




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于平面對(duì)稱的點(diǎn)的坐標(biāo)為()A. B. C. D.2.用長(zhǎng)為4,寬為2的矩形做側(cè)面圍成一個(gè)圓柱,此圓柱軸截面面積為()A.8 B. C. D.3.等差數(shù)列中,,則的值為()A.14 B.17 C.19 D.214.若,,,設(shè),,且,則的值為()A.0 B.3 C.15 D.185.下列關(guān)于四棱柱的說法:①四條側(cè)棱互相平行且相等;②兩對(duì)相對(duì)的側(cè)面互相平行;③側(cè)棱必與底面垂直;④側(cè)面垂直于底面.其中正確結(jié)論的個(gè)數(shù)為()A.1 B.2 C.3 D.46.已知點(diǎn),點(diǎn)滿足線性約束條件O為坐標(biāo)原點(diǎn),那么的最小值是A. B. C. D.7.已知向量若與平行,則實(shí)數(shù)的值是()A.-2 B.0 C.1 D.28.某小吃店的日盈利(單位:百元)與當(dāng)天平均氣溫(單位:℃)之間有如下數(shù)據(jù):/℃/百元對(duì)上述數(shù)據(jù)進(jìn)行分析發(fā)現(xiàn),與之間具有線性相關(guān)關(guān)系,則線性回歸方程為()參考公式:A. B.C. D.9.在復(fù)平面內(nèi),復(fù)數(shù)滿足,則的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知直線經(jīng)過兩點(diǎn),則的斜率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)滿足約束條件若目標(biāo)函數(shù)的最大值為,則的最小值為_________.12.設(shè)集合,它共有個(gè)二元子集,如、、等等.記這個(gè)二元子集為、、、、,設(shè),定義,則_____.(結(jié)果用數(shù)字作答)13.設(shè)等比數(shù)列滿足a1+a3=10,a2+a4=5,則a1a2…an的最大值為.14.下圖中的幾何體是由兩個(gè)有共同底面的圓錐組成.已知兩個(gè)圓錐的頂點(diǎn)分別為P、Q,高分別為2、1,底面半徑為1.A為底面圓周上的定點(diǎn),B為底面圓周上的動(dòng)點(diǎn)(不與A重合).下列四個(gè)結(jié)論:①三棱錐體積的最大值為;②直線PB與平面PAQ所成角的最大值為;③當(dāng)直線BQ與AP所成角最小時(shí),其正弦值為;④直線BQ與AP所成角的最大值為;其中正確的結(jié)論有___________.(寫出所有正確結(jié)論的編號(hào))15.在平面直角坐標(biāo)系中,點(diǎn)到直線的距離為______.16.已知單位向量與的夾角為,且,向量與的夾角為,則=.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,某人在離地面高度為的地方,測(cè)得電視塔底的俯角為,塔頂?shù)难鼋菫?,求電視塔的?(精確到)18.已知函數(shù)f(x)=.(1)若不等式k≤xf(x)+在x∈[1,3]上恒成立,求實(shí)數(shù)k的取值范圍;(2)當(dāng)x∈(m>0,n>0)時(shí),函數(shù)g(x)=tf(x)+1(t≥0)的值域?yàn)閇2-3m,2-3n],求實(shí)數(shù)t的取值范圍.19.在平面直角坐標(biāo)系中,已知點(diǎn),,坐標(biāo)分別為,,,為線段上一點(diǎn),直線與軸負(fù)半軸交于點(diǎn),直線與交于點(diǎn).(1)當(dāng)點(diǎn)坐標(biāo)為時(shí),求直線的方程;(2)求與面積之和的最小值.20.已知數(shù)列前項(xiàng)和為,,且滿足().(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)若,設(shè)數(shù)列前項(xiàng)和為,求證:.21.已知數(shù)列的前項(xiàng)和為,且,求數(shù)列的通項(xiàng)公式.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
