




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)的最小正周期為,若,則的最小值為()A. B. C. D.2.在平行四邊形ABCD中,若,則必有()A. B.或C.ABCD是矩形 D.ABCD是正方形3.下列各命題中,假命題的是()A.“度”與“弧度”是度量角的兩種不同的度量單位B.一度的角是周角的,一弧度的角是周角的C.根據(jù)弧度的定義,一定等于弧度D.不論是用角度制還是用弧度制度量角,它們都與圓的半徑長短有關(guān)4.已知數(shù)列,如果,,,……,,……,是首項為1,公比為的等比數(shù)列,則=A. B. C. D.5.設的內(nèi)角,,所對的邊分別為,,,且,,面積的最大值為()A.6 B.8 C.7 D.96.如果a<b<0,則下列不等式成立的是()A. B.a(chǎn)2<b2 C.a(chǎn)3<b3 D.a(chǎn)c2<bc27.已知是不同的直線,是不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則8.若數(shù)列,若,則在下列數(shù)列中,可取遍數(shù)列前項值的數(shù)列為()A. B. C. D.9.在中,,,,則B等于()A.或 B. C. D.以上答案都不對10.矩形ABCD中,,,則實數(shù)()A.-16 B.-6 C.4 D.二、填空題:本大題共6小題,每小題5分,共30分。11.的內(nèi)角的對邊分別為,若,,,則的面積為__________.12.已知向量,且,則的值為______13.若直線與曲線相交于A,B兩點,O為坐標原點,當?shù)拿娣e取最大值時,實數(shù)m的取值____.14.已知球的表面積為4,則該球的體積為________.15.設在的內(nèi)部,且,的面積與的面積之比為______.16.某中學從甲乙丙3人中選1人參加全市中學男子1500米比賽,現(xiàn)將他們最近集訓中的10次成績(單位:秒)的平均數(shù)與方差制成如下的表格:甲乙丙平均數(shù)250240240方差151520根據(jù)表中數(shù)據(jù),該中學應選__________參加比賽.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知直線,.(1)證明:直線過定點;(2)已知直線//,為坐標原點,為直線上的兩個動點,,若的面積為,求.18.已知點,,點為曲線上任意一點且滿足(1)求曲線的方程;(2)設曲線與軸交于兩點,點是曲線上異于的任意一點,直線分別交直線:于點,試問軸上是否存在一個定點,使得?若存在,求出點的坐標;若不存在,請說明理由.19.在ΔABC中,角A,B,C,的對邊分別是a,b,c,a-bsinA+sin(1)若b=6,求sinA(2)若D、E在線段BC上,且BD=DE=EC,AE=2320.某制造商月生產(chǎn)了一批乒乓球,隨機抽樣個進行檢查,測得每個球的直徑(單位:mm),將數(shù)據(jù)分組如下表分組頻數(shù)頻率10205020合計100(1)請在上表中補充完成頻率分布表(結(jié)果保留兩位小數(shù)),并在上圖中畫出頻率分布直方圖;(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間的中點值是作為代表.據(jù)此估計這批乒乓球直徑的平均值(結(jié)果保留兩位小數(shù)).21.已知點,圓.(1)求過點且與圓相切的直線方程;(2)若直線與圓相交于,兩點,且弦的長為,求實數(shù)的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
由正弦型函數(shù)的最小正周期可求得,得到函數(shù)解析式,從而確定函數(shù)的最大值和最小值;根據(jù)可知和必須為最大值點和最小值點才能夠滿足等式;利用整體對應的方式可構(gòu)造方程組求得,;從而可知時取最小值.【詳解】由最小正周期為可得:,和分別為的最大值點和最小值點設為最大值點,為最小值點,當時,本題正確選項:【點睛】本題考查正弦型函數(shù)性質(zhì)的綜合應用,涉及到正弦型函數(shù)最小正周期和函數(shù)值域的求解;關(guān)鍵是能夠根據(jù)函數(shù)的最值確定和為最值點,從而利用整體對應的方式求得結(jié)果.2、C【解析】
由,化簡可得,得到,又由四邊形為平行四邊形,即可得到答案.【詳解】由,則,即,化簡可得,所以,即,又由四邊形為平行四邊形,所以該四邊形為矩形,故選C.【點睛】本題主要考查了向量的基本運算,以及向量的垂直關(guān)系的應用,其中解答中熟記向量的基本運算,以及向量的垂直的判定是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎題.3、D【解析】
