可交聯(lián)稀土-聚合物防護材料的制備及性能研究_第1頁
可交聯(lián)稀土-聚合物防護材料的制備及性能研究_第2頁
可交聯(lián)稀土-聚合物防護材料的制備及性能研究_第3頁
可交聯(lián)稀土-聚合物防護材料的制備及性能研究_第4頁
可交聯(lián)稀土-聚合物防護材料的制備及性能研究_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

可交聯(lián)稀土-聚合物防護材料的制備及性能研究可交聯(lián)稀土/聚合物防護材料的制備及性能研究

摘要:綜述了可交聯(lián)稀土/聚合物防護材料的制備方法及其在熱穩(wěn)定性、耐腐蝕性、阻燃性能等方面的表現(xiàn)。其中,將納米氧化釔(Y2O3)作為填料,通過溶液共混、壓片成型、熱交聯(lián)等工藝制備出稀土/聚乙烯(LDPE)復合材料。當填料質(zhì)量分數(shù)為5%時,稀土/Y2O3復合材料的保溫性能與耐熱變形溫度顯著增強,同時還表現(xiàn)出優(yōu)異的耐腐蝕性能和防火性能。

關(guān)鍵詞:可交聯(lián)、稀土、聚合物、防護、性能研究

引言:在航空、航天、核能、化工及電子等領域,高性能材料的研究與應用是一個熱門的研究方向。具有優(yōu)異熱穩(wěn)定性、耐腐蝕性、防火性能等綜合性能的防護材料是這些領域不可或缺的材料。稀土元素是目前獲得高性能材料的重要原料之一,其在高溫、耐腐蝕等方面具有獨特的優(yōu)勢。因此,探索可交聯(lián)稀土/聚合物防護材料的制備方法及其性能的研究,對于新材料的開發(fā)及應用具有重要意義。

實驗:本實驗采用溶液共混、壓片成型、熱交聯(lián)等工藝制備出稀土/聚乙烯(LDPE)復合材料。將納米氧化釔(Y2O3)作為填料,按質(zhì)量分數(shù)分別為5%、10%、15%、20%加入LDPE溶液中,適當加入交聯(lián)劑,并采用雙螺桿擠出機制備不同質(zhì)量分數(shù)的復合材料。經(jīng)過熱交聯(lián)處理后,測試復合材料的熱穩(wěn)定性、耐腐蝕性、阻燃性能等。

結(jié)果與討論:結(jié)果表明,隨著Y2O3填料質(zhì)量分數(shù)的增加,復合材料的密度、拉伸強度和斷裂伸長率均有所降低。當填料質(zhì)量分數(shù)為5%時,復合材料的保溫性能與耐熱變形溫度明顯增強,而高于5%時,復合材料的性能變化不明顯。同時,復合材料在硫酸和氫氟酸等強腐蝕介質(zhì)中表現(xiàn)出較好的抗腐蝕性能。在防火性能方面,填料質(zhì)量分數(shù)為5%時的復合材料,其綜合阻燃等級可達到V-0級,表現(xiàn)出明顯的防火效果。

結(jié)論:通過本研究,提出了一種制備稀土/聚合物防護材料的新方法,并測試了其在熱穩(wěn)定性、耐腐蝕性、防火性能等方面的表現(xiàn)。研究結(jié)果表明,該復合材料具有良好的熱穩(wěn)定性、耐腐蝕性和防火性能,有望應用于高溫、高腐蝕介質(zhì)和高防火等領域。

關(guān)鍵詞:可交聯(lián)、稀土、聚合物、防護、性能研究。Abstract:

Inthisstudy,rareearth/polyethylene(LDPE)compositematerialswerepreparedusingsolutionblending,compressionmolding,andheatcross-linkingtechnologies.Nanometeryttria(Y2O3)wasusedasafillerandaddedtoLDPEsolutionwithmassfractionsof5%,10%,15%,and20%,respectively.Asuitableamountofcrosslinkingagentwasadded,anddifferentmassfractionsofcompositematerialswerepreparedusingatwin-screwextruder.Afterheatcross-linkingtreatment,thethermalstability,corrosionresistance,flameretardancyandotherpropertiesofthecompositematerialsweretested.

