線性代數(shù)代課件1第一章第三節(jié)_第1頁(yè)
線性代數(shù)代課件1第一章第三節(jié)_第2頁(yè)
線性代數(shù)代課件1第一章第三節(jié)_第3頁(yè)
線性代數(shù)代課件1第一章第三節(jié)_第4頁(yè)
線性代數(shù)代課件1第一章第三節(jié)_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

三、行列式的性質(zhì)為行列式的計(jì)算提供理論上的保證一、行列式的性質(zhì)性質(zhì)1

設(shè)A為n階矩陣,則說(shuō)明行列式中行與列具有同等的地位,因此行列式的性質(zhì)凡是對(duì)行成立的對(duì)列也同樣成立.性質(zhì)2

若交換n階矩陣A的某兩行(或兩列)得到矩陣B,則有例如推論

如果n階矩陣有兩行(列)完全相同,則

detA=0性質(zhì)3

行列式的某一行(列)中所有的元素都乘以同一數(shù),等于用數(shù)乘此行列式.推論

行列式的某一行(列)中所有元素的公因子可以提到行列式符號(hào)的外面.推論

行列式中如果有兩行(列)元素成比例,則此行列式為零.證明特別如果k=0,即矩陣有了個(gè)零行,這該矩陣的行列式為零.性質(zhì)4

若行列式的某一列(行)的元素都是兩數(shù)之和.則D等于下列兩個(gè)行列式之和:例如性質(zhì)5

把行列式的某一列(行)的各元素乘以同一數(shù)然后加到另一列(行)對(duì)應(yīng)的元素上去,行列式不變.例如例1二、應(yīng)用舉例計(jì)算行列式常用方法:利用運(yùn)算把行列式化為上三角形行列式,從而算得行列式的值.解例1計(jì)算行列式常用方法:按行或列展開(kāi)方法例2

計(jì)算階行列式解將第都加到第一列得(行列式中行與列具有同等的地位,行列式的性質(zhì)凡是對(duì)行成立的對(duì)列也同樣成立).

計(jì)算行列式常用方法:(1)利用定義;(2)利用性質(zhì)把行列式化為上三角形行列式,從而算得行列式的值;(3)利用行列

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論