河北省石家莊市精英中學2022-2023學年數(shù)學高一第二學期期末學業(yè)質量監(jiān)測試題含解析_第1頁
河北省石家莊市精英中學2022-2023學年數(shù)學高一第二學期期末學業(yè)質量監(jiān)測試題含解析_第2頁
河北省石家莊市精英中學2022-2023學年數(shù)學高一第二學期期末學業(yè)質量監(jiān)測試題含解析_第3頁
河北省石家莊市精英中學2022-2023學年數(shù)學高一第二學期期末學業(yè)質量監(jiān)測試題含解析_第4頁
河北省石家莊市精英中學2022-2023學年數(shù)學高一第二學期期末學業(yè)質量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,且,則()A. B. C. D.22.向量,,,滿足條件.,則A. B. C. D.3.設,則下列不等式恒成立的是A. B.C. D.4.公差不為零的等差數(shù)列的前項和為.若是的等比中項,,則等于()A.18 B.24 C.60 D.905.空間中可以確定一個平面的條件是()A.三個點 B.四個點 C.三角形 D.四邊形6.為數(shù)列的前n項和,若,則的值為()A.-7 B.-4 C.-2 D.07.若實數(shù)滿足,則的最大值是()A. B. C. D.8.若直線過兩點,,則的斜率為()A. B. C.2 D.9.已知則()A. B. C. D.10.設函數(shù)是定義在上的奇函數(shù),當時,,則()A.-4 B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列是等差數(shù)列,若,,則________.12.圓x2+y2-4=0與圓x2+y2-4x+4y-12=0的公共弦的長為___.13.已知函數(shù)一個周期的圖象(如下圖),則這個函數(shù)的解析式為__________.14.分形幾何學是美籍法國數(shù)學家伯努瓦.B.曼德爾布羅特在20世紀70年代創(chuàng)立的一門新學科,它的創(chuàng)立,為解決傳統(tǒng)科學眾多領域的難題提供了全新的思路,下圖是按照一定的分形規(guī)律生長成一個數(shù)形圖,則第13行的實心圓點的個數(shù)是________15.對于下列數(shù)排成的數(shù)陣:它的第10行所有數(shù)的和為________16.若數(shù)列滿足,則_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,角,,的對邊分別為,,,已知向量,,且.(1)求角的值;(2)若為銳角三角形,且,求的取值范圍.18.設等差數(shù)列中,.(1)求數(shù)列的通項公式;(2)若等比數(shù)列滿足,求數(shù)列的前項和.19.已知數(shù)列中,,前項的和為,且滿足數(shù)列是公差為的等差數(shù)列.(1)求數(shù)列的通項公式;(2)若恒成立,求的取值范圍.20.如圖,在四棱錐中,底面,,,,,點為棱的中點.(1)證明:;(2)求三棱錐的體積.21.已知.(1)求;(2)求向量與的夾角的余弦值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

由平方關系得出的值,最后由商數(shù)關系求解即可.【詳解】,故選:A【點睛】本題主要考查了利用平方關系以及商數(shù)關系化簡求值,屬于基礎題.2、C【解析】向量,則,故解得.故答案為:C。3、C【解析】

利用不等式的性質,合理推理,即可求解,得到答案.【詳解】因為,所以,所以A項不正確;因為,所以,,則,所以B不正確;因為,則,所以,又因為,則,所以等號不成立,所以C正確;由,所以,所以D錯誤.【點睛】本題主要考查了不等式的性質的應用,其中解答中熟記不等式的性質,合理運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.4、C【解析】

由等比中項的定義可得,根據(jù)等差數(shù)列的通項公式及前n項和公式,列方程解出和,進而求出.【詳解】因為是與的等比中項,所以,即,整理得,又因為,所以,故,故選C.【點睛】該題考查的是有關等差數(shù)列求和問題,涉及到的知識點有等差數(shù)列的通項,等比中項的定義,等差數(shù)列的求和公式,正確應用相關公式是解題的關鍵.5、C【解析】

根據(jù)公理2即可得出答案.【詳解】在A中,不共線的三個點能確定一個平面,共線的三個點不能確定一個平面,故A錯誤;在B中,不共線的四個點最多能確定四個平面,故B錯誤;在C中,由于三角形的三個頂點不共線,因此三角形能確定一個平面,故C正確;在D中,四邊形有空間四邊形和平面四邊形,空間四邊形不能確定一個平面,故D錯誤.【點睛】本題對公理2進行了考查,確定一個平面關鍵是對過不在一條直線上的三點,有且只有一個平面的理解.6、A【解析】

依次求得的值,進而求得的值.【詳解】當時,;當時,,;當時,;故.故選:A.【點睛】本小題主要考查根據(jù)遞推關系式求數(shù)列每一項,屬于基礎題.7、B【解析】

根據(jù),將等式轉化為不等式,求的最大值.【詳解】,,,解得,,的最大值是.故選B.【點睛】本題考查了基本不等式求最值,屬于基礎題型.8、C【解析】

直接運用斜率計算公式求解.【詳解】因為直線過兩點,,所以直線的斜率,故本題選C.【點睛】本題考查了斜率的計算公式,考查了數(shù)學運算能力、識記公式的能力.9、B【解析】

根據(jù)條件式,判斷出,,且.由不等式性質、基本不等式性質或特殊值即可判斷選項.【詳解】因為所以可得,,且對于A,由對數(shù)函數(shù)的圖像與性質可知,,所以A錯誤;對于B,由基本不等式可知,即由于,則,所以B正確;對于C,由條件可得,所以C錯誤;對于D,當時滿足條件,但,所以D錯誤.綜上可知,B為正確選項故選:B【點睛】本題考查了不等式性質的綜合應用,根據(jù)基本不等式求最值,屬于基礎題.10、A【解析】

