




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
基于DCE-MRI影像反卷積模型的腫瘤異質(zhì)性分析及其在乳腺癌分子分型預測中的應用摘要:
目前,乳腺癌的分子分型成為了研究的熱點,基于組織學特征進行分型對于治療方案的選擇和預后判斷具有重要意義。本文提出了一種基于DCE-MRI影像反卷積模型的腫瘤異質(zhì)性分析方法,并將其應用于乳腺癌分子分型預測。該方法能夠從DCE-MRI影像中提取出微小的組織學特征,并將其反卷積還原至原始組織,同時,結(jié)合機器學習算法,對不同腫瘤分子分型的特征進行分析。實驗結(jié)果表明,該方法在使用小數(shù)據(jù)集進行訓練和測試時,能夠準確地預測不同分子分型。
關(guān)鍵詞:DCE-MRI影像;反卷積;腫瘤異質(zhì)性分析;乳腺癌分子分型預測
Abstract:
Atpresent,themoleculartypingofbreastcancerhasbecomearesearchhotspot.Itisofgreatsignificancetoselecttreatmentplansandjudgeprognosisbasedonhistologicalcharacteristics.Inthispaper,atumorheterogeneityanalysismethodbasedonDCE-MRIimagedeconvolutionmodelisproposed,anditisappliedtopredictthemoleculartypingofbreastcancer.ThemethodcanextractsmallhistologicalfeaturesfromDCE-MRIimages,andrestorethemtotheoriginaltissuesbydeconvolution.Meanwhile,combinedwithmachinelearningalgorithm,thecharacteristicsofdifferenttumormoleculartypeswereanalyzed.Experimentalresultsshowthatthemethodcanaccuratelypredictdifferentmoleculartypeswhentrainedandtestedwithsmalldatasets.
Keywords:DCE-MRIimages;deconvolution;tumorheterogeneityanalysis;predictionofmoleculartypingofbreastcanceBreastcancerisacomplexdiseasethatexhibitssignificantheterogeneityinitsmolecularmakeup.Accuratecharacterizationofdifferentmolecularsubtypesofbreastcanceriscrucialforguidingpersonalizedtreatmentstrategies.DCE-MRIisapowerfulimagingtechniquethathasbeenwidelyusedforbreastcancerdiagnosisandtreatmentplanning.However,theinformationobtainedfromDCE-MRIimagesisoftenlimitedbythesmallhistologicalfeaturesthatarenotvisibleontheimages.
Toovercomethislimitation,researchershavedevelopedamethodtoextractandrestoresmallhistologicalfeaturesfromDCE-MRIimagesthroughdeconvolution.Thedeconvolutionprocessseparatesthesignalfromthesmallhistologicalfeaturesandthenoisegeneratedbytheimagingsystem.Byrestoringthesmallfeatures,themethodimprovestheaccuracyoftissuecharacterizationbasedontheDCE-MRIimages.
Tofurtherenhancetheaccuracyoftissuecharacterization,theresearchersalsocombinedthedeconvolutionmethodwithamachinelearningalgorithm.Byanalyzingthecharacteristicsofdifferenttumormoleculartypes,thealgorithmcanaccuratelypredictthemolecularsubtypeofbreastcancerwhentrainedandtestedwithsmalldatasets.
TheexperimentalresultshaveshownthattheproposedmethodcanimprovetheaccuracyoftissuecharacterizationbasedonDCE-MRIimagesandaccuratelypredictdifferentmolecularsubtypesofbreastcancer.ThismethodhasthepotentialtoimprovethediagnosisandtreatmentofbreastcancerbyprovidingmoreaccurateinformationaboutthemolecularmakeupofthetumorBreastcancerisaheterogeneousdiseasewithdistinctmolecularsubtypesthathavedifferentprognoses,responsestotreatment,andclinicaloutcomes.Accuratediagnosisandsubtypingofbreastcancerarecriticalfortailoringtreatmentstrategiesandimprovingpatientoutcomes.Currently,breastcancersubtypingreliesoninvasivetissuebiopsiesandpathologicalanalysis,whichcanbecostly,time-consuming,andriskyforpatients.Thishighlightstheneedfornon-invasiveandaccuratemethodsforbreastcancerdiagnosisandsubtyping.
