




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在ΔABC中,已知BC=2AC,B∈[πA.[π4C.[π42.無論取何實數(shù),直線恒過一定點,則該定點坐標(biāo)為()A. B. C. D.3.在△ABC中,D是邊BC的中點,則=A. B. C. D.4.設(shè)滿足約束條件則的最大值為().A.10 B.8 C.3 D.25.某程序框圖如圖所示,該程序運行后輸出的值是()A. B. C. D.6.在△ABC中,角A、B、C所對的邊分別為,己知A=60°,,則B=()A.45° B.135° C.45°或135° D.以上都不對7.已知向量,,則()A. B. C. D.8.下列說法正確的是()A.小于的角是銳角 B.鈍角是第二象限的角C.第二象限的角大于第一象限的角 D.若角與角的終邊相同,則9.設(shè),,,則()A. B.C. D.10.矩形ABCD中,,,則實數(shù)()A.-16 B.-6 C.4 D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知點及其關(guān)于原點的對稱點均在不等式表示的平面區(qū)域內(nèi),則實數(shù)的取值范圍是____.12.若滿足約束條件則的最大值為__________.13.已知,則的最小值是__________.14.若,,則___________.15.已知點P(tanα,cosα)在第三象限,則角α的終邊在第________象限.16.求374與238的最大公約數(shù)結(jié)果用5進(jìn)制表示為_________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,邊長為2的正方形中,(1)點是的中點,點是的中點,將分別沿折起,使兩點重合于點.求證:(2)當(dāng)時,求三棱錐的體積.18.已知不等式的解集為或.(1)求實數(shù)a,b的值;(2)解不等式.19.設(shè)為正項數(shù)列的前項和,且滿足.(1)求證:為等差數(shù)列;(2)令,,若恒成立,求實數(shù)的取值范圍.20.已知直線經(jīng)過兩條直線:和:的交點,直線:;(1)若,求的直線方程;(2)若,求的直線方程.21.已知函數(shù),其中數(shù)列是公比為的等比數(shù)列,數(shù)列是公差為的等差數(shù)列.(1)若,,分別寫出數(shù)列和數(shù)列的通項公式;(2)若是奇函數(shù),且,求;(3)若函數(shù)的圖像關(guān)于點對稱,且當(dāng)時,函數(shù)取得最小值,求的最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
由BC=2AC,根據(jù)正弦定理可得:sinA=2sinB,由角【詳解】由于在ΔABC中,有BC=2AC,根據(jù)正弦定理可得由于B∈[π6,π4]由于在三角形中,A∈0,π,由正弦函數(shù)的圖像可得:A∈[故答案選D【點睛】本題考查正弦定理在三角形中的應(yīng)用,以及三角函數(shù)圖像的應(yīng)用,屬于中檔題.2、A【解析】
通過整理直線的形式,可求得所過的定點.【詳解】直線可整理為,當(dāng),解得,無論為何值,直線總過定點.故選A.【點睛】本題考查了直線過定點問題,屬于基礎(chǔ)題型.3、C【解析】分析:利用平面向量的減法法則及共線向量的性質(zhì)求解即可.詳解:因為是的中點,所以,所以,故選C.點睛:本題主要考查共線向量的性質(zhì),平面向量的減法法則,屬于簡單題.4、B【解析】
作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)即可求解.【詳解】作出可行域如圖:化目標(biāo)函數(shù)為,聯(lián)立,解得.由圖象可知,當(dāng)直線過點A時,直線在y軸上截距最小,有最大值.【點睛】本題主要考查了簡單的線性規(guī)劃,數(shù)形結(jié)合的思想,屬于中檔題.5、B【解析】
模擬程序運行后,可得到輸出結(jié)果,利用裂項相消法即可求出答案.【詳解】模擬程序運行過程如下:0),判斷為否,進(jìn)入循環(huán)結(jié)構(gòu),1),判斷為否,進(jìn)入循環(huán)結(jié)構(gòu),2),判斷為否,進(jìn)入循環(huán)結(jié)構(gòu),3),判斷為否,進(jìn)入循環(huán)結(jié)構(gòu),……9),判斷為否,進(jìn)入循環(huán)結(jié)構(gòu),10),判斷為是,故輸出,故選:B.【點睛】本題主要考查程序框圖,考查裂項相消法,難度不大.一般遇見程序框圖求輸出結(jié)果時,常模擬程序運行以得到結(jié)論.6、A【解析】
