




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
基于DCE-MRI影像反卷積模型的腫瘤異質(zhì)性分析及其在乳腺癌分子分型預(yù)測中的應(yīng)用摘要:
目前,乳腺癌的分子分型成為了研究的熱點(diǎn),基于組織學(xué)特征進(jìn)行分型對于治療方案的選擇和預(yù)后判斷具有重要意義。本文提出了一種基于DCE-MRI影像反卷積模型的腫瘤異質(zhì)性分析方法,并將其應(yīng)用于乳腺癌分子分型預(yù)測。該方法能夠從DCE-MRI影像中提取出微小的組織學(xué)特征,并將其反卷積還原至原始組織,同時(shí),結(jié)合機(jī)器學(xué)習(xí)算法,對不同腫瘤分子分型的特征進(jìn)行分析。實(shí)驗(yàn)結(jié)果表明,該方法在使用小數(shù)據(jù)集進(jìn)行訓(xùn)練和測試時(shí),能夠準(zhǔn)確地預(yù)測不同分子分型。
關(guān)鍵詞:DCE-MRI影像;反卷積;腫瘤異質(zhì)性分析;乳腺癌分子分型預(yù)測
Abstract:
Atpresent,themoleculartypingofbreastcancerhasbecomearesearchhotspot.Itisofgreatsignificancetoselecttreatmentplansandjudgeprognosisbasedonhistologicalcharacteristics.Inthispaper,atumorheterogeneityanalysismethodbasedonDCE-MRIimagedeconvolutionmodelisproposed,anditisappliedtopredictthemoleculartypingofbreastcancer.ThemethodcanextractsmallhistologicalfeaturesfromDCE-MRIimages,andrestorethemtotheoriginaltissuesbydeconvolution.Meanwhile,combinedwithmachinelearningalgorithm,thecharacteristicsofdifferenttumormoleculartypeswereanalyzed.Experimentalresultsshowthatthemethodcanaccuratelypredictdifferentmoleculartypeswhentrainedandtestedwithsmalldatasets.
Keywords:DCE-MRIimages;deconvolution;tumorheterogeneityanalysis;predictionofmoleculartypingofbreastcanceBreastcancerisacomplexdiseasethatexhibitssignificantheterogeneityinitsmolecularmakeup.Accuratecharacterizationofdifferentmolecularsubtypesofbreastcanceriscrucialforguidingpersonalizedtreatmentstrategies.DCE-MRIisapowerfulimagingtechniquethathasbeenwidelyusedforbreastcancerdiagnosisandtreatmentplanning.However,theinformationobtainedfromDCE-MRIimagesisoftenlimitedbythesmallhistologicalfeaturesthatarenotvisibleontheimages.
Toovercomethislimitation,researchershavedevelopedamethodtoextractandrestoresmallhistologicalfeaturesfromDCE-MRIimagesthroughdeconvolution.Thedeconvolutionprocessseparatesthesignalfromthesmallhistologicalfeaturesandthenoisegeneratedbytheimagingsystem.Byrestoringthesmallfeatures,themethodimprovestheaccuracyoftissuecharacterizationbasedontheDCE-MRIimages.
Tofurtherenhancetheaccuracyoftissuecharacterization,theresearchersalsocombinedthedeconvolutionmethodwithamachinelearningalgorithm.Byanalyzingthecharacteristicsofdifferenttumormoleculartypes,thealgorithmcanaccuratelypredictthemolecularsubtypeofbreastcancerwhentrainedandtestedwithsmalldatasets.
TheexperimentalresultshaveshownthattheproposedmethodcanimprovetheaccuracyoftissuecharacterizationbasedonDCE-MRIimagesandaccuratelypredictdifferentmolecularsubtypesofbreastcancer.ThismethodhasthepotentialtoimprovethediagnosisandtreatmentofbreastcancerbyprovidingmoreaccurateinformationaboutthemolecularmakeupofthetumorBreastcancerisaheterogeneousdiseasewithdistinctmolecularsubtypesthathavedifferentprognoses,responsestotreatment,andclinicaloutcomes.Accuratediagnosisandsubtypingofbreastcancerarecriticalfortailoringtreatmentstrategiesandimprovingpatientoutcomes.Currently,breastcancersubtypingreliesoninvasivetissuebiopsiesandpathologicalanalysis,whichcanbecostly,time-consuming,andriskyforpatients.Thishighlightstheneedfornon-invasiveandaccuratemethodsforbreastcancerdiagnosisandsubtyping.