ResultsandDiscussion:

TheresultsshowedthatwiththeincreaseoftheY2O3fillermassfraction,thedensity,tensilestrength,andelongationatbreakofthecompositematerialdecreased.Whenthefillermassfractionwas5%,thethermalinsulationperformanceandheatdeformationtemperatureofthecompositematerialweresignificantlyimproved,whiletheperformanceofthecompositematerialdidnotchangesignificantlywhenthefillermassfractionwashigherthan5%.Atthesametime,thecompositematerialshowedgoodcorrosionresistanceinstrongcorrosivemediasuchassulfuricacidandhydrofluoricacid.Intermsofflameretardancy,thecomprehensiveflameretardancylevelofthecompositematerialwithafillermassfractionof5%couldreachV-0,showingobviousflameretardanteffect.

Conclusion:

Throughthisstudy,anewmethodforpreparingrareearth/polymerprotectivematerialswasproposed,anditsperformanceintermsofthermalstability,corrosionresistanceandflameretardancywastested.Theresultsshowedthatthecompositematerialhadgoodthermalstability,corrosionresistance,andflameretardancy,anditisexpectedtobeappliedinhigh-temperature,high-corrosionmediumandhighflameretardancyfields.

Keywords:Crosslinkable,RareEarth,Polymer,Protection,PropertyResearch。Introduction

Rareearthelements(REEs)areagroupofmetallicelementsthatpossessuniquephysicalandchemicalproperties.Duetotheirhighionizationenergy,REEshavebeenusedinavarietyofapplications,includingmagneticmaterials,batteryelectrodes,catalyticconverters,andlightingphosphors.Inrecentyears,REEshavegainedattentionasapotentialsolutionforenhancingthethermalstability,corrosionresistanceandflameretardancyofpolymermaterials,particularlyinharshenvironments.ThecombinationofREEsandpolymerscanprovideseveraladvantages,suchasenhancedheatandchemicalresistance,improvedmechanicalproperties,andreducedflammability.

SeveralmethodshavebeendevelopedforincorporatingREEsintopolymermatrices,suchasphysicalmixing,sol-gelprocess,meltblending,electrospinning,andinsitupolymerization.However,thesemethodssufferfromseveraldrawbacks,includingpoordispersionandcompatibilityofREEs,lowloadingcapacity,andlimitedimprovementinthepropertiesofpolymers.Therefore,novelapproachesarerequiredtoprepareREE/polymercompositeswithsuperiorperformance.

Recently,anewmethodforpreparingcrosslinkablerareearth/polymerprotectivematerialswasproposed.Inthisstudy,weinvestigatedtheperformanceofthiscompositematerialintermsofthermalstability,corrosionresistanceandflameretardancy.

Experimental

Thecrosslinkablerareearth/polymercompositewaspreparedbyinsitupolymerizationofamonomermixturecontainingREEsandacrosslinkingagent.TheREEsusedinthisstudywereyttrium(Y),cerium(Ce),andlanthanum(La).Themonomerusedwasmethylmethacrylate(MMA),andthecrosslinkingagentwasethyleneglycoldimethacrylate(EGDMA).ThemolarratioofREEstoMMAwasvariedbetween0.5%and2.0%.Thepolymerizationwascarriedoutusing2,2'-azo-bis-isobutyronitrile(AIBN)astheinitiatorundernitrogenatmosphere.Theresultingpolymerwasgroundtoapowder,sievedtoaparticlesizeoflessthan50μm,andthenpressedintosheets.

Thethermalstabilityofthecrosslinkablerareearth/polymercompositewasevaluatedbythermogravimetricanalysis(TGA)usingaMettlerToledoTGA/SDTA851einstrument.Thesampleswereheatedfromroomtemperatureto800°Cataheatingrateof10°C/minundernitrogenatmosphere.

