基于認(rèn)知彈性理論的數(shù)學(xué)結(jié)構(gòu)不良問(wèn)題教學(xué)策略研究_第1頁(yè)
基于認(rèn)知彈性理論的數(shù)學(xué)結(jié)構(gòu)不良問(wèn)題教學(xué)策略研究_第2頁(yè)
基于認(rèn)知彈性理論的數(shù)學(xué)結(jié)構(gòu)不良問(wèn)題教學(xué)策略研究_第3頁(yè)
基于認(rèn)知彈性理論的數(shù)學(xué)結(jié)構(gòu)不良問(wèn)題教學(xué)策略研究_第4頁(yè)
基于認(rèn)知彈性理論的數(shù)學(xué)結(jié)構(gòu)不良問(wèn)題教學(xué)策略研究_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

基于認(rèn)知彈性理論的數(shù)學(xué)結(jié)構(gòu)不良問(wèn)題教學(xué)策略研究摘要:本研究旨在探究認(rèn)知彈性理論在中學(xué)數(shù)學(xué)結(jié)構(gòu)不良問(wèn)題教學(xué)中的應(yīng)用,以提高學(xué)生的學(xué)習(xí)效果和興趣。首先,文章介紹了認(rèn)知彈性理論的基本概念和相關(guān)理論。其次,針對(duì)數(shù)學(xué)結(jié)構(gòu)不良問(wèn)題的特點(diǎn),提出了適合認(rèn)知彈性理論的教學(xué)策略,包括激勵(lì)、分組、反饋、重組等。最后,通過(guò)實(shí)驗(yàn)研究,驗(yàn)證了所提出的教學(xué)策略的有效性,并對(duì)未來(lái)教學(xué)實(shí)踐進(jìn)行了展望。研究結(jié)果表明,基于認(rèn)知彈性理論的教學(xué)策略可以顯著提高學(xué)生對(duì)數(shù)學(xué)結(jié)構(gòu)不良問(wèn)題的認(rèn)知水平和學(xué)習(xí)興趣,具有一定的推廣價(jià)值。

關(guān)鍵詞:認(rèn)知彈性理論;數(shù)學(xué)結(jié)構(gòu)不良問(wèn)題;教學(xué)策略;學(xué)習(xí)效果;學(xué)習(xí)興趣

Abstract:Theaimofthisstudyistoexploretheapplicationofcognitiveelasticitytheoryinteachingmathstructureproblemstoimprovestudents'learningeffectivenessandinterest.Firstly,thearticleintroducesthebasicconceptsandrelatedtheoriesofcognitiveelasticitytheory.Secondly,basedonthecharacteristicsofmathstructureproblems,weproposeteachingstrategiessuitableforcognitiveelasticitytheory,includingmotivation,grouping,feedback,restructuring,etc.Finally,throughexperimentalresearch,theeffectivenessoftheproposedteachingstrategiesisverified,andthefutureteachingpracticeislookedforwardto.Theresultsshowthatteachingstrategiesbasedoncognitiveelasticitytheorycansignificantlyimprovestudents'cognitivelevelandlearninginterestinmathstructureproblems,andhavecertainpromotionalvalue.

Keywords:cognitiveelasticitytheory;mathstructureproblems;teachingstrategies;learningeffectiveness;learninginteresInrecentyears,mathstructureproblemshavebecomeanimportantpartofmathematicaleducation.However,studentsoftenencounterdifficultiesinsolvingthesetypesofproblems,whichmayleadtoadecreaseintheirlearninginterestandcognitivelevel.Therefore,itisnecessarytoexploreeffectiveteachingstrategiestoimprovestudents'learningeffectivenessandinterestinmathstructureproblems.

Cognitiveelasticitytheoryproposesthatcognitiveabilityisnotfixed,butcanbedevelopedthroughappropriatetrainingandlearning.Basedonthistheory,teachingstrategiescanbedesignedtoimprovestudents'cognitiveflexibility,creativity,andadaptability.Inthecontextofmathstructureproblems,effectiveteachingstrategiesincludeprovidingmultipleproblem-solvingmethodsandencouragingstudentstoexploredifferentapproaches,promotingcriticalthinkingandlogicreasoningskillsthroughdiscussionandanalysisofexamples,andusingreal-lifesituationstoenhancetherelevanceandsignificanceofmathstructureproblems.

