版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
基于DCE-MRI影像反卷積模型的腫瘤異質性分析及其在乳腺癌分子分型預測中的應用摘要:
目前,乳腺癌的分子分型成為了研究的熱點,基于組織學特征進行分型對于治療方案的選擇和預后判斷具有重要意義。本文提出了一種基于DCE-MRI影像反卷積模型的腫瘤異質性分析方法,并將其應用于乳腺癌分子分型預測。該方法能夠從DCE-MRI影像中提取出微小的組織學特征,并將其反卷積還原至原始組織,同時,結合機器學習算法,對不同腫瘤分子分型的特征進行分析。實驗結果表明,該方法在使用小數(shù)據(jù)集進行訓練和測試時,能夠準確地預測不同分子分型。
關鍵詞:DCE-MRI影像;反卷積;腫瘤異質性分析;乳腺癌分子分型預測
Abstract:
Atpresent,themoleculartypingofbreastcancerhasbecomearesearchhotspot.Itisofgreatsignificancetoselecttreatmentplansandjudgeprognosisbasedonhistologicalcharacteristics.Inthispaper,atumorheterogeneityanalysismethodbasedonDCE-MRIimagedeconvolutionmodelisproposed,anditisappliedtopredictthemoleculartypingofbreastcancer.ThemethodcanextractsmallhistologicalfeaturesfromDCE-MRIimages,andrestorethemtotheoriginaltissuesbydeconvolution.Meanwhile,combinedwithmachinelearningalgorithm,thecharacteristicsofdifferenttumormoleculartypeswereanalyzed.Experimentalresultsshowthatthemethodcanaccuratelypredictdifferentmoleculartypeswhentrainedandtestedwithsmalldatasets.
Keywords:DCE-MRIimages;deconvolution;tumorheterogeneityanalysis;predictionofmoleculartypingofbreastcanceBreastcancerisacomplexdiseasethatexhibitssignificantheterogeneityinitsmolecularmakeup.Accuratecharacterizationofdifferentmolecularsubtypesofbreastcanceriscrucialforguidingpersonalizedtreatmentstrategies.DCE-MRIisapowerfulimagingtechniquethathasbeenwidelyusedforbreastcancerdiagnosisandtreatmentplanning.However,theinformationobtainedfromDCE-MRIimagesisoftenlimitedbythesmallhistologicalfeaturesthatarenotvisibleontheimages.
Toovercomethislimitation,researchershavedevelopedamethodtoextractandrestoresmallhistologicalfeaturesfromDCE-MRIimagesthroughdeconvolution.Thedeconvolutionprocessseparatesthesignalfromthesmallhistologicalfeaturesandthenoisegeneratedbytheimagingsystem.Byrestoringthesmallfeatures,themethodimprovestheaccuracyoftissuecharacterizationbasedontheDCE-MRIimages.
Tofurtherenhancetheaccuracyoftissuecharacterization,theresearchersalsocombinedthedeconvolutionmethodwithamachinelearningalgorithm.Byanalyzingthecharacteristicsofdifferenttumormoleculartypes,thealgorithmcanaccuratelypredictthemolecularsubtypeofbreastcancerwhentrainedandtestedwithsmalldatasets.
TheexperimentalresultshaveshownthattheproposedmethodcanimprovetheaccuracyoftissuecharacterizationbasedonDCE-MRIimagesandaccuratelypredictdifferentmolecularsubtypesofbreastcancer.ThismethodhasthepotentialtoimprovethediagnosisandtreatmentofbreastcancerbyprovidingmoreaccurateinformationaboutthemolecularmakeupofthetumorBreastcancerisaheterogeneousdiseasewithdistinctmolecularsubtypesthathavedifferentprognoses,responsestotreatment,andclinicaloutcomes.Accuratediagnosisandsubtypingofbreastcancerarecriticalfortailoringtreatmentstrategiesandimprovingpatientoutcomes.Currently,breastcancersubtypingreliesoninvasivetissuebiopsiesandpathologicalanalysis,whichcanbecostly,time-consuming,andriskyforpatients.Thishighlightstheneedfornon-invasiveandaccuratemethodsforbreastcancerdiagnosisandsubtyping.
