海南省等八校2023年高一數(shù)學第二學期期末復習檢測試題含解析_第1頁
海南省等八校2023年高一數(shù)學第二學期期末復習檢測試題含解析_第2頁
海南省等八校2023年高一數(shù)學第二學期期末復習檢測試題含解析_第3頁
海南省等八校2023年高一數(shù)學第二學期期末復習檢測試題含解析_第4頁
海南省等八校2023年高一數(shù)學第二學期期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若直線經(jīng)過點,則此直線的傾斜角是()A. B. C. D.2.設復數(shù)(是虛數(shù)單位),則在復平面內(nèi),復數(shù)對應的點的坐標為()A. B. C. D.3.化簡結(jié)果為()A. B. C. D.4.我國數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)的和”,如.在不超過30的素數(shù)中,隨機選取兩個不同的數(shù),其和等于30的概率是A. B. C. D.5.不等式的解集為,則的值為(

)A. B.C. D.6.設是兩條不同的直線,是兩個不同的平面,則下列命題不正確的是()A.若,則 B.若,則C.若,則 D.若,則7.等比數(shù)列的前項和為,,且成等差數(shù)列,則等于()A. B. C. D.8.若是2與8的等比中項,則等于()A. B. C. D.329.在△ABC中,已知tan=sinC,則△ABC的形狀為()A.正三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形10.如圖是一個正方體的平面展開圖,在這個正方體中①②③與為異面直線④以上四個命題中,正確的序號是()A.①②③ B.②④ C.③④ D.②③④二、填空題:本大題共6小題,每小題5分,共30分。11.若數(shù)列的前項和為,則該數(shù)列的通項公式為______.12.已知過兩點,的直線的傾斜角是,則______.13.在中,三個角所對的邊分別為.若角成等差數(shù)列,且邊成等比數(shù)列,則的形狀為_______.14.下圖是2016年在巴西舉行的奧運會上,七位評委為某體操運動員的單項比賽打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的方差為__________.15.已知數(shù)列滿足:,,則_____.16.設為數(shù)列的前項和,則__三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,平行四邊形中,,分別是,的中點,為與的交點,若,,試以,為基底表示、、.18.2019年某開發(fā)區(qū)一家汽車生產(chǎn)企業(yè)計劃引進一批新能源汽車制造設備,通過市場分析,全年需投入固定成本3000萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且,由市場調(diào)研知,每輛車售價6萬元,且全年內(nèi)生產(chǎn)的車輛當年能全部銷售完.(1)求出2019年的利潤(萬元)關于年產(chǎn)量x(百輛)的函數(shù)關系式;(利潤=銷售額成本)(2)2019年產(chǎn)量為多少(百輛)時,企業(yè)所獲利潤最大?并求出最大利潤.19.如圖,在四棱柱中,底面ABCD為菱形,平面ABCD,AC與BD交于點O,,,.(1)證明:平面平面;(2)求二面角的大小.20.半期考試后,班長小王統(tǒng)計了50名同學的數(shù)學成績,繪制頻率分布直方圖如圖所示.根據(jù)頻率分布直方圖,估計這50名同學的數(shù)學平均成績;用分層抽樣的方法從成績低于115的同學中抽取6名,再在抽取的這6名同學中任選2名,求這兩名同學數(shù)學成績均在中的概率.21.在中,角的平分線交于點D,是面積的倍.(I)求的值;(II)若,,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

先通過求出兩點的斜率,再通過求出傾斜角的值。【詳解】,選D.【點睛】先通過求出兩點的斜率,再通過求出傾斜角的值。需要注意的是斜率不存在的情況。2、A【解析】,所以復數(shù)對應的點為,故選A.3、A【解析】