縱豎坐標(biāo)不變,橫坐標(biāo)變?yōu)橄喾磾?shù).【詳解】點(diǎn)關(guān)于平面對(duì)稱的點(diǎn)的坐標(biāo)為.故選C.【點(diǎn)睛】本題考查空間直角坐標(biāo)系,屬于基礎(chǔ)題.2、B【解析】
分別討論當(dāng)圓柱的高為4時(shí),當(dāng)圓柱的高為2時(shí),求出圓柱軸截面面積即可得解.【詳解】解:當(dāng)圓柱的高為4時(shí),設(shè)圓柱的底面半徑為,則,則,則圓柱軸截面面積為,當(dāng)圓柱的高為2時(shí),設(shè)圓柱的底面半徑為,則,則,則圓柱軸截面面積為,綜上所述,圓柱的軸截面面積為,故選:B.【點(diǎn)睛】本題考查了圓柱軸截面面積的求法,屬基礎(chǔ)題.3、B【解析】
利用等差數(shù)列的性質(zhì),.【詳解】,解得:.故選B.【點(diǎn)睛】本題考查了等比數(shù)列的性質(zhì),屬于基礎(chǔ)題型.4、B【解析】
首先分別求出向量,然后再用兩向量平行的坐標(biāo)表示,最后求值.【詳解】,,當(dāng)時(shí),,解得.故選B.【點(diǎn)睛】本題考查了向量平行的坐標(biāo)表示,屬于基礎(chǔ)題型.5、A【解析】
根據(jù)棱柱的概念和四棱錐的基本特征,逐項(xiàng)進(jìn)行判定,即可求解,得到答案.【詳解】由題意,根據(jù)棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱,側(cè)棱垂直于底面的四棱柱叫做直四棱柱,由四棱柱的各個(gè)側(cè)面都是平行四邊形,所有的側(cè)棱都平行且相等,①正確;②兩對(duì)相對(duì)的側(cè)面互相平行,不正確,如下圖:左右側(cè)面不平行.本題題目說的是“四棱柱”不一定是“直四棱柱”,所以,③④不正確,故選A.【點(diǎn)睛】本題主要考查了四棱柱的概念及其應(yīng)用,其中解答中熟記棱柱的概念以及四棱錐的基本特征是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.6、D【解析】
點(diǎn)滿足線性約束條件∵令目標(biāo)函數(shù)畫出可行域如圖所示,聯(lián)立方程解得在點(diǎn)處取得最小值:故選D【點(diǎn)睛】此題主要考查簡(jiǎn)單的線性規(guī)劃問題以及向量的內(nèi)積的問題,解決此題的關(guān)鍵是能夠找出目標(biāo)函數(shù).7、D【解析】
因?yàn)椋杂捎谂c平行,得,解得.8、B【解析】
計(jì)算出,,把數(shù)據(jù)代入公式計(jì)算,即可得到答案.【詳解】由題可得:,,,,;所以,,則線性回歸方程為;故答案選B【點(diǎn)睛】本題考查線性回歸方程的求解,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.9、A【解析】
把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由共軛復(fù)數(shù)的概念得答案.【詳解】由z(1﹣i)=2,得z=,∴.則z的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(1,﹣1),位于第四象限.故選D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.10、A【解析】
直接代入兩點(diǎn)的斜率公式,計(jì)算即可得出答案?!驹斀狻抗蔬xA【點(diǎn)睛】本題考查兩點(diǎn)的斜率公式,屬于基礎(chǔ)題。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