利用正弦定理求出的值,再結(jié)合,得出,從而可得出的值?!驹斀狻坑烧叶ɡ淼?,,,則,所以,,故選:A?!军c睛】本題考查利用正弦定理解三角形,要注意正弦定理所適用的基本情形,同時在求得角時,利用大邊對大角定理或兩角之和不超過得出合適的答案,考查計算能力,屬于中等題。7、D【解析】
根據(jù)平面向量的數(shù)量積,計算模長即可.【詳解】因為向量,,則,,故選:D.【點睛】本題考查了平面向量的數(shù)量積與模長公式的應(yīng)用問題,是基礎(chǔ)題.8、B【解析】
可通過舉例的方式驗證選項的對錯.【詳解】A:負(fù)角不是銳角,比如“”的角,故錯誤;B:鈍角范圍是“”,是第二象限的角,故正確;C:第二象限角取“”,第一象限角取“”,故錯誤;D:當(dāng)角與角的終邊相同,則.故選B.【點睛】本題考查任意角的概念,難度較易.9、B【解析】
由指數(shù)函數(shù)的性質(zhì)得,由對數(shù)函數(shù)的性質(zhì)得,根據(jù)正切函數(shù)的性質(zhì)得,即可求解,得到答案.【詳解】由指數(shù)函數(shù)的性質(zhì),可得,由對數(shù)函數(shù)的性質(zhì)可得,根據(jù)正切函數(shù)的性質(zhì),可得,所以,故選B.【點睛】本題主要考查了指數(shù)式、對數(shù)式以及正切函數(shù)值的比較大小問題,其中解答中熟記指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì),以及正切函數(shù)的性質(zhì)得到的取值范圍是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.10、B【解析】
根據(jù)題意即可得出,從而得出,進(jìn)行數(shù)量積的坐標(biāo)運算即可求出實數(shù).【詳解】據(jù)題意知,,,.故選:.【點睛】考查向量垂直的充要條件,以及向量數(shù)量積的坐標(biāo)運算,屬于容易題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)題意,設(shè)與關(guān)于原點的對稱,分析可得的坐標(biāo),由二元一次不等式的幾何意義可得,解可得的取值范圍,即可得答案.【詳解】根據(jù)題意,設(shè)與關(guān)于原點的對稱,則的坐標(biāo)為,若、均在不等式表示的平面區(qū)域內(nèi),則有,解可得:,即的取值范圍為,;故答案為,.【點睛】本題考查二元一次不等式表示平面區(qū)域的問題,涉及不等式的解法,屬于基礎(chǔ)題.12、【解析】
作出可行域,根據(jù)目標(biāo)函數(shù)的幾何意義可知當(dāng)時,.【詳解】不等式組表示的可行域是以為頂點的三角形區(qū)域,如下圖所示,目標(biāo)函數(shù)的最大值必在頂點處取得,易知當(dāng)時,.【點睛】線性規(guī)劃問題是高考中??伎键c,主要以選擇及填空的形式出現(xiàn),基本題型為給出約束條件求目標(biāo)函數(shù)的最值,主要結(jié)合方式有:截距型、斜率型、距離型等.13、【解析】分析:利用題設(shè)中的等式,把的表達(dá)式轉(zhuǎn)化成,展開后,利用基本不等式求得y的最小值.詳解:因為,所以,所以(當(dāng)且僅當(dāng)時等號成立),則的最小值是,總上所述,答案為.點睛:該題考查的是有關(guān)兩個正數(shù)的整式形式和為定值的情況下求其分式形式和的最值的問題,在求解的過程中,注意相乘,之后應(yīng)用基本不等式求最值即可,在做乘積運算的時候要注意乘1是不變的,如果不是1,要做除法運算.14、【解析】
將等式和等式都平方,再將所得兩個等式相加,并利用兩角和的正弦公式可求出的值.【詳解】若,,將上述兩等式平方得,①,②,①+②可得,求得,故答案為.【點睛】本題考查利用兩角和的正弦公式求值,解題的關(guān)鍵就是將等式進(jìn)行平方,結(jié)合等式結(jié)構(gòu)進(jìn)行變形計算,考查運算求解能力,屬于中等題.15、二【解析】
由點P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,從而得到α所在的象限.【詳解】因為點P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,則角α的終邊在第二象限,故答案為二.點評:本題考查第三象限內(nèi)的點的坐標(biāo)的符號,以及三角函數(shù)在各個象限內(nèi)的符號.16、【解析】
