2023年湖南省瀏陽市六校聯(lián)考數(shù)學高一下期末質量檢測試題含解析_第1頁
2023年湖南省瀏陽市六校聯(lián)考數(shù)學高一下期末質量檢測試題含解析_第2頁
2023年湖南省瀏陽市六校聯(lián)考數(shù)學高一下期末質量檢測試題含解析_第3頁
2023年湖南省瀏陽市六校聯(lián)考數(shù)學高一下期末質量檢測試題含解析_第4頁
2023年湖南省瀏陽市六校聯(lián)考數(shù)學高一下期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知非零向量滿足,且,則與的夾角為A. B. C. D.2.某林區(qū)改變植樹計劃,第一年植樹增長率200%,以后每年的植樹增長率都是前一年植樹增長率的12,若成活率為100%,經(jīng)過4A.14 B.454 C.63.已知扇形的半徑為,圓心角為,則該扇形的面積為()A. B. C. D.4.如圖,,下列等式中成立的是()A. B.C. D.5.由小到大排列的一組數(shù)據(jù),,,,,其中每個數(shù)據(jù)都小于,那么對于樣本,,,,,的中位數(shù)可以表示為()A. B. C. D.6.為三角形ABC的一個內角,若,則這個三角形的形狀為()A.銳角三角形 B.鈍角三角形C.等腰直角三角形 D.等腰三角形7.設為實數(shù),且,則下列不等式成立的是()A. B. C. D.8.在中,角A,B,C所對的邊分別為a,b,c,若,則()A. B. C. D.9.已知中,,,,則BC邊上的中線AM的長度為()A. B. C. D.10.已知角的終邊經(jīng)過點,則A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若向量與平行.則__.12.已知,,則______.13.不等式的解集為______.14.設等差數(shù)列,的前項和分別為,,若,則__________.15.設滿足約束條件,則目標函數(shù)的最大值為______.16.正六棱柱底面邊長為10,高為15,則這個正六棱柱的體積是_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.的內角所對的邊分別為,向量,若.(1)求角的大小;(2)若,求的值.18.如圖,在四棱錐中,,側面底面.(1)求證:平面平面;(2)若,且二面角等于,求直線與平面所成角的正弦值.19.已知數(shù)列的前n項和為,且,.(1)求數(shù)列的通項公式;(2)若等差數(shù)列滿足,且,,成等比數(shù)列,求c.20.(1)任意向軸上這一區(qū)間內投擲一個點,則該點落在區(qū)間內的概率是多少?(2)已知向量,,若,分別表示一枚質地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時第一次、第二次出現(xiàn)的點數(shù),求滿足的概率.21.在△ABC中,角A,B,C對應的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面積S=5,b=5,求sinBsinC的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

本題主要考查利用平面向量數(shù)量積計算向量長度、夾角與垂直問題,滲透了轉化與化歸、數(shù)學計算等數(shù)學素養(yǎng).先由得出向量的數(shù)量積與其模的關系,再利用向量夾角公式即可計算出向量夾角.【詳解】因為,所以=0,所以,所以=,所以與的夾角為,故選B.【點睛】對向量夾角的計算,先計算出向量的數(shù)量積及各個向量的摸,在利用向量夾角公式求出夾角的余弦值,再求出夾角,注意向量夾角范圍為.2、B【解析】

由題意知增長率形成以首項為2,公比為12的等比數(shù)列,從而第n年的增長率為12n-2,則第n【詳解】由題意知增長率形成以首項為2,公比為12的等比數(shù)列,從而第n年的增長率為1則第n年的林區(qū)的樹木數(shù)量為an∴a1=3a0,a因此,經(jīng)過4年后,林區(qū)的樹木量是原來的樹木量的454【點睛】本題考查數(shù)列的性質和應用,解題的關鍵在于建立數(shù)列的遞推關系式,然后逐項進行計算,考查分析問題和解決問題的能力,屬于中等題.3、A【解析】

