2022-2023學年天津市一中高一數(shù)學第二學期期末學業(yè)水平測試試題含解析_第1頁
2022-2023學年天津市一中高一數(shù)學第二學期期末學業(yè)水平測試試題含解析_第2頁
2022-2023學年天津市一中高一數(shù)學第二學期期末學業(yè)水平測試試題含解析_第3頁
2022-2023學年天津市一中高一數(shù)學第二學期期末學業(yè)水平測試試題含解析_第4頁
2022-2023學年天津市一中高一數(shù)學第二學期期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.《趣味數(shù)學·屠夫列傳》中有如下問題:“戴氏善屠,日益功倍。初日屠五兩,今三十日屠訖,問共屠幾何?”其意思為:“有一個姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5兩肉,共屠了30天,問一共屠了多少兩肉?”()A. B. C. D.2.《九章算術》中有如下問題:“今有勾五步,股一十二步,問勾中容圓,徑幾何?”其大意:“已知直角三角形兩直角邊長分別為5步和12步,問其內切圓的直徑為多少步?”現(xiàn)若向此三角形內隨機投一粒豆子,則豆子落在其內切圓外的概率是()A. B. C. D.3.關于的不等式的解集是,則關于的不等式的解集是()A. B.C. D.4.已知向量,滿足,,,則()A.3 B.2 C.1 D.05.的斜二測直觀圖如圖所示,則原的面積為()A. B.1 C. D.26.已知圓錐的表面積為,且它的側面展開圖是一個半圓,則圓錐的底面半徑為A. B. C. D.()7.設公差不為零的等差數(shù)列an的前n項和為Sn.若a2+A.10 B.11 C.12 D.138.在中,已知三個內角為,,滿足,則().A. B.C. D.9.兩直角邊分別為1,的直角三角形繞其斜邊所在的直線旋轉一周,得到的幾何體的表面積是()A. B.3π C. D.10.命題“”的否定是()A., B.,C., D.,二、填空題:本大題共6小題,每小題5分,共30分。11.____________.12.如圖,海岸線上有相距海里的兩座燈塔A,B,燈塔B位于燈塔A的正南方向.海上停泊著兩艘輪船,甲船位于燈塔A的北偏西,與A相距海里的D處;乙船位于燈塔B的北偏西方向,與B相距海里的C處,此時乙船與燈塔A之間的距離為海里,兩艘輪船之間的距離為海里.13.已知實數(shù),滿足不等式組,則的最大值為_______.14.已知一個幾何體的三視圖如圖所示,其中正視圖是等腰直角三角形,則該幾何體的體積為__________.15.一個三角形的三條邊成等比數(shù)列,那么,公比q的取值范圍是__________.16.在直角坐標系xOy中,一單位圓的圓心的初始位置在,此時圓上一點P的位置在,圓在x軸上沿正向滾動.當圓滾動到圓心位于時,的坐標為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)當,時,求不等式的解集;(2)若,,的最小值為2,求的最小值.18.已知離心率為的橢圓過點.(1)求橢圓的方程;(2)過點作斜率為直線與橢圓相交于兩點,求的長.19.如圖,正方體棱長為,連接,,,,,,得到一個三棱錐,求:(1)三棱錐的表面積與正方體表面積的比值;(2)三棱錐的體積.20.在平面直角坐標系中,直線截以坐標原點為圓心的圓所得的弦長為.(1)求圓的方程;(2)若直線與圓切于第一象限,且與坐標軸交于點,,當時,求直線的方程;(3)設,是圓上任意兩點,點關于軸的對稱點為,若直線,分別交軸于點和,問是否為定值?若是,請求出該定值;若不是,請說明理由.21.已知數(shù)列的前n項和為,且,.(1)求數(shù)列的通項公式;(2)若等差數(shù)列滿足,且,,成等比數(shù)列,求c.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

根據(jù)題意,得到該屠戶每天屠的肉成等比數(shù)列,記首項為,公比為,前項和為,由題中熟記,以及等比數(shù)列的求和公式,即可得出結果.【詳解】由題意,該屠戶每天屠的肉成等比數(shù)列,記首項為,公比為,前項和為,所以,,因此.故選:D【點睛】本題主要考查等比數(shù)列的應用,熟記等比數(shù)列的求和公式即可,屬于基礎題型.2、C【解析】