根據(jù)最大公約數(shù)的公式可求得兩個數(shù)的最大公約數(shù),再由除取余法即可將進(jìn)制進(jìn)行轉(zhuǎn)換.【詳解】374與238的最大公約數(shù)求法如下:,,,,所以兩個數(shù)的最大公約數(shù)為34.由除取余法可得:所以將34化為5進(jìn)制后為,故答案為:.【點睛】本題考查了最大公約數(shù)的求法,除取余法進(jìn)行進(jìn)制轉(zhuǎn)化的應(yīng)用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】試題分析:(1)由題意,,∴,∴.(2)把當(dāng)作底面,因為角=90°,所以為高;過作H垂直于EF,H為EF中點(等腰三角形三線合一);BE=BF=BC,;,,,.考點:折疊問題,垂直關(guān)系,體積計算.點評:中檔題,對于折疊問題,要特別注意“變”與“不變”的幾何元素,及幾何元素之間的關(guān)系.本題計算幾何體體積時,應(yīng)用了“等體積法”,簡化了解題過程.18、(1);(2)答案不唯一,見解析【解析】
(1)題意說明是方程的解,代入可得,把代入可求得原不等式的解集,從而得值;(2)因式分解后討論和6的大小可得不等式的解集.【詳解】(1)依題意,得:,解得,所以,不等式為,解得,或,所以,所以,;(2)不等式為:,即,當(dāng)時,解集為當(dāng)時,解集為當(dāng)時,解集為【點睛】本題考查解一元二次不等式,考查一元二次不等式的解集與一元二次方程根的關(guān)系,在解含參數(shù)的一元二次不等式時要注意分類討論.19、(1)見解析(2)【解析】
(1)根據(jù)與的關(guān)系,再結(jié)合等差數(shù)列的定義,即可證明;(2)由(1)可求出,采用裂項相消法求出,要恒成立,只需即可求出.【詳解】(1)由題知:,當(dāng)?shù)茫海獾茫寒?dāng),①②得:,即.是以為首項,為公差的等差數(shù)列.(2)由(1)知:所以即.【點睛】本題主要考查與的關(guān)系,等差數(shù)列的定義,裂項相消法以及恒成立問題的解法的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運算能力,屬于基礎(chǔ)題.20、(1);(2)【解析】
(1)先求出與的交點,再利用兩直線平行斜率相等求直線l(2)利用兩直線垂直斜率乘積等于-1求直線l【詳解】(1)由,得,∴與的交點為.設(shè)與直線平行的直線為,則,∴.∴所求直線方程為.(2)設(shè)與直線垂直的直線為,則,解得.∴所求直線方程為.【點睛】兩直線平行斜率相等,兩直線垂直斜率乘積等于-1.21、(1),;(2);(3)1【解析】
(1)根據(jù)等差數(shù)列、等比數(shù)列的通項公式即可求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025內(nèi)蒙古中科國沄能源有限公司招聘29人筆試參考題庫附帶答案詳解
- 2019-2025年期貨從業(yè)資格之期貨法律法規(guī)能力提升試卷A卷附答案
- 遼寧撫順歷年中考作文題與審題指導(dǎo)(2010-2023)
- 新產(chǎn)品市場調(diào)研與市場準(zhǔn)入分析合同
- 環(huán)保工程采購咨詢及招標(biāo)代理服務(wù)全面合作協(xié)議
- 生態(tài)農(nóng)業(yè)園區(qū)場地租賃合同終止與農(nóng)產(chǎn)品合作協(xié)議
- 私家車掛靠出租車公司合作經(jīng)營協(xié)議書
- 安徽省皖江名校2024-2025學(xué)年高一下學(xué)期5月月考英語史試題(B)(含答案)
- 樣品檢驗報告
- 廠房拆除施工全過程安全控制與管理協(xié)議
- 2024年全國統(tǒng)計師之初級統(tǒng)計基礎(chǔ)理論及相關(guān)知識考試重點試卷(附答案)
- 茶園商業(yè)計劃書
- 四川省巴中市2023-2024學(xué)年八年級上學(xué)期期末考試英語試卷
- SF-36生活質(zhì)量調(diào)查表(SF-36-含評分細(xì)則)
- 2024年經(jīng)內(nèi)鏡消化系統(tǒng)常見惡性腫瘤組織取樣及類器官培養(yǎng)專家共識(完整版)
- 中國古建筑文化與鑒賞智慧樹知到期末考試答案章節(jié)答案2024年清華大學(xué)
- 廣東省汕尾市海豐縣2024年數(shù)學(xué)八年級下冊期末學(xué)業(yè)水平測試模擬試題含解析
- 陰囊佩吉特病
- 隱龍山墓園規(guī)劃方案
- 超聲引導(dǎo)下心包穿刺置管術(shù)
- 周公山隧道施工組織設(shè)計最終版樣本
評論
0/150
提交評論