Dynamiccontrast-enhancedmagneticresonanceimaging(DCE-MRI)isawidelyusedimagingmodalityforbreastcancerdetectionanddiagnosis.Itmeasuresthecontrastagentuptakeandwashoutinbreasttissue,providinginformationontissuevascularityandpermeability.DCE-MRIhasbeenshowntobeeffectiveindetectingbreastcancer,monitoringtreatmentresponse,andpredictingpatientoutcomes.However,ithaslimitedaccuracyinsubtypingbreastcancerbasedonmolecularcharacteristics.
Therefore,thereisagrowinginterestindevelopingmachinelearningalgorithmsthatcanaccuratelypredictthemolecularsubtypesofbreastcancerusingDCE-MRIimages.Thesealgorithmscanleveragethevastamountofimagingdatageneratedinroutineclinicalpracticeandprovidenon-invasiveandaccuratediagnosisandsubtypingofbreastcancer.
Recently,severalstudieshavereportedpromisingresultsusingmachinelearningalgorithmstopredictbreastcancersubtypesbasedonDCE-MRIimages.Forexample,astudybyVignatietal.usedarandomforestalgorithmtopredictthemolecularsubtypesofbreastcancerinpatientsundergoingneoadjuvantchemotherapy.Theyachievedanaccuracyof80%inpredictingtriple-negativebreastcancerand65%inpredictingHER2-positivebreastcancerbasedonDCE-MRIfeatures.
Inanotherstudy,Liuetal.usedadeeplearningalgorithmtopredictthemolecularsubtypesofbreastcancerinalargecohortofpatients.Theyachievedanaccuracyof91.3%inpredictingHER2-positivebreastcancer,83.6%inpredictingluminalAbreastcancer,83.1%inpredictingluminalBbreastcancer,and85.9%inpredictingtriple-negativebreastcancerbasedonDCE-MRIimages.
ThesestudiesdemonstratethepotentialofmachinelearningalgorithmstoaccuratelypredictmolecularsubtypesofbreastcancerusingDCE-MRIimages.However,mostofthesestudieswereperformedonsmalldatasetsandrequirefurthervalidationonlargercohorts.Moreover,thegeneralizationabilityandrobustnessofthesealgorithmsneedtobeevaluatedindifferentclinicalsettingsandimagingdevicestoensuretheirclinicalutility.
Inconclusion,machinelearningalgorithmshaveemergedasapromisingtoolfornon-invasiveandaccuratediagnosisandsubtypingofbreastcancerbasedonDCE-MRIimages.Furtherstudiesareneededtovalidateandoptimizethesealgorithmsandtoassesstheirclinicalusabilityandimpactonpatientoutcomes.Nevertheless,thesealgorithmsholdgreatpromiseforimprovingthediagnosisandtreatmentofbreastcancerandbridgingthegapbetweenimagingandmolecularprofilinginthiscomplexdiseaseBreastcancerisacomplexandheterogeneousdiseasewithdiversemolecularsubtypes,eachwithdistinctclinicalandbiologicalcharacteristics.Accuratediagnosisandsubtypingofbreastcancerarecriticalforselectingthemosteffectivetreatmentstrategyandimprovingpatientoutcomes.Traditionaldiagnosticmethodssuchasmammography,ultrasound,andbiopsyhavelimitationsintermsofsensitivity,specificity,andinvasiveness.
Dynamiccontrast-enhancedmagneticresonanceimaging(DCE-MRI)hasemergedasapowerfulimagingmodalityforbreastcancerdetectionandcharacterization.DCE-MRIprovideshighcontrastandspatialresolutionimagesofbreasttissue,allowingforthevisualizationofbloodflowandtissueperfusion.Inaddition,DCE-MRIcanbeusedtogeneratetemporalintensitycurvesthatreflectthekineticsofcontrastuptakeinthebreasttissue.
RecentadvancesinmachinelearningalgorithmshaveenabledthedevelopmentofautomatedandinterpretablemodelsforbreastcancerdiagnosisandclassificationbasedonDCE-MRIimages.Thesealgorithmsuseacombinationofimageprocessingtechniquesandstatisticallearningmethodstoextractquantitativefeaturesthatcapturethecomplexityofbreastcancerlesions.Bylearningfromlargedatasetsofannotatedimages,thesealgorithmscanidentifypatternsandrelationshipsthatarenoteasilydiscerniblebyvisualinspection.
Oneofthekeyadvantagesofmachinelearningalgorithmsistheirabilitytoimprovetheaccuracyandconsistencyofbreastcancerdiagnosisandsubtyping.Forexample,arecentstudybyWangetal.(2020)developedadeeplearningalgorithmthatachieved90.3%accuracyindistinguishingmalignantandbenignlesionsonDCE-MRIimages,outperformingradiologistswithsimilarlevelsofexperience.AnotherstudybyWuetal.(2019)usedasupportvectormachinealgorithmtoclassifybreastcancersubtypesbasedonDCE-MRIfeatures,achievinganoverallaccuracyof87.2%.
Inadditiontoimprovingdiagnosticaccuracy,machinelearningalgorithmshavethepotentialtoprovidenewinsightsintotheunderlyingbiologyofbreastcancer.Forinstance,astudybyTanetal.(2020)developedamulti-classifiermodelthatidentifieddistinctradiomicfeaturesassociatedwithdifferentmolecularsubtypesofbreastcancer.ThesefeatureswereabletopredicttheexpressionlevelsofimportantmolecularmarkerssuchasestrogenreceptorandHER2,providinganon-invasivemethodformolecularprofilingofbreastcancer.
Despitethepromisingresultsofmachinelearningalgorithmsforbreastcancerdiagnosisandsubtyping,therearestillseveralchallengesthatneedtobeaddressed.Onechallengeisthelackofstandardizedimagingprotocolsandannotationcriteria,whichcanaffectthereproducibilityandgeneralizabilityofthealgorithms.Anotherchallengeistheneedforlargeanddiversedatasetstotrainandvalidatethealgorithms,aswellasthe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 救生員行業(yè)發(fā)展的趨勢與試題及答案
- 社區(qū)老年人護(hù)理服務(wù)可行性研究報(bào)告(參考)
- 農(nóng)田灌溉與排水系統(tǒng)建設(shè)項(xiàng)目可行性研究報(bào)告(參考范文)
- 2024年農(nóng)作物種子繁育員復(fù)習(xí)的重點(diǎn)關(guān)注試題及答案
- 2024年體育經(jīng)紀(jì)人考試突圍策略與試題及答案
- 辦公空間提升裝修工程可行性研究報(bào)告(范文)
- 模具設(shè)計(jì)的關(guān)鍵技術(shù)試題及答案
- 怎樣才能通過裁判員考試的試題及答案
- 2024年籃球裁判員考試的必要準(zhǔn)備清單及試題及答案
- 關(guān)于2024年籃球裁判員考試的必考內(nèi)容 試題及答案
- ANPQP概要-主要表單介紹及4M變更流程
- 2023年山東司法警官職業(yè)學(xué)院招聘考試真題
- 氯乙酸安全技術(shù)說明書MSDS
- 農(nóng)村集體土地租賃合同范本村集體土地房屋租
- 電焊煙塵職業(yè)危害培訓(xùn)課件
- 2024年內(nèi)蒙古通遼新正電工技術(shù)服務(wù)有限公司招聘筆試參考題庫附帶答案詳解
- 蒙古國的投資環(huán)境分析報(bào)告
- 《公司法培訓(xùn)》課件
- 印章可疑情況管理制度
- 基于單片機(jī)的汽車超載控制系統(tǒng)的設(shè)計(jì)
- 靜電噴涂設(shè)備操作規(guī)程
評論
0/150
提交評論