根據(jù)弧度制的概念,逐項判斷,即可得出結(jié)果.【詳解】A選項,“度”與“弧度”是度量角的兩種不同的度量單位,正確;B選項,一度的角是周角的,一弧度的角是周角的,正確;C選項,根據(jù)弧度的定義,一定等于弧度,正確;D選項,用角度制度量角,與圓的半徑長短無關(guān),故D錯.故選:D.【點睛】本題主要考查弧度制的相關(guān)判定,熟記概念即可,屬于基礎題型.4、A【解析】分析:累加法求解。詳解:,,解得點睛:形如的模型,求通項公式,用累加法。5、D【解析】
由已知利用基本不等式求得的最大值,根據(jù)三角形的面積公式,即可求解,得到答案.【詳解】由題意,利用基本不等式可得,即,解得,當且僅當時等號成立,又因為,所以,當且僅當時等號成立,故三角形的面積的最大值為,故選D.【點睛】本題主要考查了基本不等式的應用,以及三角形的面積公式的應用,著重考查了轉(zhuǎn)化思想,以及推理與運算能力,屬于基礎題.6、C【解析】
根據(jù)a、b的范圍,取特殊值帶入判斷即可.【詳解】∵a<b<0,不妨令a=﹣2,b=﹣1,則,a2>b2所以A、B不成立,當c=0時,ac2=bc2所以D不成立,故選:C.【點睛】本題考查了不等式的性質(zhì),考查特殊值法進行排除的應用,屬于基礎題.7、D【解析】
由線面平行的判定定理即可判斷A;由線面垂直的判定定理可判斷B;由面面垂直的性質(zhì)可判斷C;由空間中垂直于同一條直線的兩平面平行可判斷D.【詳解】對于A選項,加上條件“”結(jié)論才成立;對于B選項,加上條件“直線和相交”結(jié)論才成立;對于C選項,加上條件“”結(jié)論才成立.故選:D【點睛】本題考查空間直線與平面的位置關(guān)系,涉及線面平行的判定、線面垂直的判定、面面垂直的性質(zhì),屬于基礎題.8、D【解析】
推導出是以6為周期的周期數(shù)列,從而是可取遍數(shù)列前6項值的數(shù)列.【詳解】數(shù)列,,,,,,,,,是以6為周期的周期數(shù)列,是可取遍數(shù)列前6項值的數(shù)列.故選:D.【點睛】本題考查數(shù)列的周期性與三角函數(shù)知識的交會,考查基本運算求解能力,求解時注意函數(shù)與方程思想的應用.9、C【解析】試題分析:由正弦定理得,得,結(jié)合得,故選C.考點:正弦定理.10、B【解析】
根據(jù)題意即可得出,從而得出,進行數(shù)量積的坐標運算即可求出實數(shù).【詳解】據(jù)題意知,,,.故選:.【點睛】考查向量垂直的充要條件,以及向量數(shù)量積的坐標運算,屬于容易題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由已知及正弦定理可得:,進而利用余弦定理即可求得a的值,進而可求c,利用三角形的面積公式即可求解.【詳解】,由正弦定理可得:,,由余弦定理,可得,整理可得:或(舍去),,,故答案為:.【點睛】本題注意考查余弦定理與正弦定理的應用,屬于中檔題.正弦定理主要有三種應用:求邊和角、邊角互化、外接圓半徑.12、-7【解析】
,利用列方程求解即可.【詳解】,且,,解得:.【點睛】考查向量加法、數(shù)量積的坐標運算.13、【解析】
點O到的距離,將的面積用表示出來,再利用均值不等式得到答案.【詳解】曲線表示圓心在原點,半徑為1的圓的上半圓,若直線與曲線相交于A,B兩點,則直線的斜率,則點O到的距離,又,當且僅當,即時,取得最大值.所以,解得舍去).故答案為.【點睛】本題考查了點到直線的距離,三角形面積,均值不等式,意在考查學生的計算能力.14、【解析】
先根據(jù)球的表面積公式求出半徑,再根據(jù)體積公式求解.【詳解】設球半徑為,則,解得,所以【點睛】本題考查球的面積、體積計算,屬于基礎題.15、1:3【解析】
記,,可得:為的重心,利用比例關(guān)系可得:,,,結(jié)合:即可得解.【詳解】記,則則為的重心,如下圖由三角形面積公式可得:,,又為的重心,所以,所以所以【點睛】本題主要考查了三角形重心的向量結(jié)論,還考查了轉(zhuǎn)化能力及三角形面積比例計算,屬于難題.16、乙;【解析】
一個看均值,要均值小,成績好;一個看方差,要方差小,成績穩(wěn)定.【詳解】乙的均值比甲小,與丙相同,乙的方差與甲相同,但比丙小,即乙成績好,又穩(wěn)定,應選乙、故答案為乙.【點睛】本題考查用樣本的數(shù)據(jù)特征來解決實際問題.一般可看均值(找均值好的)和方差(方差小的穩(wěn)定),這樣比較易得結(jié)論.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見詳解;(2)【解析】
