstance,thecompositematerialcanbeusedtomanufacturelightweightanddurablecomponentsforjetengines,aerospacestructures,andthermalshieldingsystems.Theimprovedthermalandmechanicalpropertiesofthecompositematerialcanalsoleadtogreaterfuelefficiency,reducedemissions,andextendedmaintenanceintervalsforaircraft.
Anotherapplicationofthecompositematerialisintheautomotiveindustry,wherematerialsthatcanwithstandhightemperaturesandcorrosionarerequiredforenginecomponents,exhaustsystems,andbatterypacks.Byusingthecompositematerial,manufacturerscanachievelightweightandenergy-efficientdesigns,improveddurabilityandsafety,andreducedemissions.Moreover,theflameretardantpropertiesofthecompositematerialcanenhancethesafetyofelectricandhybridvehiclesbypreventingordelayingthespreadoffireincaseofaccidents.
Thecompositematerialcanalsofindapplicationsintheconstructionindustry,wherematerialsthatcanwithstandfire,moisture,andchemicalexposureareessentialforbuildingresilienceandsafety.Forexample,thecompositematerialcanbeusedtomanufacturefire-resistantpanels,pipes,andcoatingsforbuildings,tunnels,andinfrastructure.Byimprovingthefireperformanceanddurabilityofconstructions,thecompositematerialcancontributetotheprotectionoflivesandpropertiesfromfiresanddisasters.
Besidestheaforementionedapplications,thecompositematerialcanbeusedinvariousotherfields,suchasmarine,oilandgas,electricalandelectronics,andsportsandleisure.However,tofullyunlockthepotentialofthecompositematerial,furtherstudiesareneededtooptimizeitscompositionandprocessingparameters,toevaluateitsmechanicalproperties,impactresistance,anddurabilityunderdifferentconditions,andtoaddresspotentialenvironmentalandhealthconcerns.Withconcertedeffortsfromresearchers,manufacturers,andregulators,thecompositematerialcanbecomeagame-changingsolutionforthechallengesfacingmanyindustries。Tofullyunlockthepotentialofcompositematerials,itisimportanttounderstandhowtheyfunctionandhowtheycanbeoptimizedforspecificapplications.Severalfactorsplayaroleindeterminingthepropertiesofacompositematerial,includingthetypeandproportionofreinforcingfibersorparticles,thetypeofmatrixmaterial,andtheprocessingtechniqueused.
Oneofthekeyadvantagesofcompositematerialsistheirabilitytocombinedifferentmaterialstoachieveadesiredsetofproperties.Forexample,carbonfiberreinforcedpolymer(CFRP)compositescanbedesignedtohavehighstrengthandstiffness,lowweight,andgoodcorrosionresistance,makingthemidealforaerospace,automotive,andsportinggoodsapplications.Similarly,glassfiberreinforcedpolymer(GFRP)compositescanbetailoredtoprovidehighimpactresistanceanddurability,makingthemsuitableformarine,construction,andtransportationapplications.
Themechanicalpropertiesofcompositematerialsaredeterminedbythecharacteristicsofthereinforcingfibersorparticles,includingtheirstrength,stiffness,andorientationwithinthematrix.Thematrixmaterial,ontheotherhand,providessupportandprotectionforthefibersorparticles,aswellasdeterminingtheoveralldurabilityandenvironmentalresistanceofthecomposite.Differenttypesofmatricescanbeused,includingthermosettingresins,thermoplasticpolymers,andmetals.
Processingtechniquesusedtomanufacturecompositematerialsalsoplayanimportantroleindeterminingtheirproperties.Techniquessuchascompressionmolding,pultrusion,filamentwinding,andinjectionmoldingcanbeusedtoproducecompositeswithvaryinglevelsofcomplexityandperformance.Dependingontheapplication,additionalprocessingstepssuchasmachining,coating,orsurfacetreatmentmayalsoberequired.
Whendesigningcompositematerials,itisimportanttoconsiderthespecificrequirementsoftheapplication,suchastheoperatingconditions,loads,andenvironmentalfactors.Byselectingtheappropriatecombinationoffibers,matrixmaterial,andprocessingtechnique,itispossibletocreatematerialsthatmeettheserequirementsandprovidesuperiorperformancecomparedtotraditionalmaterialssuchasmetals,ceramics,orplastics.
Despitetheirmanyadvantages,compositematerialsalsoposesomechallenges.Forexample,concernshavebeenraisedabouttheenvironmentalimpactofcompositemanufacturingprocesses,whichmayinvolvetheuseofhazardouschemicalsandenergy-intensiveprocesses.Inaddition,thelongevityandrecyclabilityofcompositematerialsremainachallenge,astheyaredifficulttoreuseorrecycleduetotheircomplexcomposition.
Toaddressthesechallenges,researchersandmanufacturersareexploringnewwaystooptimizecompositematerialsforsustainabilityandrecyclability,suchasusingbio-basedresinsorincorporatingrecycledmaterialsintocomposites.Regulationsandstandardsarealsobeingdevelopedtoensurethesafeuseanddisposalofcompositematerials,whileencouraginginnovationanddevelopmentintheindustry.
Overall,compositematerialshavethepotentialtorevolutionizemanyindustries,fromaerospaceandautomotivetoconstructionandhealthcare.Bycontinuingtoinvestinresearch,development,andinnovationinthisfield,wecanunlocktheirfullpotentialandcreatematerialsthataresustainable,adaptable,andhigh-performing。Theuseofcompositematerialsisnotwithoutitschallenges.Onemajorchallengeistheneedforspecializedequipmentandexpertiseformanufacturingandhandlingthesematerials.Thiscanresultinhighercostsandlongerleadtimesforproduction.Additionally,thevariabilityinpropertiesofcompositematerialscanmakequalitycontroldifficult,whichcanposesafetyrisksinsomeapplications.
Anotherconcernwithcompositematerialsistheirenvironmentalimpact,specificallyinregardstotheirend-of-lifedisposal.Whilecompositeshavethepotentialtobehighlydurableandlong-lasting,recyclingandrepurposingthemcanbechallenging.Manycompositesaremadeofamixofmaterials,includingpolymersandfibers,whichcanmakethemdifficulttorecycle.Additionally,somecompositescontainhazardouschemicalsormetalsthatrequirespecialdisposalmethods.
Toaddressthesechallenges,researchersandindustr
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蒸汽供氣合同范本
- 單位返聘合同范本
- 農(nóng)村工程改建合同范本
- 農(nóng)村住房貸款買賣合同范本
- 買賣股份合同范本
- 單位購買服裝購買合同范本
- 勞動仲裁聘用合同范本
- 出售廢鋼 廢鐵合同范本
- 勞務分包項目合同范本
- 中介甲乙丙方合同范本
- Unit 4 Time to celebrate 教學設計-2024-2025學年外研版英語七年級上冊
- 健康檔案模板
- 筋膜刀的臨床應用
- DB32-T 4790-2024建筑施工特種作業(yè)人員安全操作技能考核標準
- 2022年安徽阜陽太和縣人民醫(yī)院本科及以上學歷招聘筆試歷年典型考題及考點剖析附帶答案詳解
- 2024-2030年中國反芻動物飼料行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 護理團體標準解讀-成人氧氣吸入療法護理
- 幼兒園大班《識字卡》課件
- 2024-2030全球與中國寵物醫(yī)院市場現(xiàn)狀及未來發(fā)展趨勢
- 《研學旅行課程設計》課件-2認識研學旅行的參與方
- 安全警示教育的會議記錄內(nèi)容
評論
0/150
提交評論