




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),則的取值范圍是()A. B. C. D.2.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最大值是()A.7 B.5 C.3 D.23.奇函數(shù)在上單調(diào)遞減,且,則不等式的解集是().A. B.C. D.4.已知,∥則()A.6 B. C.-6 D.5.已知數(shù)列的前項為和,且,則()A.5 B. C. D.96.?dāng)?shù)列滿足,則數(shù)列的前項和等于()A. B. C. D.7.設(shè),為兩個平面,則能斷定∥的條件是()A.內(nèi)有無數(shù)條直線與平行 B.,平行于同一條直線C.,垂直于同一條直線 D.,垂直于同一平面8.某興趣小組合作制作了一個手工制品,并將其繪制成如圖所示的三視圖,其中側(cè)視圖中的圓的半徑為3,則制作該手工制品表面積為()A. B. C. D.9.一個幾何體的三視圖如圖所示,則這個幾何的體積為()立方單位.A. B.C. D.10.設(shè)等比數(shù)列的前項和為,若,,則()A.63 B.62 C.61 D.60二、填空題:本大題共6小題,每小題5分,共30分。11.中,,,,則________.12.設(shè)ω為正實數(shù).若存在a、b(π≤a<b≤2π),使得13.我國高鐵發(fā)展迅速,技術(shù)先進.經(jīng)統(tǒng)計,在經(jīng)停某站的高鐵列車中,有10個車次的正點率為0.97,有20個車次的正點率為0.98,有10個車次的正點率為0.99,則經(jīng)停該站高鐵列車所有車次的平均正點率的估計值為___________.14.用數(shù)學(xué)歸納法證明時,從“到”,左邊需增乘的代數(shù)式是___________.15.若數(shù)列滿足,,則數(shù)列的通項公式______.16.各項均為實數(shù)的等比數(shù)列的前項和為,已知成等差數(shù)列,則數(shù)列的公比為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某城市理論預(yù)測2020年到2024年人口總數(shù)與年份的關(guān)系如下表所示:年份202x(年)01234人口數(shù)y(十萬)5781119(1)請在右面的坐標(biāo)系中畫出上表數(shù)據(jù)的散點圖;(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;(3)據(jù)此估計2025年該城市人口總數(shù).(參考公式:,)18.已知,為常數(shù),且,,.(I)若方程有唯一實數(shù)根,求函數(shù)的解析式.(II)當(dāng)時,求函數(shù)在區(qū)間上的最大值與最小值.(III)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.19.已知.(1)求;(2)求向量與的夾角的余弦值.20.已知,設(shè).(1)若圖象中相鄰兩條對稱軸間的距離不小于,求的取值范圍;(2)若的最小正周期為,且當(dāng)時,的最大值是,求的解析式,并說明如何由的圖象變換得到的圖象.21.的內(nèi)角的對邊為,(1)求;(2)若求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
由同向不等式的可加性求解即可.【詳解】解:因為,所以,又,,所以,故選:B.【點睛】本題考查了不等式的性質(zhì),屬基礎(chǔ)題.2、B【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得結(jié)論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當(dāng)直經(jīng)過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標(biāo)函數(shù)的最值,屬于簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.3、A【解析】
因為函數(shù)式奇函數(shù),在上單調(diào)遞減,根據(jù)奇函數(shù)的性質(zhì)得到在上函數(shù)仍是減函數(shù),再根據(jù)可畫出函數(shù)在上的圖像,根據(jù)對稱性畫出在上的圖像.根據(jù)圖像得到的解集是:.故選A.4、A【解析】
根據(jù)向量平行(共線),它們的坐標(biāo)滿足的關(guān)系式,求出的值.【詳解】,且,,解得,故選A.【點睛】利用向量的位置關(guān)系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.5、D【解析】
先根據(jù)已知求出數(shù)列的通項,再求解.【詳解】當(dāng)時,,可得;當(dāng)且時,,得,故數(shù)列為等比數(shù)列,首項為4,公比為2.所以所以.故選D【點睛】本題主要考查項和公式求數(shù)列通項,考查等比數(shù)列的通項的求法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.6、A【解析】