由奇函數(shù)的性質可得:即可求出【詳解】因為是定義在上的奇函數(shù),所以又因為當時,,所以,所以,選A.【點睛】本題主要考查了函數(shù)的性質中的奇偶性。其中奇函數(shù)主要有以下幾點性質:1、圖形關于原點對稱。2、在定義域上滿足。3、若定義域包含0,一定有。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

求出公差,利用通項公式即可求解.【詳解】設公差為,則所以故答案為:【點睛】本題主要考查了等差數(shù)列基本量的計算,屬于基礎題.12、【解析】

兩圓方程相減求出公共弦所在直線的解析式,求出第一個圓心到直線的距離,再由第一個圓的半徑,利用勾股定理及垂徑定理即可求出公共弦長.【詳解】圓與圓的方程相減得:,由圓的圓心,半徑r為2,且圓心到直線的距離,則公共弦長為.故答案為.【點睛】此題考查了直線與圓相交的性質,求出公共弦所在的直線方程是解本題的關鍵.13、【解析】

由函數(shù)的圖象可得T=﹣,解得:T==π,解得ω=1.圖象經過(,1),可得:1=sin(1×+φ),解得:φ=1kπ+,k∈Z,由于:|φ|<,可得:φ=,故f(x)的解析式為:f(x)=.故答案為f(x)=.14、【解析】

觀察圖像可知每一個實心圓點的下一行均分為一個實心圓點與一個空心圓點,每個空心圓點下一行均為實心圓點.再利用規(guī)律找到行與行之間的遞推關系即可.【詳解】由圖像可得每一個實心圓點的下一行均分為一個實心圓點與一個空心圓點,每個空心圓點下一行均為實心圓點.故從第三行開始,每行的實心圓點數(shù)均為前兩行之和.即.故第1到第13行中實心圓點的個數(shù)分別為:.故答案為:【點睛】本題主要考查了遞推數(shù)列的實際運用,需要觀察求得行與行之間的實心圓點的遞推關系,屬于中等題型.15、【解析】

由題意得第10行的第一個數(shù)的絕對值為,第10行的最后一個數(shù)的絕對值為,再根據(jù)奇數(shù)為負數(shù),偶數(shù)為正數(shù),得到第10行的各個數(shù),由此能求出第10行所有數(shù)的和.【詳解】第1行1個數(shù),第2行2個數(shù),則第9行9個數(shù),故第10行的第一個數(shù)的絕對值為,第10行的最后一個數(shù)的絕對值為,且奇數(shù)為負數(shù),偶數(shù)為正數(shù),故第10行所有數(shù)的和為,故答案為:.【點睛】本題以數(shù)陣為背景,觀察數(shù)列中項的特點,求數(shù)列通項和前項和,考查邏輯推理能力和運算求解能力,求解時要注意等差數(shù)列性質的合理運用.16、【解析】

由遞推公式逐步求出.【詳解】.故答案為:【點睛】本題考查數(shù)列的遞推公式,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)根據(jù)和正弦定理余弦定理求得.(2)先利用正弦定理求出R=1,再把化成,再利用三角函數(shù)的圖像和性質求解.【詳解】(1)因為,所以,由正弦定理化角為邊可得,即,由余弦定理可得,又,所以.(2)由(1)可得,設的外接圓的半徑為,因為,,所以,則,因為為銳角三角形,所以,即,所以,所以,所以,故的取值范圍為.【點睛】(1)本題主要考查正弦定理余弦定理解三角形,考查三角函數(shù)的圖像和性質,意在考查學生對這些知識的掌握水平和分析推理能力.(2)對于復合函數(shù)的問題自然是利用復合函數(shù)的性質解答,求復合函數(shù)的最值,一般從復合函數(shù)的定義域入手,結合三角函數(shù)的圖像一步一步地推出函數(shù)的最值.18、(1)(2)【解析】

(1)求出公差,由公式得通項公式;(2)由(1)求出,計算公比,再由等比數(shù)列前項和公式得和.【詳解】(1)在等差數(shù)列中,,故設的公差為,則,即,所以,所以.(2)設數(shù)列的公比為,則,所以.【點睛】本題考查等差數(shù)列與等比數(shù)列的基本量法.求出數(shù)列的首項和公差(或公比),則數(shù)列的通項公式與前項和隨之而定.19、(1);(2).【解析】

(1)根據(jù)題意求出數(shù)列的通項公式,可解出,從而得出數(shù)列的通項公式;(2)將數(shù)列的通項公式裂項,利用裂項法求出,由得出,然后利用定義法判斷出數(shù)列的單調性,求出數(shù)列的最小項,從而得出實數(shù)的取值范圍.【詳解】(1)因為,所以,又因為數(shù)列是公差為的等差數(shù)列,所以,即;(2)因為,所以.于是,即為,整理可得.設,則.令,解得,,所以,,故數(shù)列的最大項的值為,故,因此,實數(shù)的取值范圍是.【點睛】本題考查數(shù)列通項公式的求解,同時也考查了裂項求和法以及數(shù)列不等式恒成立求參數(shù),解題時利用參變量分離法轉化為新數(shù)列的最值問題求解,同時也考查利用定義法判斷數(shù)列的單調性,考查分析問題和解決問題的能力,屬于中等題.20、(1)見解析;(2)【解析】

(1)以A為坐標原點,建立如圖所示的空間直角坐標系,求出BE,DC的方向向量,根據(jù)?=0,可得BE⊥DC;(2)由點為棱的中點,且底面,利用等體積法得.【詳解】(1)∵底面,,以為坐標原點,建立如圖所示的空間直角坐標系,∵,,點為棱的中點.∴(1,0,0),(2,2,0),(0,2,0),(0,0,2),(1,1,1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論