化圓心角為弧度值,再由扇形面積公式求解即可.【詳解】扇形的半徑為,圓心角為,即,該扇形的面積為,故選.【點睛】本題主要考查扇形的面積公式的應用.4、B【解析】

本題首先可結合向量減法的三角形法則對已知條件中的進行化簡,化簡為然后化簡并代入即可得出答案.【詳解】因為,所以,所以,即,故選B.【點睛】本題考查的知識點是平面向量的基本定理,考查向量減法的三角形法則,考查數(shù)形結合思想與化歸思想,是簡單題.5、C【解析】

根據(jù)不等式的基本性質,對樣本數(shù)據(jù)按從小到大排列為,取中間的平均數(shù).【詳解】,,則該組樣本的中位數(shù)為中間兩數(shù)的平均數(shù),即.【點睛】考查基本不等式性質運用和中位數(shù)的定義.6、B【解析】試題分析:由,兩邊平方得,即,又,則,所以為第三、四象限角或軸負半軸上的角,所以為鈍角.故正確答案為B.考點:1.三角函數(shù)的符號、平方關系;2.三角形內角.7、C【解析】

本題首先可根據(jù)判斷出項錯誤,然后令可判斷出項和項錯誤,即可得出結果。【詳解】因為,所以,故錯;當時,,故錯;當時,,故錯,故選C?!军c睛】本題考查不等式的基本性質,主要考查通過不等式性質與比較法來比較實數(shù)的大小,可借助取特殊值的方法來進行判斷,是簡單題。8、B【解析】

利用正弦定理邊化角,結合和差公式以及誘導公式,即可得到本題答案.【詳解】因為,所以,,,,,.故選:B.【點睛】本題主要考查利用正弦定理邊角轉化求角,考查計算能力,屬于基礎題.9、A【解析】

利用平行四邊形對角線的平方和等于四條邊的平方和,求的長.【詳解】延長至,使,連接、,如圖所示;由題意知四邊形是平行四邊形,且滿足,即,解得,所以邊上的中線的長度為.故選:A.【點睛】本題考查平行四邊形對角線的平方和等于四條邊的平方和應用問題,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力.10、A【解析】

根據(jù)三角函數(shù)的定義,求出,即可得到的值.【詳解】因為,,所以.故選:A.【點睛】本題主要考查已知角終邊上一點,利用三角函數(shù)定義求三角函數(shù)值,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由題意利用兩個向量共線的性質,兩個向量坐標形式的運算法則,求得的值.【詳解】由題意,向量與平行,所以,解得.故答案為.【點睛】本題主要考查了兩個向量共線的性質,兩個向量坐標形式的運算,著重考查了推理與計算能力,屬于基礎題.12、【解析】

利用同角三角函數(shù)的基本關系求得的值,利用二倍角的正切公式,求得,再利用兩角和的正切公式,求得的值,再結合的范圍,求得的值.【詳解】,,,,,,故答案:.【點睛】本題主要考查同角三角函數(shù)的基本關系,兩角和的正切公式,二倍角的正切公式,根據(jù)三角函數(shù)的值求角,屬于基礎題.13、【解析】

根據(jù)一元二次不等式的解法直接求解可得結果.【詳解】由得:即不等式的解集為故答案為:【點睛】本題考查一元二次不等式的求解問題,屬于基礎題.14、【解析】分析:首先根據(jù)等差數(shù)列的性質得到,利用分數(shù)的性質,將項的比值轉化為和的比值,從而求得結果.詳解:根據(jù)題意有,所以答案是.點睛:該題考查的是有關等差數(shù)列的性質的問題,將兩個等差數(shù)列的項的比值可以轉化為其和的比值,結論為,從而求得結果.15、7【解析】

首先畫出可行域,然后判斷目標函數(shù)的最優(yōu)解,從而求出目標函數(shù)的最大值.【詳解】如圖,畫出可行域,作出初始目標函數(shù),平移目標函數(shù),當目標函數(shù)過點時,目標函數(shù)取得最大值,,解得,.故填:7.【點睛】本題考查了線性規(guī)劃問題,屬于基礎題型.16、【解析】