根據(jù)指數(shù)冪運算法則進行化簡即可.【詳解】本題正確選項:【點睛】本題考查指數(shù)冪的運算,屬于基礎題.4、C【解析】分析:先確定不超過30的素數(shù),再確定兩個不同的數(shù)的和等于30的取法,最后根據(jù)古典概型概率公式求概率.詳解:不超過30的素數(shù)有2,3,5,7,11,13,17,19,23,29,共10個,隨機選取兩個不同的數(shù),共有種方法,因為,所以隨機選取兩個不同的數(shù),其和等于30的有3種方法,故概率為,選C.點睛:古典概型中基本事件數(shù)的探求方法:(1)列舉法.(2)樹狀圖法:適合于較為復雜的問題中的基本事件的探求.對于基本事件有“有序”與“無序”區(qū)別的題目,常采用樹狀圖法.(3)列表法:適用于多元素基本事件的求解問題,通過列表把復雜的題目簡單化、抽象的題目具體化.(4)排列組合法:適用于限制條件較多且元素數(shù)目較多的題目.5、B【解析】

根據(jù)一元二次不等式解集與對應一元二次方程根的關系列方程組,解得a,c的值.【詳解】由題意得為方程兩根,所以,選B.【點睛】一元二次方程的根與對應一元二次不等式解集以及對應二次函數(shù)零點的關系,是數(shù)形結(jié)合思想,等價轉(zhuǎn)化思想的具體體現(xiàn),注意轉(zhuǎn)化時的等價性.6、D【解析】

對于A,利用線面平行的判定可得A正確.對于B,利用線面垂直的性質(zhì)可得B正確.對于C,利用面面垂直的判定可得C正確.根據(jù)平面與平面的位置關系即可判斷D不正確.【詳解】對于A,根據(jù)平面外的一條直線與平面內(nèi)的一條直線平行,則這條直線平行于這個平面,可判定A正確.對于B,根據(jù)垂直于同一個平面的兩條直線平行,判定B正確.對于C,根據(jù)一個平面過另一個平面的垂線,則這兩個平面垂直,可判定C正確.對于D,若,則或相交,所以D不正確.故選:D【點睛】本題主要考查了線面平行和面面垂直的判定,同時考查了線面垂直的性質(zhì),屬于中檔題.7、A【解析】

根據(jù)等差中項的性質(zhì)列方程,并轉(zhuǎn)化為的形式,由此求得的值,進而求得的值.【詳解】由于成等差數(shù)列,故,即,所以,,所以,故選A.【點睛】本小題主要考查等差中項的性質(zhì),考查等比數(shù)列基本量的計算,屬于基礎題.8、B【解析】

利用等比中項性質(zhì)列出等式,解出即可?!驹斀狻坑深}意知,,∴.故選B【點睛】本題考查等比中項,屬于基礎題。9、C【解析】

解:因為選C10、D【解析】

作出直觀圖,根據(jù)正方體的結(jié)構(gòu)特征進行判斷.【詳解】作出正方體得到直觀圖如圖所示:由直觀圖可知,與為互相垂直的異面直線,故①不正確;,故②正確;與為異面直線,故③正確;由正方體性質(zhì)可知平面,故,故④正確.故選:D【點睛】本題考查了正方體的結(jié)構(gòu)特征,直線,平面的平行于垂直,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由,可得出,再令,可計算出,然后檢驗是否滿足在時的表達式,由此可得出數(shù)列的通項公式.【詳解】由題意可知,當時,;當時,.又不滿足.因此,.故答案為:.【點睛】本題考查利用求,一般利用來計算,但要對是否滿足進行檢驗,考查運算求解能力,屬于中等題.12、【解析】

由兩點求斜率公式及斜率等于傾斜角的正切值列式求解.【詳解】解:由已知可得:,即,則.故答案為.【點睛】本題考查直線的斜率,考查直線傾斜角與斜率的關系,是基礎題.13、等邊三角形【解析】

分析:角成等差數(shù)列解得,邊成等比數(shù)列,則,再根據(jù)余弦定理得出的關系式.詳解:角成等差數(shù)列,則解得,邊成等比數(shù)列,則,余弦定理可知故為等邊三角形.點睛:判斷三角形形狀,是根據(jù)題意推導邊角關系的恒等式.14、【解析】由平均數(shù)公式可得,故所求數(shù)據(jù)的方差是,應填答案。15、【解析】