試題分析:試題分析:由得,平移直線由圖象可知,當(dāng)過時(shí)目標(biāo)函數(shù)的最大值為,即,則,當(dāng)且僅當(dāng),即時(shí),取等號(hào),故的最小值為.考點(diǎn):1、利用可行域求線性目標(biāo)函數(shù)的最值;2、利用基本不等式求最值.【方法點(diǎn)晴】本題主要考查可行域、含參數(shù)目標(biāo)函數(shù)最優(yōu)解和均值不等式求最值,屬于難題.含參變量的線性規(guī)劃問題是近年來高考命題的熱點(diǎn),由于參數(shù)的引入,提高了思維的技巧、增加了解題的難度,此類問題的存在增加了探索問題的動(dòng)態(tài)性和開放性,此類問題一般從目標(biāo)函數(shù)的結(jié)論入手,對(duì)目標(biāo)函數(shù)變化過程進(jìn)行詳細(xì)分析,對(duì)變化過程中的相關(guān)量的準(zhǔn)確定位,是求最優(yōu)解的關(guān)鍵.12、1835028【解析】
分別分析中二元子集中較大元素分別為、、、時(shí),對(duì)應(yīng)的二元子集中較小的元素,再利用題中的定義結(jié)合數(shù)列求和思想求出結(jié)果.【詳解】當(dāng)二元子集較大的數(shù)為,則較小的數(shù)為;當(dāng)二元子集較大的數(shù)為,則較小的數(shù)為、;當(dāng)二元子集較大的數(shù)為,則較小的數(shù)為、、;當(dāng)二元子集較大的數(shù)為,則較小的數(shù)為、、、、.由題意可得,令,得,上式下式得,化簡(jiǎn)得,因此,,故答案為:.【點(diǎn)睛】本題考查新定義,同時(shí)也考查了數(shù)列求和,解題的關(guān)鍵就是找出相應(yīng)的規(guī)律,列出代數(shù)式進(jìn)行計(jì)算,考查運(yùn)算求解能力,屬于難題.13、【解析】試題分析:設(shè)等比數(shù)列的公比為,由得,,解得.所以,于是當(dāng)或時(shí),取得最大值.考點(diǎn):等比數(shù)列及其應(yīng)用14、①③【解析】
由①可知只需求點(diǎn)A到面的最大值對(duì)于②,求直線PB與平面PAQ所成角的最大值,可轉(zhuǎn)化為到軸截面距離的最大值問題進(jìn)行求解對(duì)于③④,可采用建系法進(jìn)行分析【詳解】選項(xiàng)①如圖所示,當(dāng)時(shí),四棱錐體積最大,選項(xiàng)②中,線PB與平面PAQ所成角最大值的正弦值為,所以選項(xiàng)③和④,如圖所示:以垂直于方向?yàn)閤軸,方向?yàn)閥軸,方向?yàn)閦軸,其中設(shè),.,設(shè)直線BQ與AP所成角為,,當(dāng)時(shí),取到最大值,,此時(shí),由于,,,所以取不到答案選①、③【點(diǎn)睛】幾何體的旋轉(zhuǎn)問題需要結(jié)合動(dòng)態(tài)圖形和立體幾何基本知識(shí)進(jìn)行求解,需找臨界點(diǎn)是正確解題的關(guān)鍵,遇到難以把握的最值問題,可采用建系法進(jìn)行求解.15、2【解析】
利用點(diǎn)到直線的距離公式即可得到答案。【詳解】由點(diǎn)到直線的距離公式可知點(diǎn)到直線的距離故答案為2【點(diǎn)睛】本題主要考查點(diǎn)到直線的距離,熟練掌握公式是解題的關(guān)鍵,屬于基礎(chǔ)題。16、【解析】試題分析:因?yàn)樗钥键c(diǎn):向量數(shù)量積及夾角三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】