本題首先可以根據(jù)直角三角形的三邊長求出三角形的內切圓半徑,然后分別計算出內切圓和三角形的面積,最后通過幾何概型的概率計算公式即可得出答案.【詳解】如圖所示,直角三角形的斜邊長為,設內切圓的半徑為,則,解得.所以內切圓的面積為,所以豆子落在內切圓外部的概率,故選C.【點睛】本題主要考查“面積型”的幾何概型,屬于中檔題.解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與面積有關的幾何概型問題關鍵是計算問題的總面積以及事件的面積;幾何概型問題還有以下幾點容易造成失分,在備考時要高度關注:(1)不能正確判斷事件是古典概型還是幾何概型導致錯誤;(2)基本事件對應的區(qū)域測度把握不準導致錯誤;(3)利用幾何概型的概率公式時,忽視驗證事件是否等可能性導致錯誤.3、C【解析】關于的不等式,即的解集是,∴不等式,可化為,解得,∴所求不等式的解集是,故選C.4、A【解析】

由,求出,代入計算即可.【詳解】由題意,則.故答案為A.【點睛】本題考查了向量的數(shù)量積,考查了學生的計算能力,屬于基礎題.5、D【解析】

根據(jù)直觀圖可計算其面積為,原的面積為,由得結論.【詳解】由題意可得,所以由,即.故選:D.【點睛】本題考查了斜二側畫直觀圖,三角形的面積公式,需要注意的是與原圖與直觀圖的面積之比為,屬于基礎題.6、C【解析】解:7、C【解析】

由等差數(shù)列的前n項和公式Sn=n(a1+an)【詳解】∵S13=117,∴13a1+a132=117,∴a1【點睛】本題考查等差數(shù)列的性質求和前n項和公式及等差數(shù)列下標和的性質,屬于基礎題。8、C【解析】

利用正弦定理、余弦定理即可得出.【詳解】由正弦定理,以及,得,不妨取,則,又,.故選:C.【點睛】本題主要考查了正弦定理,余弦定理在解三角形中應用,考查了轉化思想,屬于基礎題.9、A【解析】

由題知該旋轉體為兩個倒立的圓錐底對底組合在一起,根據(jù)圓錐的側面積計算公式可得.【詳解】由題得直角三角形的斜邊為2,則斜邊上的高為.由題知該幾何體為兩個倒立的圓錐底對底組合在一起,其中,故選.【點睛】本題考查旋轉體的定義,圓錐的表面積的計算,屬于基礎題.10、B【解析】

含有一個量詞的命題的否定,注意“改量詞,否結論”.【詳解】改為,改成,則有:.故選:B.【點睛】本題考查含一個量詞的命題的否定,難度較易.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

在分式的分子和分母中同時除以,然后利用常見數(shù)列的極限可計算出所求極限值.【詳解】由題意得.故答案為:.【點睛】本題考查數(shù)列極限的計算,熟悉一些常見數(shù)列的極限是解題的關鍵,考查計算能力,屬于基礎題.12、5,【解析】

為等邊三角形,所以算出,,再在中根據(jù)余弦定理易得CD的長.【詳解】因為為等邊三角形,所以.在中根據(jù)余弦定理解得.【點睛】此題考查余弦定理的實際應用,關鍵點通過已知條件轉換為數(shù)學模型再通過余弦定理求解即可,屬于較易題目.13、2【解析】

作出不等式組表示的平面區(qū)域,根據(jù)目標函數(shù)的幾何意義,結合圖象,即可求解,得到答案.【詳解】由題意,作出不等式組表示的平面區(qū)域,如圖所示,又由,即表示平面區(qū)域內任一點與點之間連線的斜率,顯然直線的斜率最大,又由,解得,則,所以的最大值為2.【點睛】本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數(shù)的最優(yōu)解是解答的關鍵,著重考查了數(shù)形結合思想,及推理與計算能力,屬于基礎題.14、【解析】