當(dāng)為正奇數(shù)時,可推出,當(dāng)為正偶數(shù)時,可推出,將該數(shù)列的前項和表示為,結(jié)合前面的規(guī)律可計算出數(shù)列的前項和.【詳解】當(dāng)為正奇數(shù)時,由題意可得,,兩式相減得;當(dāng)為正偶數(shù)時,由題意可得,,兩式相加得.因此,數(shù)列的前項和為.故選:A.【點睛】本題考查數(shù)列求和,找出數(shù)列的規(guī)律是解題的關(guān)鍵,考查推理能力,屬于中等題.7、C【解析】
對四個選項逐個分析,可得出答案.【詳解】對于選項A,當(dāng),相交于直線時,內(nèi)有無數(shù)條直線與平行,即A錯誤;對于選項B,當(dāng),相交于直線時,存在直線滿足:既與平行又不在兩平面內(nèi),該直線平行于,,故B錯誤;對于選項C,設(shè)直線AB垂直于,平面,垂足分別為A,B,假設(shè)與不平行,設(shè)其中一個交點為C,則三角形ABC中,,顯然不可能成立,即假設(shè)不成立,故與平行,故C正確;對于選項D,,垂直于同一平面,與可能平行也可能相交,故D錯誤.【點睛】本題考查了面面平行的判斷,考查了學(xué)生的空間想象能力,屬于中檔題.8、D【解析】
由三視圖可知,得到該幾何體是由兩個圓錐組成的組合體,根據(jù)幾何體的表面積公式,即可求解.【詳解】由三視圖可知,該幾何體是由兩個圓錐組成的組合體,其中圓錐的底面半徑為3,高為4,所以幾何體的表面為.選D.【點睛】本題考查了幾何體的三視圖及表面積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線,求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解.9、D【解析】由三視圖可知幾何體是由一個四棱錐和半個圓柱組合而成的,所以所求的體積為,故選D.10、A【解析】
由等比數(shù)列的性質(zhì)可得S2,S4-S2,S6-S4成等比數(shù)列,代入數(shù)據(jù)計算可得.【詳解】因為,,成等比數(shù)列,即3,12,成等比數(shù)列,所以,解得.【點睛】本題考查等比數(shù)列的性質(zhì)與前項和的計算,考查運算求解能力.二、填空題:本大題共6小題,每小題5分,共30分。11、7【解析】
在中,利用余弦定理得到,即可求解,得到答案.【詳解】由余弦定理可得,解得.故答案為:7.【點睛】本題主要考查了余弦定理的應(yīng)用,其中解答中熟記三角形的余弦定理,準(zhǔn)確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.12、ω∈[【解析】
由sinωa+sinωb=2?sinωa=sinωb=1.而[ωa,ωb]?[ωπ,2ωπ]【詳解】由sinωa+而[ωa,ωb]?[ωπ,2ωπ],故已知條件等價于:存在整數(shù)ωπ當(dāng)ω≥4時,區(qū)間[ωπ,2ωπ]的長度不小于4π當(dāng)0<ω<4時,注意到,[ωπ故只要考慮如下幾種情形:(1)ωπ≤π2<(2)ωπ≤5(3)ωπ≤9綜上,并注意到ω≥4也滿足條件,知ω∈[9故答案為:ω∈[【點睛】本題主要考查三角函數(shù)的圖像和性質(zhì),意在考查學(xué)生對這些知識的掌握水平和分析推理能力.13、1.98.【解析】
本題考查通過統(tǒng)計數(shù)據(jù)進行概率的估計,采取估算法,利用概率思想解題.【詳解】由題意得,經(jīng)停該高鐵站的列車正點數(shù)約為,其中高鐵個數(shù)為11+21+11=41,所以該站所有高鐵平均正點率約為.【點睛】本題考點為概率統(tǒng)計,滲透了數(shù)據(jù)處理和數(shù)學(xué)運算素養(yǎng).側(cè)重統(tǒng)計數(shù)據(jù)的概率估算,難度不大.易忽視概率的估算值不是精確值而失誤,根據(jù)分類抽樣的統(tǒng)計數(shù)據(jù),估算出正點列車數(shù)量與列車總數(shù)的比值.14、.【解析】
從到時左邊需增乘的代數(shù)式是,化簡即可得出.【詳解】假設(shè)時命題成立,則,當(dāng)時,從到時左邊需增乘的代數(shù)式是.故答案為:.【點睛】本題考查數(shù)學(xué)歸納法的應(yīng)用,考查推理能力與計算能力,屬于中檔題.15、【解析】
在等式兩邊取倒數(shù),可得出,然后利用等差數(shù)列的通項公式求出的通項公式,即可求出.【詳解】,等式兩邊同時取倒數(shù)得,.所以,數(shù)列是以為首項,以為公差的等差數(shù)列,.因此,.故答案為:.【點睛】本題考查利用倒數(shù)法求數(shù)列通項,同時也考查了等差數(shù)列的定義,考查計算能力,屬于中等題.16、【解析】
根據(jù)成等差數(shù)列得到,計算得到答案.【詳解】成等差數(shù)列,則故答案為:【點睛】本題考查了等差數(shù)列,等比數(shù)列的綜合應(yīng)用,意在考查學(xué)生對于數(shù)列公式的靈活運用.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2);(3)2025年該城市人口總數(shù)為196萬人【解析】