Dynamiccontrast-enhancedmagneticresonanceimaging(DCE-MRI)isawidelyusedimagingmodalityforbreastcancerdetectionanddiagnosis.Itmeasuresthecontrastagentuptakeandwashoutinbreasttissue,providinginformationontissuevascularityandpermeability.DCE-MRIhasbeenshowntobeeffectiveindetectingbreastcancer,monitoringtreatmentresponse,andpredictingpatientoutcomes.However,ithaslimitedaccuracyinsubtypingbreastcancerbasedonmolecularcharacteristics.
Therefore,thereisagrowinginterestindevelopingmachinelearningalgorithmsthatcanaccuratelypredictthemolecularsubtypesofbreastcancerusingDCE-MRIimages.Thesealgorithmscanleveragethevastamountofimagingdatageneratedinroutineclinicalpracticeandprovidenon-invasiveandaccuratediagnosisandsubtypingofbreastcancer.
Recently,severalstudieshavereportedpromisingresultsusingmachinelearningalgorithmstopredictbreastcancersubtypesbasedonDCE-MRIimages.Forexample,astudybyVignatietal.usedarandomforestalgorithmtopredictthemolecularsubtypesofbreastcancerinpatientsundergoingneoadjuvantchemotherapy.Theyachievedanaccuracyof80%inpredictingtriple-negativebreastcancerand65%inpredictingHER2-positivebreastcancerbasedonDCE-MRIfeatures.
Inanotherstudy,Liuetal.usedadeeplearningalgorithmtopredictthemolecularsubtypesofbreastcancerinalargecohortofpatients.Theyachievedanaccuracyof91.3%inpredictingHER2-positivebreastcancer,83.6%inpredictingluminalAbreastcancer,83.1%inpredictingluminalBbreastcancer,and85.9%inpredictingtriple-negativebreastcancerbasedonDCE-MRIimages.
ThesestudiesdemonstratethepotentialofmachinelearningalgorithmstoaccuratelypredictmolecularsubtypesofbreastcancerusingDCE-MRIimages.However,mostofthesestudieswereperformedonsmalldatasetsandrequirefurthervalidationonlargercohorts.Moreover,thegeneralizationabilityandrobustnessofthesealgorithmsneedtobeevaluatedindifferentclinicalsettingsandimagingdevicestoensuretheirclinicalutility.
Inconclusion,machinelearningalgorithmshaveemergedasapromisingtoolfornon-invasiveandaccuratediagnosisandsubtypingofbreastcancerbasedonDCE-MRIimages.Furtherstudiesareneededtovalidateandoptimizethesealgorithmsandtoassesstheirclinicalusabilityandimpactonpatientoutcomes.Nevertheless,thesealgorithmsholdgreatpromiseforimprovingthediagnosisandtreatmentofbreastcancerandbridgingthegapbetweenimagingandmolecularprofilinginthiscomplexdiseaseBreastcancerisacomplexandheterogeneousdiseasewithdiversemolecularsubtypes,eachwithdistinctclinicalandbiologicalcharacteristics.Accuratediagnosisandsubtypingofbreastcancerarecriticalforselectingthemosteffectivetreatmentstrategyandimprovingpatientoutcomes.Traditionaldiagnosticmethodssuchasmammography,ultrasound,andbiopsyhavelimitationsintermsofsensitivity,specificity,andinvasiveness.
Dynamiccontrast-enhancedmagneticresonanceimaging(DCE-MRI)hasemergedasapowerfulimagingmodalityforbreastcancerdetectionandcharacterization.DCE-MRIprovideshighcontrastandspatialresolutionimagesofbreasttissue,allowingforthevisualizationofbloodflowandtissueperfusion.Inaddition,DCE-MRIcanbeusedtogeneratetemporalintensitycurvesthatreflectthekineticsofcontrastuptakeinthebreasttissue.
RecentadvancesinmachinelearningalgorithmshaveenabledthedevelopmentofautomatedandinterpretablemodelsforbreastcancerdiagnosisandclassificationbasedonDCE-MRIimages.Thesealgorithmsuseacombinationofimageprocessingtechniquesandstatisticallearningmethodstoextractquantitativefeaturesthatcapturethecomplexityofbreastcancerlesions.Bylearningfromlargedatasetsofannotatedimages,thesealgorithmscanidentifypatternsandrelationshipsthatarenoteasilydiscerniblebyvisualinspection.
Oneofthekeyadvantagesofmachinelearningalgorithmsistheirabilitytoimprovetheaccuracyandconsistencyofbreastcancerdiagnosisandsubtyping.Forexample,arecentstudybyWangetal.(2020)developedadeeplearningalgorithmthatachieved90.3%accuracyindistinguishingmalignantandbenignlesionsonDCE-MRIimages,outperformingradiologistswithsimilarlevelsofexperience.AnotherstudybyWuetal.(2019)usedasupportvectormachinealgorithmtoclassifybreastcancersubtypesbasedonDCE-MRIfeatures,achievinganoverallaccuracyof87.2%.
Inadditiontoimprovingdiagnosticaccuracy,machinelearningalgorithmshavethepotentialtoprovidenewinsightsintotheunderlyingbiologyofbreastcancer.Forinstance,astudybyTanetal.(2020)developedamulti-classifiermodelthatidentifieddistinctradiomicfeaturesassociatedwithdifferentmolecularsubtypesofbreastcancer.ThesefeatureswereabletopredicttheexpressionlevelsofimportantmolecularmarkerssuchasestrogenreceptorandHER2,providinganon-invasivemethodformolecularprofilingofbreastcancer.
Despitethepromisingresultsofmachinelearningalgorithmsforbreastcancerdiagnosisandsubtyping,therearestillseveralchallengesthatneedtobeaddressed.Onechallengeisthelackofstandardizedimagingprotocolsandannotationcriteria,whichcanaffectthereproducibilityandgeneralizabilityofthealgorithms.Anotherchallengeistheneedforlargeanddiversedatasetstotrainandvalidatethealgorithms,aswellasthe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廈門安防科技職業(yè)學院《高級日語聽力》2023-2024學年第二學期期末試卷
- 濮陽石油化工職業(yè)技術(shù)學院《英語(一)下》2023-2024學年第二學期期末試卷
- 杭州電子科技大學信息工程學院《旅行社崗位綜合實訓》2023-2024學年第二學期期末試卷
- 朔州市朔城區(qū)2025屆數(shù)學五下期末質(zhì)量檢測模擬試題含答案
- 廣西農(nóng)業(yè)職業(yè)技術(shù)大學《古典舞身韻(1)》2023-2024學年第一學期期末試卷
- 仲愷農(nóng)業(yè)工程學院《基礎俄語》2023-2024學年第一學期期末試卷
- 湖南食品藥品職業(yè)學院《合唱與合唱指揮常識》2023-2024學年第一學期期末試卷
- 公衛(wèi)村醫(yī)培訓試題及答案
- 苗木除草施工方案
- 針灸學必看針灸者必會
- 思想道德與法治課件:第四章 第二節(jié) 社會主義核心價值觀的顯著特征
- 750千伏變電站工程項目管理實施規(guī)劃
- 《中醫(yī)內(nèi)科學》教學課件-痿證(49頁PPT)
- 深圳初中化學知識點總結(jié)(大全)
- 數(shù)據(jù)中心機房項目可行性研究報告-用于立項備案
- 熱風爐耐材砌筑施工方案
- (完整版)高中狀語從句練習題帶答案
- 人教版六年級道德與法治下冊課件 第二單元 愛護地球 共同責任 4 地球——我們的家園
- (完整word版)宿舍建筑平面圖
- 《理工英語1》課程導學PPT課件
- 電梯臺賬表格(精編版)
評論
0/150
提交評論