首先根據(jù)三視圖還原幾何體,再計算體積即可.【詳解】由三視圖知:該幾何體是以底面是直角三角形,高為的三棱錐,直觀圖如圖所示:.故答案為:【點睛】本題主要考查三視圖還原直觀圖,同時考查了錐體的體積計算,屬于簡單題.15、【解析】

設三邊按遞增順序排列為,其中.則,即.解得.由q≥1知q的取值范圍是1≤q<.設三邊按遞減順序排列為,其中.則,即.解得.綜上所述,.16、【解析】

設滾動后圓的圓心為C,切點為A,連接CP.過C作與x軸正方向平行的射線,交圓C于B(2,1),設∠BCP=θ,則根據(jù)圓的參數(shù)方程,得P的坐標為(1+cosθ,1+sinθ),再根據(jù)圓的圓心從(0,1)滾動到(1,1),算出,結合三角函數(shù)的誘導公式,化簡可得P的坐標為,即為向量的坐標.【詳解】設滾動后的圓的圓心為C,切點為,連接CP,過C作與x軸正方向平行的射線,交圓C于,設,∵C的方程為,∴根據(jù)圓的參數(shù)方程,得P的坐標為,∵單位圓的圓心的初始位置在,圓滾動到圓心位于,,可得,可得,,代入上面所得的式子,得到P的坐標為,所以的坐標是.故答案為:.【點睛】本題考查圓的參數(shù)方程,平面向量坐標表示的應用,解題的關鍵是根據(jù)數(shù)形結合找到變量的角度,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)利用零點討論法解絕對值不等式;(2)利用絕對值三角不等式得到a+b=2,再利用基本不等式求的最小值.【詳解】(1)當,時,,得或或,解得:,∴不等式的解集為.(2),∴,∴,當且僅當,時取等號.∴的最小值為.【點睛】本題主要考查零點討論法解絕對值不等式,考查絕對值三角不等式和基本不等式求最值,意在考查學生對這些知識的理解掌握水平和分析推理能力.18、(1)(2)【解析】

(1)根據(jù)離心率可得的關系,將點代入橢圓方程,可得橢圓方程;(2)直線方程與橢圓方程聯(lián)立,可得弦長.【詳解】(1),又,,即橢圓方程是,代入點,可得,橢圓方程是.(2)設直線方程是,聯(lián)立橢圓方程代入可得.【點睛】本題考查了橢圓方程和直線與橢圓的位置關系,涉及弦長公式,屬于簡單題.19、(1);(2)【解析】試題分析:(1)求出三棱錐的棱長為,即可求出三棱錐的表面積與正方體表面積的比值;(2)利用割補法,即可求出三棱錐的體積.試題解析:(1)正方體的棱長為,則三棱錐的棱長為,表面積為,正方體表面積為,∴三棱錐的表面積與正方體表面積的比值為(2)三棱錐的體積為20、(1);(2);(3)見解析【解析】

(1)利用點到直線距離公式,可以求出弦心距,根據(jù)垂徑定理結合勾股定理,可以求出圓的半徑,進而可以求出圓的方程;(2)設出直線的截距式方程,利用圓的切線性質,得到一個方程,結合已知,又得到一個方程,兩個方程聯(lián)立,解方程組,即可求出直線直線的方程;(3)設,,則,,,分別求出直線與軸交點坐標、直線與軸交點坐標,求出的表達式,通過計算可得.【詳解】(1)因為點到直線的距離為,所以圓的半徑為,故圓的方程為.(2)設直線的方程為,即,由直線與圓相切,得,①.②由①②解得,此時直線的方程為.(3)設,,則,,,直線與軸交點坐標為,,直線與軸交點坐標為,,,為定值2.【點睛】本題考查了圓的垂徑定理、圓的切線性質、勾股定理,考查了求直線方程,考查了數(shù)學運算能力.21、(1);(2).【解析】

(1)根據(jù)題意,數(shù)列為1為首項,4為公差的等差數(shù)列,根據(jù)等差數(shù)列通項公式計算即可;(2)由(1)可求數(shù)列的前n項和為,根據(jù),,成等差數(shù)列及,,成等比數(shù)列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論