過作的垂線,垂足為,再利用直角三角形與正弦定理求解【詳解】解:設(shè)人的位置為,塔底為,塔頂為,過作的垂線,垂足為,則,,,,所以,答:電視塔的高為約.【點(diǎn)睛】本題考查利用正弦定理測(cè)量高度,考查基本分析求解能力,屬基礎(chǔ)題18、(1)k≤1;(2)(0,1).【解析】試題分析:(1)把f(x)=代入,化簡(jiǎn)得k≤x在[1,3]上恒成立,所以k≤1.(2)g(x)=tf(x)+1=-+t+1,又x∈(m>0,n>0),所以g(x)在單調(diào)遞增,所以即,即m,n是關(guān)于x的方程tx2-3x+1-t=0的兩個(gè)不等的正根.由根的分布,可得,解得0<t<1.試題解析:(1)∵xf(x)+=+=x,∴不等式k≤xf(x)+在x∈[1,3]上恒成立,即為k≤x在[1,3]上恒成立.∴k≤1.(2)∵g(x)=tf(x)+1=-+t+1,若t=0,則g(x)=1,不合題意,∴t>0.又當(dāng)t>0時(shí),g(x)=-+t+1在上顯然是單調(diào)增函數(shù),∴即∴m,n是關(guān)于x的方程tx2-3x+1-t=0的兩個(gè)不等的正根.令h(x)=tx2-3x+1-t,則解得0<t<1.∴實(shí)數(shù)t的取值范圍是(0,1).19、(1);(2).【解析】
(1)求出的直線方程后可得的坐標(biāo),再求出的直線方程和的直線方程后可得的坐標(biāo),從而得到直線的直線方程.(2)直線的方程為,設(shè),求出的直線方程后可得的坐標(biāo),從而可用表示,換元后利用基本不等式可求的最小值.【詳解】(1)當(dāng)時(shí),直線的方程為,所以,直線的方程為①,又直線的方程為②,①②聯(lián)立方程組得,所以直線的方程為.(2)直線的方程為,設(shè),直線的方程為,所以.因?yàn)樵谳S負(fù)半軸上,所以,=,.令,則,(當(dāng)且僅當(dāng)),而當(dāng)時(shí),,故的最小值為.【點(diǎn)睛】直線方程有五種形式,常用的形式有點(diǎn)斜式、斜截式、截距式、一般式,垂直于的軸的直線沒有點(diǎn)斜式、斜截式和截距式,垂直于軸的直線沒有截距式,注意根據(jù)題設(shè)所給的條件選擇合適的方程的形式.直線方程中的最值問題,注意可選擇合適的變量(如斜率、傾斜角、動(dòng)點(diǎn)的橫坐標(biāo)或縱坐標(biāo)等)構(gòu)建目標(biāo)函數(shù),再利用基本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- T-ZNZ 264.1-2024 重金屬中度污染農(nóng)田土壤修復(fù)和安全利用技術(shù)規(guī)范 第1部分:超積累東南景天與油葵輪作
- 二零二五年度車輛轉(zhuǎn)讓與二手車交易及金融服務(wù)協(xié)議
- 2025年度蛋糕店與體育賽事合作贊助協(xié)議
- 2025年度道路橋梁維修施工安全協(xié)議書
- 2025年度網(wǎng)絡(luò)安全產(chǎn)品銷售提成與技術(shù)服務(wù)合同
- 二零二五年度企業(yè)員工宿舍三方租賃協(xié)議
- 二零二五年度臨時(shí)廚房工作人員聘用合同
- 二零二五年度個(gè)體商戶勞動(dòng)合同(體育賽事組織與運(yùn)營)
- 中學(xué)生環(huán)保行動(dòng)策劃案解讀
- 監(jiān)控項(xiàng)目合作合同監(jiān)控施工合同
- 藥品GMP指南(第2版)
- 普通診所污水、污物、糞便處理方案及周邊環(huán)境情況說明
- 成功人士的七個(gè)習(xí)慣課件
- 粵教版必修二《向心力》評(píng)課稿
- 中國建筑史PPT(東南大學(xué))完整全套教學(xué)課件
- 2022年水利監(jiān)理規(guī)劃
- 哈弗汽車品牌全案策略及營銷推廣方案
- 04J008 擋土墻(重力式 衡重式 懸臂式)
- (學(xué)校教育論文)人工智能下的教育變革研究
- 2023年湖南工程職業(yè)技術(shù)學(xué)院?jiǎn)握泄P試職業(yè)技能考試題庫及答案解析
- 春天的氣息-教學(xué)設(shè)計(jì)教案
評(píng)論
0/150
提交評(píng)論