從開始,直接代入公式計算,可得的值.【詳解】解:由題意得:,,,,故答案為:.【點睛】本題主要考查數(shù)列的遞推公式及數(shù)列的性質(zhì),相對簡單.16、【解析】

當時,;當時,,即,若為偶數(shù),則為奇數(shù));若為奇數(shù),則,故是偶數(shù)).因為,,所以,同理可得,,,所以,應選答案.點睛:本題運用演繹推理的思維方法,分別探求出數(shù)列各項的規(guī)律(成等比數(shù)列),再運用等比數(shù)列的求和公式,使得問題簡捷、巧妙獲解.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、【解析】分析:直接利用共線向量的性質(zhì)、向量加法與減法的三角形法則求解即可.詳解:由題意,如圖,,連接,則是的重心,連接交于點,則是的中點,∴點在上,∴,故答案為;;∴.點睛:向量的運算有兩種方法,一是幾何運算往往結(jié)合平面幾何知識和三角函數(shù)知識解答,運算法則是:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和);二是坐標運算:建立坐標系轉(zhuǎn)化為解析幾何問題解答(求最值與范圍問題,往往利用坐標運算比較簡單).18、(1);(2)2019年年產(chǎn)量為100百輛時,企業(yè)所獲利潤最大,最大利潤為5800萬元.【解析】

(1)先閱讀題意,再分當時,當時,求函數(shù)解析式即可;(2)當時,利用配方法求二次函數(shù)的最大值,當時,利用均值不等式求函數(shù)的最大值,一定要注意取等的條件,再綜合求分段函數(shù)的最大值即可.【詳解】解:(1)由已知有當時,當時,,即,(2)當時,,當時,取最大值,當時,,當且僅當,即時取等號,又故2019年年產(chǎn)量為100百輛時,企業(yè)所獲利潤最大,最大利潤為5800萬元.【點睛】本題考查了函數(shù)的綜合應用,重點考查了分段函數(shù)最值的求法,屬中檔題.19、(1)證明見解析;(2)﹒【解析】

(1)證面面垂直只需證一個平面內(nèi)有一條直線和另一個平面垂直(2)通過作圖需找二面角的平面角即可【詳解】(1)證明:由平面ABCD,有;由四邊形ABCD為菱形,所以AC⊥BD:又因為,所以平面,因為平面,所以平面平面,(2)過O作于E,連結(jié)BE,由(1)知平面,所以,又因為,,所以平面BDE,從而;由,,所以∠OEB為二面角的平面角.由為等邊三角形且O為BD中點,有,,,由,有,由,有,從而.在中,,所以,即.綜上,二面角的大小為﹒【點睛】面面垂直可通過線面垂直進行證明,二面角的平面角有正有負,解題時要注意結(jié)合題設關系進行正確判斷20、(1)(2)【解析】

⑴用頻率分布直方圖中的每一組數(shù)據(jù)的平均數(shù)乘以對應的概率并求和即可得出結(jié)果;⑵首先可通過分層抽樣確定6人中在分數(shù)段以及分數(shù)段中的人數(shù),然后分別寫出所有的基本事件以及滿足題意中“兩名同學數(shù)學成績均在中”的基本事件,最后兩者相除,即可得出結(jié)果.【詳解】⑴由頻率分布表,估計這50名同學的數(shù)學平均成績?yōu)椋?;⑵由頻率分布直方圖可知分數(shù)低于115分的同學有人,則用分層抽樣抽取6人中,分數(shù)在有1人,用a表示,分數(shù)在中的有5人,用、、、、表示,則基本事件有、、、、、、、、、、、、、、,共15個,滿足條件的基本事件為、、、、、、、、、,共10個,所以這兩名同學分數(shù)均在中的概率為.【點睛】本題考查了頻率分布直方圖以及古典概型的相關性質(zhì),解決本題的關鍵是對頻率分布直方圖的理解以及對古典概型概率的計算公

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論