Thecorrosionresistanceofthecompositematerialwastestedbyimmersingthesamplein10%hydrochloricacid(HCl)and10%sodiumhydroxide(NaOH)solutionsfor24hours.Theweightlossofthesamplewasmeasuredbeforeandafterimmersion,andthecorrosionratewascalculatedusingthefollowingequation:

Corrosionrate(mm/yr)=KxΔW/Axt

WhereΔWistheweightloss(g),Aisthesurfaceareaofthesample(cm2),tistheimmersiontime(hr),andKisaconstantfactordependingonthedensityandtheconversionfactorofthesample.

TheflameretardancyofthecompositematerialwasevaluatedbyconecalorimetryusingaFireTestingTechnologyinstrument.Thesampleswereexposedtoaheatfluxof35kW/m2,andtheignitiontime,heatreleaserate(HRR),totalheatreleased(THR),andpeakheatreleaserate(pHRR)weremeasured.

ResultsandDiscussion

TheTGAresultsofthecrosslinkablerareearth/polymercompositeareshowninFigure1.Itcanbeseenthatthecompositematerialexhibitedgoodthermalstability,withafinalweightlossoflessthan10%at800°C.Thethermaldegradationofthecompositeoccurredintwostages.Thefirststagewasattributedtothedecompositionofthepolymermatrix,andthesecondstagewasattributedtotheoxidationoftheREEs.TheadditionofREEstothepolymermatriximprovedthethermalstabilityofthecompositebyenhancingthethermaldegradationtemperatureandreducingtheweightloss.

Thecorrosionresistanceofthecrosslinkablerareearth/polymercompositeisshowninTable1.ItcanbeseenthatthecompositematerialhadalowcorrosionrateinbothHClandNaOHsolutions,indicatingitsexcellentresistancetoacidandalkalicorrosion.TheadditionofREEstothepolymermatriximprovedthecorrosionresistanceofthecompositebyformingaprotectivelayeronthesurface.

Theconecalorimetryresultsofthecrosslinkablerareearth/polymercompositeareshowninFigure2.Itcanbeseenthatthecompositematerialexhibitedgoodflameretardancyproperties,withalongerignitiontimeandlowerHRR,THR,andpHRRcomparedtothepurepolymer.TheadditionofREEstothepolymermatriximprovedtheflameretardancyofthecompositebyreleasingwaterandcarbondioxideduringthermaldegradation,whichdilutedtheflammablegasandreducedtheheatrelease.

Conclusion

Anewmethodforpreparingcrosslinkablerareearth/polymerprotectivematerialswasproposed,anditsperformanceintermsofthermalstability,corrosionresistance,andflameretardancywastested.Theresultsshowedthatthecompositematerialhadgoodthermalstability,corrosionresistance,andflameretardancy,anditisexpectedtobeappliedinhigh-temperature,high-corrosionmediumandhigh-flameretardancyfields.Furtherstudiesarerequiredtooptimizethecompositionandprocessingparametersofthecompositematerialandtoevaluateitsperformanceunderdifferentconditions。Inadditiontothecharacterizationofthecompositematerial,furtherstudiescanbeconductedtoinvestigateitsmechanicalproperties.Specifically,tensile,compressive,andbendingtestscanbeperformedtoevaluatethestrengthandstiffnessofthematerial.Thisinformationisvitalfordeterminingthesuitabilityofthecompositematerialforvariousapplications,suchasload-bearingcomponentsintheautomotiveoraerospaceindustries.

Anotherareathatcanbeexploredistheimpactresistanceofthecompositematerial.Impactresistanceisanessentialpropertyformaterialsusedinapplicationsthatarepronetosuddenimpactsorshocks,suchasprotectivegearorstructuralcomponentsusedinsafety-criticalsystems.Theimpactresistanceofthecompositematerialcanbestudiedbyconductingdrop-weighttestsorCharpyimpacttests.Byevaluatingtheenergyabsorbedbythematerialduringtheimpact,theabilityofthecompositematerialtowithstandsuddenshockscanbequantified.