(1)由表中數(shù)據(jù)描點即可;(2)由最小二乘法的公式得出的值,即可得出該線性方程;(3)將代入(2)中的線性方程,即可得出2025年該城市人口總數(shù).【詳解】(1)畫出散點圖如圖所示.(2),,,,,,則線性回歸方程.(3)時,(十萬)(萬).答:估計2025年該城市人口總數(shù)為196萬人【點睛】本題主要考查了繪制散點圖,求回歸直線方程以及根據(jù)回歸方程進行數(shù)據(jù)估計,屬于中檔題.18、(I);(II);;(III).【解析】
(I)根據(jù)方程ax2+(b-1)x=0有唯一解,以及列方程求解即可;(II)根據(jù)二次函數(shù)的性質(zhì),函數(shù)的單調(diào)性,即可求得求得最值,(III)分離參數(shù),構(gòu)造函數(shù),求出函數(shù)的最值即可.【詳解】∵,∴,∴.(I)方程有唯一實數(shù)根,即方程有唯一解,∴,解得∴(II)∵,∴,,若,若.(III)解法一、當(dāng)時,不等式恒成立,即:在區(qū)間上恒成立,設(shè),顯然函數(shù)在區(qū)間上是減函數(shù),,當(dāng)且僅當(dāng)時,不等式在區(qū)間上恒成立,因此.解法二:因為當(dāng)時,不等式恒成立,所以時,的最小值,當(dāng)時,在單調(diào)遞減,恒成立,而,所以時不符合題意.當(dāng)時,在單調(diào)遞增,的最小值為,所以,即即可,綜上所述,.19、(1);(2).【解析】
(1)根據(jù)題意求出,即可求解;(2)向量與的夾角的余弦值為:代入求值即可得解.【詳解】(1)由題:,解得:(2)向量與的夾角的余弦值為:【點睛】此題考查平面向量數(shù)量積的運算,根據(jù)運算法則求解數(shù)量積和模長,求解向量夾角的余弦值.20、(1);(2);平移變換過程見解析.【解析】
(1)根據(jù)平面向量的坐標(biāo)運算,表示出的解析式,結(jié)合輔助角公式化簡三角函數(shù)式.結(jié)合相鄰兩條對稱軸間的距離不小于及周期公式,即可求得的取值范圍;(2)根據(jù)最小正周期,求得的值.代入解析式,結(jié)合正弦函數(shù)的圖象、性質(zhì)與的最大值是,即可求得的解析式.再根據(jù)三角函數(shù)圖象平移變換,即可描述變換過程.【詳解】∵∴∴(1)由題意可知,∴又,∴(2)∵,∴∴∵,∴∴當(dāng)即時∴∴將圖象上所有點向右平移個單位,得到的圖象;再將得到的圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼谋?縱坐標(biāo)不變,得到的圖象(或?qū)D象上所有點的橫坐標(biāo)變?yōu)樵瓉淼谋?縱坐標(biāo)不變,得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國有機玻璃采光罩數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國旅游睡袋數(shù)據(jù)監(jiān)測研究報告
- 7 散文詩二首2024-2025學(xué)年新教材七年級上冊語文新教學(xué)設(shè)計(統(tǒng)編版2024)
- 第11課《短文二篇》教學(xué)設(shè)計 2024-2025學(xué)年統(tǒng)編版語文八年級上冊
- 2025至2030年中國手動咬口機數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國得趣圖茶具數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國幼兒塑料床數(shù)據(jù)監(jiān)測研究報告
- 2025年度民辦學(xué)校教職工崗位聘任與管理協(xié)議
- 二零二五年度商標(biāo)共許可與品牌推廣及市場運營合同
- 2025年度離職員工離職后保密協(xié)議與商業(yè)秘密保護合同模板
- IP承載網(wǎng)架構(gòu)規(guī)劃及路由部署N
- (完整word版)現(xiàn)代漢語常用詞表
- 藏藥專業(yè)知識講座培訓(xùn)課件
- 湖南省長沙麓山國際實驗學(xué)校2023-2024學(xué)年高一上學(xué)期第三次適應(yīng)性測試物理試卷(原卷版)
- 工程分包退場協(xié)議書
- 2023年11月安徽省淮北市烈山經(jīng)濟開發(fā)區(qū)公開競聘11名工作人員筆試歷年高頻考點-難、易錯點薈萃附答案帶詳解
- 2024年蘇州職業(yè)大學(xué)高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 四年級數(shù)學(xué)下冊計算題400道
- 2024年度醫(yī)院重癥監(jiān)護科述職報告課件
- 聚焦核心素養(yǎng)踐行五育融合專題講座
- 流感病毒細胞分離培養(yǎng)
評論
0/150
提交評論