Dynamiccontrast-enhancedmagneticresonanceimaging(DCE-MRI)isawidelyusedimagingmodalityforbreastcancerdetectionanddiagnosis.Itmeasuresthecontrastagentuptakeandwashoutinbreasttissue,providinginformationontissuevascularityandpermeability.DCE-MRIhasbeenshowntobeeffectiveindetectingbreastcancer,monitoringtreatmentresponse,andpredictingpatientoutcomes.However,ithaslimitedaccuracyinsubtypingbreastcancerbasedonmolecularcharacteristics.
Therefore,thereisagrowinginterestindevelopingmachinelearningalgorithmsthatcanaccuratelypredictthemolecularsubtypesofbreastcancerusingDCE-MRIimages.Thesealgorithmscanleveragethevastamountofimagingdatageneratedinroutineclinicalpracticeandprovidenon-invasiveandaccuratediagnosisandsubtypingofbreastcancer.
Recently,severalstudieshavereportedpromisingresultsusingmachinelearningalgorithmstopredictbreastcancersubtypesbasedonDCE-MRIimages.Forexample,astudybyVignatietal.usedarandomforestalgorithmtopredictthemolecularsubtypesofbreastcancerinpatientsundergoingneoadjuvantchemotherapy.Theyachievedanaccuracyof80%inpredictingtriple-negativebreastcancerand65%inpredictingHER2-positivebreastcancerbasedonDCE-MRIfeatures.
Inanotherstudy,Liuetal.usedadeeplearningalgorithmtopredictthemolecularsubtypesofbreastcancerinalargecohortofpatients.Theyachievedanaccuracyof91.3%inpredictingHER2-positivebreastcancer,83.6%inpredictingluminalAbreastcancer,83.1%inpredictingluminalBbreastcancer,and85.9%inpredictingtriple-negativebreastcancerbasedonDCE-MRIimages.
ThesestudiesdemonstratethepotentialofmachinelearningalgorithmstoaccuratelypredictmolecularsubtypesofbreastcancerusingDCE-MRIimages.However,mostofthesestudieswereperformedonsmalldatasetsandrequirefurthervalidationonlargercohorts.Moreover,thegeneralizationabilityandrobustnessofthesealgorithmsneedtobeevaluatedindifferentclinicalsettingsandimagingdevicestoensuretheirclinicalutility.
Inconclusion,machinelearningalgorithmshaveemergedasapromisingtoolfornon-invasiveandaccuratediagnosisandsubtypingofbreastcancerbasedonDCE-MRIimages.Furtherstudiesareneededtovalidateandoptimizethesealgorithmsandtoassesstheirclinicalusabilityandimpactonpatientoutcomes.Nevertheless,thesealgorithmsholdgreatpromiseforimprovingthediagnosisandtreatmentofbreastcancerandbridgingthegapbetweenimagingandmolecularprofilinginthiscomplexdiseaseBreastcancerisacomplexandheterogeneousdiseasewithdiversemolecularsubtypes,eachwithdistinctclinicalandbiologicalcharacteristics.Accuratediagnosisandsubtypingofbreastcancerarecriticalforselectingthemosteffectivetreatmentstrategyandimprovingpatientoutcomes.Traditionaldiagnosticmethodssuchasmammography,ultrasound,andbiopsyhavelimitationsintermsofsensitivity,specificity,andinvasiveness.
Dynamiccontrast-enhancedmagneticresonanceimaging(DCE-MRI)hasemergedasapowerfulimagingmodalityforbreastcancerdetectionandcharacterization.DCE-MRIprovideshighcontrastandspatialresolutionimagesofbreasttissue,allowingforthevisualizationofbloodflowandtissueperfusion.Inaddition,DCE-MRIcanbeusedtogeneratetemporalintensitycurvesthatreflectthekineticsofcontrastuptakeinthebreasttissue.
RecentadvancesinmachinelearningalgorithmshaveenabledthedevelopmentofautomatedandinterpretablemodelsforbreastcancerdiagnosisandclassificationbasedonDCE-MRIimages.Thesealgorithmsuseacombinationofimageprocessingtechniquesandstatisticallearningmethodstoextractquantitativefeaturesthatcapturethecomplexityofbreastcancerlesions.Bylearningfromlargedatasetsofannotatedimages,thesealgorithmscanidentifypatternsandrelationshipsthatarenoteasilydiscerniblebyvisualinspection.
Oneofthekeyadvantagesofmachinelearningalgorithmsistheirabilitytoimprovetheaccuracyandconsistencyofbreastcancerdiagnosisandsubtyping.Forexample,arecentstudybyWangetal.(2020)developedadeeplearningalgorithmthatachieved90.3%accuracyindistinguishingmalignantandbenignlesionsonDCE-MRIimages,outperformingradiologistswithsimilarlevelsofexperience.AnotherstudybyWuetal.(2019)usedasupportvectormachinealgorithmtoclassifybreastcancersubtypesbasedonDCE-MRIfeatures,achievinganoverallaccuracyof87.2%.
Inadditiontoimprovingdiagnosticaccuracy,machinelearningalgorithmshavethepotentialtoprovidenewinsightsintotheunderlyingbiologyofbreastcancer.Forinstance,astudybyTanetal.(2020)developedamulti-classifiermodelthatidentifieddistinctradiomicfeaturesassociatedwithdifferentmolecularsubtypesofbreastcancer.ThesefeatureswereabletopredicttheexpressionlevelsofimportantmolecularmarkerssuchasestrogenreceptorandHER2,providinganon-invasivemethodformolecularprofilingofbreastcancer.
Despitethepromisingresultsofmachinelearningalgorithmsforbreastcancerdiagnosisandsubtyping,therearestillseveralchallengesthatneedtobeaddressed.Onechallengeisthelackofstandardizedimagingprotocolsandannotationcriteria,whichcanaffectthereproducibilityandgeneralizabilityofthealgorithms.Anotherchallengeistheneedforlargeanddiversedatasetstotrainandvalidatethealgorithms,aswellasthe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度股東一致行動人產(chǎn)業(yè)扶貧合作合同3篇
- 西藏農牧學院《食品加工類綜合技能訓練》2023-2024學年第一學期期末試卷
- 2024版?zhèn)}儲質押貸款協(xié)議書3篇
- 二零二五年度房地產(chǎn)投資信托基金資金監(jiān)管合同3篇
- 無錫城市職業(yè)技術學院《供應商履約與合同管理》2023-2024學年第一學期期末試卷
- 2024版標準勞務合作安全合同范本版B版
- 二零二五版國際貿易融資貸款定金合同范本3篇
- 二零二五年油氣田開發(fā)井筒工程技術服務與地質風險及安全監(jiān)控協(xié)議3篇
- 二零二五年度蟲害防治與生態(tài)農業(yè)園合作服務協(xié)議2篇
- 2024房地產(chǎn)委托銷售合同
- 春季餐飲營銷策劃
- 文化沖突與民族認同建構-洞察分析
- 企業(yè)會計機構的職責(2篇)
- 《疥瘡的防治及治療》課件
- Unit4 What can you do Part B read and write (說課稿)-2024-2025學年人教PEP版英語五年級上冊
- 2025年MEMS傳感器行業(yè)深度分析報告
- 《線控底盤技術》2024年課程標準(含課程思政設計)
- 學校對口幫扶計劃
- 倉庫倉儲安全管理培訓課件模板
- 風力發(fā)電場運行維護手冊
- 河道旅游開發(fā)合同
評論
0/150
提交評論