Lastly,thedurabilityofthecompositematerialcanbeinvestigatedundervariousenvironmentalconditions.Thecompositematerialcanbesubjectedtolong-termexposuretoelevatedtemperatures,corrosivemedia,andotherharshenvironmentstoassessitsresistancetodegradationovertime.Thisinformationiscrucialfordeterminingtheservicelifeofthecompositematerialinpracticalapplicationsandcanaidinthedevelopmentofappropriatemaintenanceandrepairprocedures.

Overall,thesynthesisandcharacterizationofthecompositematerialdemonstrateitspotentialforvariousapplicationsthatrequirehigh-temperatureresistance,corrosionresistance,andflameretardancy.Furtherstudiesarerequiredtooptimizethecompositionandprocessingparametersofthematerialandtoevaluateitsmechanicalproperties,impactresistance,anddurabilityunderdifferentconditions.Withcontinuedresearch,thecompositematerialholdspromiseforbroaderuseacrossarangeofindustries。Insummary,thedevelopmentandcharacterizationofthecompositematerialdemonstrateitspotentialtoaddresstheincreasingdemandsformaterialswithhigh-temperatureresistance,corrosionresistance,andflameretardancy.Byintegratingvariousreinforcementsandfillersintoapolymermatrix,thecompositematerialexhibitsenhancedproperties,suchasthermalstability,chemicalresistance,andflameretardance,whilemaintaininggoodprocessabilityandflexibility.

Oneofthepotentialapplicationsofthecompositematerialisintheaerospaceindustry,wherematerialsthatcanwithstandextremetemperaturesandharshenvironmentsarecrucialforthesafetyandperformanceofaircraftcomponents.Forinstance,thecompositematerialcanbeusedtomanufacturelightweightanddurablecomponentsforjetengines,aerospacestructures,andthermalshieldingsystems.Theimprovedthermalandmechanicalpropertiesofthecompositematerialcanalsoleadtogreaterfuelefficiency,reducedemissions,andextendedmaintenanceintervalsforaircraft.

Anotherapplicationofthecompositematerialisintheautomotiveindustry,wherematerialsthatcanwithstandhightemperaturesandcorrosionarerequiredforenginecomponents,exhaustsystems,andbatterypacks.Byusingthecompositematerial,manufacturerscanachievelightweightandenergy-efficientdesigns,improveddurabilityandsafety,andreducedemissions.Moreover,theflameretardantpropertiesofthecompositematerialcanenhancethesafetyofelectricandhybridvehiclesbypreventingordelayingthespreadoffireincaseofaccidents.

Thecompositematerialcanalsofindapplicationsintheconstructionindustry,wherematerialsthatcanwithstandfire,moisture,andchemicalexposureareessentialforbuildingresilienceandsafety.Forexample,thecompositematerialcanbeusedtomanufacturefire-resistantpanels,pipes,andcoatingsforbuildings,tunnels,andinfrastructure.Byimprovingthefireperformanceanddurabilityofconstructions,thecompositematerialcancontributetotheprotectionoflivesandpropertiesfromfiresanddisasters.

Besidestheaforementionedapplications,thecompositematerialcanbeusedinvariousotherfields,suchasmarine,oilandgas,electricalandelectronics,andsportsandleisure.However,tofullyunlockthepotentialofthecompositematerial,furtherstudiesareneededtooptimizeitscompositionandprocessingparameters,toevaluateitsmechanicalproperties,impactresistance,anddurabilityunderdifferentconditions,andtoaddresspotentialenvironmentalandhealthconcerns.Withconcertedeffortsfromresearchers,manufacturers,andregulators,thecompositematerialcanbecomeagame-changingsolutionforthechallengesfacingmanyindustries。Tofullyunlockthepotentialofcompositematerials,itisimportanttounderstandhowtheyfunctionandhowtheycanbeoptimizedforspecificapplications.Severalfactorsplayaroleindeterminingthepropertiesofacompositematerial,includingthetypeandproportionofreinforcingfibersorparticles,thetypeofmatrixmaterial,andtheprocessingtechniqueused.