正六棱柱是底面為正六邊形的直棱柱,利用計算可得結果.【詳解】因為正六棱柱底面邊長為10,所以其面積,所以體積.【點睛】本題考查正六棱柱的概念及其體積的計算,考查基本運算能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)2【解析】

(1)根據(jù)向量的數(shù)量積定義,結合余弦的倍角公式,即可求得;(2)由余弦定理,及(1)中所求角度,即可直接求得.【詳解】(1)由已知易得:所以,又故.(2)由及余弦定理可得:所以,所以得:(舍)所以.【點睛】本題考查余弦定理,余弦的倍角公式,涉及向量的數(shù)量積,屬基礎題.18、(1)證明見解析;(2).【解析】

(1)由得,,由側面底面得側面,由面面垂直的判定即可證明;(2)由側面,可得,得是二面角的平面角,,推得為等腰直角三角形,取的中點,連接可得,由平面平面,得平面,證明平面,得點到平面的距離等于點到平面的距離,,再利用求解即可【詳解】(1)證明:由可得,因為側面底面,交線為底面且則側面,平面所以,平面平面;(2)由側面可得,,則是二面角的平面角,由可得,為等腰直角三角形取的中點,連接可得因為平面平面,交線為平面且所以平面,點到平面的距離為.因為平面則平面所以點到平面的距離等于點到平面的距離,.設,則在中,;在中,設直線與平面所成角為即所以,直線與平面所成角的正弦值為.【點睛】本題考查面面垂直的判定,二面角及線面角的求解,考查空間想象能與運算求解能力,關鍵是線面平行的性質得到點D到面的距離,是中檔題19、(1);(2).【解析】

(1)根據(jù)題意,數(shù)列為1為首項,4為公差的等差數(shù)列,根據(jù)等差數(shù)列通項公式計算即可;(2)由(1)可求數(shù)列的前n項和為,根據(jù),,成等差數(shù)列及,,成等比數(shù)列,利用等差、等比數(shù)列性質可求出c.【詳解】(1),,,故數(shù)列是以1為首項,4為公差的等差數(shù)列..(2)由(1)知,,,,,,法1:,,成等比數(shù)列,,即,整理得:,或.①當時,,所以(定值),滿足為等差數(shù)列,②當時,,,,,不滿足,故此時數(shù)列不為等差數(shù)列(舍去).法2:因為為等差數(shù)列,所以,即,解得或.①當時,滿足,,成等比數(shù)列,②當時,,,,不滿足,,成等比數(shù)列(舍去),綜上可得.【點睛】本題考查等差數(shù)列的通項及求和,等差數(shù)列、等比數(shù)列性質的應用,解決此類問題通常借助方程思想列方程(組)求解,屬于中等題.20、(1)(2)【解析】

(1)幾何概型的計算公式求解即可;(2)求出該骰子先后拋擲兩次的基本事件總數(shù),根據(jù)數(shù)量積公式得出滿足包含的基本事件個數(shù),由古典概型概率公式求解即可.【詳解】解:(1)由題意可知,任意向這一區(qū)間內擲一點,該點落在內哪個位置是等可能的.令,則由幾何概型的計算公式可知:.(2)將一枚質地均勻的骰子先后拋擲兩次,共有個基本事件.由,得滿足包含的基本事件為,,,,,共6種情形,故.【點睛】本題主要考查了利用幾何概型概率公式以及古典概型概率公式計算概率,屬于中檔題.21、(1)(2)【解析】試題分析:(1)根據(jù)二倍角公式,三角形內角和,所以,整理為關于的二次方程,解得角的大??;(2)根據(jù)三角形的面積公式和上一問角,代入后解得邊,這樣就知道,然后根據(jù)余弦定理再求,最后根據(jù)證得定理分別求得和.試題解析:(1)由cos2A-3cos(B+C)=1,得2cos2A+3cosA-2=0,即(2cosA-1)(cosA+2)=0,解得cosA=或cosA=-2(舍去).因為0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論