(1)將直線變形,然后令前系數(shù)為0,可得結(jié)果.(2)根據(jù)直線//,可得,然后計算點到直線距離,根據(jù)面積公式,可得結(jié)果.【詳解】(1)由則直線,令且所以對任意的,直線必過定點(2)由直線//,所以可知直線,則直線,點到直線距離為又,所以【點睛】本題主要考查直線過定點問題以及平面中線線平行關(guān)系,屬基礎題.18、(1);(2)存在點使得成立.【解析】
(1)設P(x,y),由|PA|=2|PB|,得=2,由此能求出曲線的方程.(2)由題意得M(0,1),N(0,-1),設點R(x0,y0),(x0≠0),由點R在曲線上,得=1,直線RM的方程,從而直線RM與直線y=3的交點為,直線RN的方程為,從而直線RN與直線y=3的交點為,假設存在點S(0,m),使得成立,則,由此能求出存在點S,使得成立,且S點的坐標為.【詳解】(1)設,由,得:,整理得.所以曲線的方程為.(2)由題意得,,.設點,由點在曲線上,所以.直線的方程為,所以直線與直線的交點為.直線的方程為所以直線與直線的交點為.假設存在點,使得成立,則,.即,整理得.因為,所以,解得.所以存在點使得成立,且點的坐標為.【點睛】本題考查曲線方程的求法,考查是否存在滿足向量積為0的點的判斷與求法,考查圓、直線方程、向量的數(shù)量積公式等基礎知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題.19、(1)32+【解析】
(1)根據(jù)正弦定理化簡邊角關(guān)系式,可整理出余弦定理形式,得到cosB=12;再根據(jù)正弦定理求得sinC,根據(jù)同角三角函數(shù)得到cosC;根據(jù)兩角和差公式求得sinA;(2)設BD=x,在【詳解】(1)∵由正弦定理得:a-b整理得:a2+∵0<B<π∴B=由正弦定理bsinB=c∵b>c∴B>C∴∴(2)設BD=x,則:BE=2x,AE=2在ΔABE中,利用余弦定理AE12x2=16+4x∴BE=2,AE=23,又AB=4,即BE∴AD=【點睛】本題考查正弦定理、余弦定理解三角形的問題,涉及到正弦定理化簡邊角關(guān)系式、同角三角函數(shù)求解、兩角和差公式的運算,考查對于定理和公式的應用,屬于常規(guī)題型.20、(1)見解析;(2)40.00(mm)【解析】解:(1)頻率分布表如下:分組
頻數(shù)
頻率
[39.95,39.97)
10
0.10
5
[39.97,39.99)
20
0.20
10
[39.99,40.01)
50
0.50
25
[40.01,40.03]
20
0.20
10
合計
100
1
注:頻率分布表可不要最后一列,這里列出,只是為畫頻率分布直方圖方便.頻率分布直方圖如下:(2)整體數(shù)據(jù)的平均值約為39.96×0.10+39.98×0.20+40.00×0.50+40.02×0.20≈40.00(mm).21
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 制度規(guī)范框架搭建
- 技術(shù)支持述職報告
- 2025年云物融合項目合作計劃書
- 2025年航空、航天設備相關(guān)專用設備項目發(fā)展計劃
- 三年級數(shù)學(上)計算題專項練習附答案集錦
- 2025年高效照明電器產(chǎn)品項目建設總綱及方案
- 2025年同位素檢測裝置項目發(fā)展計劃
- 2025年美容美體項目合作計劃書
- 陜西警官職業(yè)學院《統(tǒng)計軟件》2023-2024學年第二學期期末試卷
- 陜西鐵路工程職業(yè)技術(shù)學院《國際貨運與保險》2023-2024學年第一學期期末試卷
- 2025道德講堂課件
- 學生心理健康一生一策檔案表
- 2025年湖北職業(yè)技術(shù)學院單招職業(yè)技能考試題庫匯編
- 2025年上半年綿竹市九綿產(chǎn)業(yè)投資限公司招聘易考易錯模擬試題(共500題)試卷后附參考答案
- 國家義務教育質(zhì)量監(jiān)測八年級美術(shù)樣卷
- 2025年廣東省廣州市海珠區(qū)官洲街雇員招聘5人歷年自考難、易點模擬試卷(共500題附帶答案詳解)
- 滑坡地質(zhì)災害治理工程資源需求與保障措施
- 中央戲劇學院招聘考試真題2024
- 專題07力、運動和-5年(2020-2024)中考1年模擬物理真題分類匯編(天津?qū)S茫?帶答案解析)
- 浙江省溫州市2024年九年級學生學科素養(yǎng)檢測中考一模數(shù)學試卷(含答案)
- GB/T 9799-2024金屬及其他無機覆蓋層鋼鐵上經(jīng)過處理的鋅電鍍層
評論
0/150
提交評論