Toverifytheeffectivenessoftheseteachingstrategies,experimentalresearchwasconductedonagroupofmiddleschoolstudents.Theresultsshowedthatstudentswhoreceivedthecognitiveelasticity-basedteachingshowedsignificantimprovementintheiroverallcognitivelevelandtheirinterestinsolvingmathstructureproblems.Moreover,theywereabletoapplyvariousproblem-solvingstrategiesautonomouslyanddemonstratemorecomprehensiveanddeepunderstandingofthemathematicalconceptsunderlyingthestructureproblems.

Inconclusion,teachingstrategiesbasedoncognitiveelasticitytheoryhaveconsiderablepotentialforpromotingstudents'learningeffectivenessandinterestinmathstructureproblems.FutureteachingpracticeshouldcontinuetoexploreandoptimizethesestrategiestocatertotheneedsofdifferentlearnersandachievebettereducationaloutcomesinmathematicseducationOneofthekeymathematicalconceptsunderlyingstructureproblemsistheunderstandingofgeometricprinciplessuchassymmetry,congruence,andsimilarity.Forinstance,inordertosolveastructureproblem,studentsneedtobeabletoidentifydifferenttypesofsymmetryintwo-dimensionalandthree-dimensionalshapes,andusethisknowledgetodeducepropertiesofthestructure.Thisincludesunderstandingtheconceptofrotational,translational,andreflectionalsymmetry,andbeingabletorecognizethesetypesofsymmetryindifferentshapes.

Anotherimportantmathematicalconceptunderlyingstructureproblemsistheunderstandingofbasicalgebraicprinciplessuchasequationsandinequalities.Inordertosolveastructureproblem,studentsoftenneedtotranslatetheproblemintoanequationorsetofequations,andthensolvetheseequationsusingalgebraictechniquessuchasfactoring,substitution,orelimination.Thisrequiresadeepunderstandingofthepropertiesofequationsandinequalities,suchasthedistributive,associative,andcommutativeproperties,aswellastheabilitytorecognizepatternsandmakelogicaldeductionsbasedonthesepatterns.

Finally,studentsneedtohaveastrongunderstandingofmathematicalconceptssuchasproportionality,ratios,andratesinordertosolvestructureproblems.Theseconceptsarecriticalforunderstandingtherelationshipsbetweendifferentpartsofastructure,andformakingaccuratepredictionsabouthowchangesinonepartofthestructurewillaffectotherparts.

Overall,acomprehensiveanddeepunderstandingofthemathematicalconceptsunderlyingstructureproblemsrequiresastrongfoundationingeometry,algebra,andproportionalreasoning.Studentswhoareabletomastertheseconceptsaremorelikelytobesuccessfulinsolvingcomplexstructureproblems,andaremorelikelytodevelopalastinginterestinmathematicsAdditionally,problemsolvingskillsandcriticalthinkingskillsarealsocrucialfortacklingstructureproblems.Theseskillsinvolvebeingabletoanalyzeinformation,identifypatternsandrelationships,andmakeinformeddecisionsbasedonevidence.Theycanbedevelopedthroughpracticeandexposuretoavarietyofproblems,aswellasthroughcollaborationwithpeersandteachers.

Anotherimportantaspectofsuccessfullysolvingstructureproblemsistheabilitytovisualizeandmanipulate3-dimensionalobjectsinthemind.Thisskillisknownasspatialreasoning,anditallowsindividualstomentallyrotateandmanipulateobjectstobetterunderstandtheirpropertiesandrelationships.Spatialreasoningcanbehonedthroughactivitiessuchaspuzzles,buildingwithblocksorLegos,andplayingvideogamesthatinvolvespatialmanipulation.

Lastly,effectivecommunicationskillsarekeyforexplainingsolutionstostructureproblemsinaclearandconcisemanner.Beingabletoarticulatemathematicalconceptsandprocessesisimportantfornotonlypresentingsolutionstoothers,butalsoforreinforcingone'sownunderstandingofthematerial.Workingingroupsorparticipatinginclassdiscussionscanbehelpfulfordevelopingthesecommunicationskills.

Inconclusion,solvingstructureproblemsrequiresacombinationofmathematical,problemsolving,spatialreasoning,andcommunicationskills.Buildingastrongfoundationalknowledgeofgeometry,algebra,andproportionalreasoningiscrucialforsuccess,asistheabilitytoanalyzeinformationandthinkcritically.Engaginginactivitiesthatdevelopspatialreasoningandeffectivecommunicationskillscanalsobehelpful.Withtheseskills

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論