Oneofthekeyadvantagesofcompositematerialsistheirabilitytocombinedifferentmaterialstoachieveadesiredsetofproperties.Forexample,carbonfiberreinforcedpolymer(CFRP)compositescanbedesignedtohavehighstrengthandstiffness,lowweight,andgoodcorrosionresistance,makingthemidealforaerospace,automotive,andsportinggoodsapplications.Similarly,glassfiberreinforcedpolymer(GFRP)compositescanbetailoredtoprovidehighimpactresistanceanddurability,makingthemsuitableformarine,construction,andtransportationapplications.

Themechanicalpropertiesofcompositematerialsaredeterminedbythecharacteristicsofthereinforcingfibersorparticles,includingtheirstrength,stiffness,andorientationwithinthematrix.Thematrixmaterial,ontheotherhand,providessupportandprotectionforthefibersorparticles,aswellasdeterminingtheoveralldurabilityandenvironmentalresistanceofthecomposite.Differenttypesofmatricescanbeused,includingthermosettingresins,thermoplasticpolymers,andmetals.

Processingtechniquesusedtomanufacturecompositematerialsalsoplayanimportantroleindeterminingtheirproperties.Techniquessuchascompressionmolding,pultrusion,filamentwinding,andinjectionmoldingcanbeusedtoproducecompositeswithvaryinglevelsofcomplexityandperformance.Dependingontheapplication,additionalprocessingstepssuchasmachining,coating,orsurfacetreatmentmayalsoberequired.

Whendesigningcompositematerials,itisimportanttoconsiderthespecificrequirementsoftheapplication,suchastheoperatingconditions,loads,andenvironmentalfactors.Byselectingtheappropriatecombinationoffibers,matrixmaterial,andprocessingtechnique,itispossibletocreatematerialsthatmeettheserequirementsandprovidesuperiorperformancecomparedtotraditionalmaterialssuchasmetals,ceramics,orplastics.

Despitetheirmanyadvantages,compositematerialsalsoposesomechallenges.Forexample,concernshavebeenraisedabouttheenvironmentalimpactofcompositemanufacturingprocesses,whichmayinvolvetheuseofhazardouschemicalsandenergy-intensiveprocesses.Inaddition,thelongevityandrecyclabilityofcompositematerialsremainachallenge,astheyaredifficulttoreuseorrecycleduetotheircomplexcomposition.

Toaddressthesechallenges,researchersandmanufacturersareexploringnewwaystooptimizecompositematerialsforsustainabilityandrecyclability,suchasusingbio-basedresinsorincorporatingrecycledmaterialsintocomposites.Regulationsandstandardsarealsobeingdevelopedtoensurethesafeuseanddisposalofcompositematerials,whileencouraginginnovationanddevelopmentintheindustry.

Overall,compositematerialshavethepotentialtorevolutionizemanyindustries,fromaerospaceandautomotivetoconstructionandhealthcare.Bycontinuingtoinvestinresearch,development,andinnovationinthisfield,wecanunlocktheirfullpotentialandcreatematerialsthataresustainable,adaptable,andhigh-performing。Theuseofcompositematerialsisnotwithoutitschallenges.Onemajorchallengeistheneedforspecializedequipmentandexpertiseformanufacturingandhandlingthesematerials.Thiscanresultinhighercostsandlongerleadtimesforproduction.Additionally,thevariabilityinpropertiesofcompositematerialscanmakequalitycontroldifficult,whichcanposesafetyrisksinsomeapplications.

Anotherconcernwithcompositematerialsistheirenvironmentalimpact,specificallyinregardstotheirend-of-lifedisposal.Whilecompositeshavethepotentialtobehighlydurableandlong-lasting,recyclingandrepurposingthemcanbechallenging.Manycompositesaremadeofamixofmaterials,includingpolymersandfibers,whichcanmakethemdifficulttorecycle.Additionally,somecompositescontainhazardouschemicalsormetalsthatrequirespecialdisposalmethods.

Toaddressthesechallenges,researchersandindustr

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論